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ABSTRACT
Strong intelligent machines powered by deep neural networks are

increasingly deployed as black boxes to make decisions in risk-

sensitive domains, such as finance and medical. To reduce potential

risk and build trust with users, it is critical to interpret how such

machines make their decisions. Existing works interpret a pre-

trained neural network by analyzing hidden neurons, mimicking

pre-trained models or approximating local predictions. However,

these methods do not provide a guarantee on the exactness and

consistency of their interpretation. In this paper, we propose an

elegant closed form solution namedOpenBox to compute exact and

consistent interpretations for the family of Piecewise Linear Neural

Networks (PLNN). The major idea is to first transform a PLNN into

a mathematically equivalent set of linear classifiers, then interpret

each linear classifier by the features that dominate its prediction.

We further applyOpenBox to demonstrate the effectiveness of non-

negative and sparse constraints on improving the interpretability

of PLNNs. The extensive experiments on both synthetic and real

world data sets clearly demonstrate the exactness and consistency

of our interpretation.
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form.
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1 INTRODUCTION
More and more machine learning systems are making significant

decisions routinely in important domains, such as medical practice,

autonomous driving, criminal justice, and military decision mak-

ing [15]. As the impact of machine-made decisions increases, the

demand on clear interpretations of machine learning systems is

growing ever stronger against the blind deployments of decision

machines [17]. Accurately and reliably interpreting amachine learn-

ing model is the key to many significant tasks, such as identifying

failuremodels [1], building trust with human users [35], discovering

new knowledge [34], and avoiding unfairness issues [45].

The interpretation problem of machine learning models has been

studied for decades. Conventional models, such as Logistic Regres-

sion and Support Vector Machine, have all been well interpreted

from both practical and theoretical perspectives [4]. Powerful non-

negative and sparse constraints are also developed to enhance the

interpretability of conventional models by sparse feature selec-

tion [21, 27]. However, due to the complex network structure of a

deep neural network, the interpretation problem of modern deep

models is yet a challenging field that awaits further exploration.

As to be reviewed in Section 2, the existing studies interpret a

deep neural network in three major ways. The hidden neuron anal-

ysis methods [9, 29, 44] analyze and visualize the features learned

by the hidden neurons of a neural network; the model mimicking

methods [2, 3, 7, 20] build a transparent model to imitate the classi-

fication function of a deep neural network; the local explanation

methods [11, 37, 39, 41] study the predictions on local perturbations

of an input instance, so as to provide decision features for interpre-

tation. All these methods gain useful insights into the mechanism

of deep models. However, there is no guarantee that what they

compute as an interpretation is truthfully the exact behavior of

a deep neural network. As demonstrated by Ghorbani [13], most

existing interpretation methods are inconsistent and fragile, be-

cause two perceptively indistinguishable instances with the same

prediction result can be easily manipulated to have dramatically

different interpretations.

Can we compute an exact and consistent interpretation for a pre-
trained deep neural network? In this paper, we provide an affir-

mative answer, as well as an elegant closed form solution for the

https://doi.org/10.1145/3219819.3220063
https://doi.org/10.1145/3219819.3220063
https://doi.org/10.1145/3219819.3220063
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family of piecewise linear neural networks. Here, a piecewise lin-
ear neural network (PLNN) [18] is a neural network that adopts

a piecewise linear activation function, such as MaxOut [16] and the

family of ReLU [14, 19, 31]. The wide applications [26] and great

practical successes [25] of PLNNs call for exact and consistent inter-

pretations on the overall behaviour of this type of neural networks.

We make the following technical contributions.

First, we prove that a PLNN is mathematically equivalent to a set

of local linear classifiers, each of which being a linear classifier that

classifies a group of instances within a convex polytope in the input

space. Second, we propose a method named OpenBox to provide

an exact interpretation of a PLNN by computing its equivalent set

of local linear classifiers in closed form. Third, we interpret the

classification result of each instance by the decision features of

its local linear classifier. Since all instances in the same convex

polytope share the same local linear classifier, our interpretations

are consistent per convex polytope. Fourth, we also applyOpenBox
to study the effect of non-negative and sparse constraints on the

interpretability of PLNNs. We find that a PLNN trained with these

constraints selects meaningful features that dramatically improve

the interpretability. Last, we conduct extensive experiments on both

synthetic and real-world data sets to verify the effectiveness of our

method.

The rest of this paper is organized as follows. We review the

related works in Section 2. We formulate the problem in Section 3

and present OpenBox in Section 4. We report the experimental

results in Section 5, and conclude the paper in Section 6.

2 RELATEDWORKS
How to interpret the overall mechanism of deep neural networks

is an emergent and challenging problem.

2.1 Hidden Neuron Analysis Methods
The hidden neuron analysis methods [9, 29, 44] interpret a pre-

trained deep neural network by visualizing, revert-mapping or

labeling the features that are learned by the hidden neurons.

Yosinski et al. [44] visualized the live activations of the hidden

neurons of a ConvNet, and proposed a regularized optimization

to produce a qualitatively better visualization. Erhan et al. [10]
proposed an activation maximization method and a unit sam-

pling method to visualize the features learned by hidden neurons.

Cao et al. [5] visualized a neural network’s attention on its target

objects by a feedback loop that infers the activation status of the

hidden neurons. Li et al. [28] visualized the compositionality of

clauses by analyzing the outputs of hidden neurons in a neural

model for Natural Language Processing.

To understand the features learned by the hidden neurons, Ma-

hendran et al. [29] proposed a general framework that revert-maps

the features learned from an image to reconstruct the image. Doso-

vitskiy et al. [9] performed the same task as Mahendran et al. [29]
did by training an up-convolutional neural network.

Zhou et al. [46] interpreted a CNN by labeling each hidden neu-

ron with a best aligned human-understandable semantic concept.

However, it is hard to get a golden dataset with accurate and com-

plete labels of all human semantic concepts.

The hidden neuron analysis methods provide useful qualitative

insights into the properties of each hidden neuron. However, quali-

tatively analyzing every neuron does not provide much actionable

and quantitative interpretation about the overall mechanism of the

entire neural network [12].

2.2 Model Mimicking Methods
By imitating the classification function of a neural network, the

model mimicking methods [2, 3, 7, 20] build a transparent model

that is easy to interpret and achieves a high classification accuracy.

Ba et al. [2] proposed a model compression method to train a

shallow mimic network using the training instances labeled by

one or more deep neural networks. Hinton et al. [20] proposed a

distillation method that distills the knowledge of a large neural

network by training a relatively smaller network to mimic the

prediction probabilities of the original large network. To improve

the interpretability of distilled knowledge, Frosst and Hinton [12]

extended the distillation method [20] by training a soft decision

tree to mimic the prediction probabilities of a deep neural network.

Che et al. [7] proposed a mimic learning method to learn inter-

pretable phenotype features. Wu et al. [42] proposed a tree regu-

larization method that uses a binary decision tree to mimic and

regularize the classification function of a deep time-series model.

Zhu et al. [48] built a transparent forest model on top of a deep

feature embedding network, however it is still difficult to interpret

the deep feature embedding network.

The mimic models built by model mimicking methods are much

simpler to interpret than deep neural networks. However, due to the

reduced model complexity of a mimic model, there is no guarantee

that a deep neural network with a large VC-dimension [18, 24, 40]

can be successfully imitated by a simpler shallowmodel. Thus, there

is always a gap between the interpretation of a mimic model and

the actual overall mechanism of the target deep neural network.

2.3 Local Interpretation Methods
The local interpretation methods [11, 37, 39, 41] compute and visu-

alize the important features for an input instance by analyzing the

predictions of its local perturbations.

Simonyan et al. [38] generated a class-representative image and

a class-saliency map for each class of images by computing the

gradient of the class score with respect to an input image. Ribeiro et
al. [35] proposed LIME to interpret the predictions of any classifier

by learning an interpretable model in the local region around the

input instance.

Zhou et al. [47] proposed CAM to identify discriminative image

regions for each class of images using the global average pooling

in CNNs. Selvaraju et al. [36] generalized CAM [47] by Grad-CAM,

which identifies important regions of an image by flowing class-

specific gradients into the final convolutional layer of a CNN.

Koh et al. [23] used influence functions to trace a model’s predic-

tion and identify the training instances that are themost responsible

for the prediction.

The local interpretation methods generate an insightful individ-

ual interpretation for each input instance. However, the interpre-

tations for perspectively indistinguishable instances may not be
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consistent [13], and can be manipulated by a simple transformation

of the input instance without affecting the prediction result [22].

3 PROBLEM DEFINITION
For a PLNN N that contains L layers of neurons, we write the

l-th layer of N as Ll . Hence, L1 is the input layer, LL is the

output layer, and the other layersLl , l ∈ {2, . . . ,L−1} arehidden
layers. A neuron in a hidden layer is called a hidden neuron. Let
nl represent the number of neurons in Ll , the total number of

hidden neurons in N is computed by N =
∑L−1
l=2 nl .

Denote by u(l )i the i-th neuron in Ll , by b(l−1)i its bias, by

a(l )i its output, and by z(l )i the total weighted sum of its inputs.

For all the nl neurons in Ll , we write their biases as a vector

b(l−1) = [b(l−1)
1
, . . . , b(l−1)nl ]

⊤
, their outputs as a vector a(l ) =

[a(l )
1
, . . . , a(l )nl ]

⊤
, and their inputs as a vector z(l ) = [z(l )

1
, . . . , z(l )nl ]

⊤
.

Neurons in successive layers are connected by weighted edges.

Denote byW
(l )
i j the weight of the edge between the i-th neuron

in Ll+1 and the j-th neuron in Ll , that is,W
(l )

is an nl+1-by-nl
matrix. For l ∈ {1, . . . ,L − 1}, we compute z(l+1) by

z(l+1) =W (l )a(l ) + b(l ) (1)

Denote by f : R → R the piecewise linear activation function

for each neuron in the hidden layers of N . We have a(l )i = f (z(l )i )
for all l ∈ {2, . . . ,L − 1}. We extend f to apply to vectors in an

element-wise fashion, such that f (z(l ) ) = [f (z(l )
1
), . . . , f (z(l )nl )]

⊤
.

Then, we compute a(l ) for all l ∈ {2, . . . ,L − 1} by

a(l ) = f (z(l ) ) (2)

An input instance ofN is denoted by x ∈ X, where X ⊆ Rd is

a d-dimensional input space. x is also called an instance for short.
Denote by xi the i-th dimension of x. The input layerL1 contains

n1 = d neurons, where a(1)i = xi for all i ∈ {1, . . . ,d }.
The output of N is a(L) ∈ Y , where Y ⊆ RnL is an nL-

dimensional output space. The output layer LL adopts the softmax
function to compute the output by a(L) = softmax (z(L) ).

A PLNN works as a classification function F : X → Y that

maps an input x ∈ X to an output a(L) ∈ Y . It is widely known

that F (·) is a piecewise linear function [30, 33]. However, due to the

complex network of a PLNN, the overall behaviour of F (·) is hard
to understand. Thus, a PLNN is usually regarded as a black box.

How to interpret the overall behavior of a PLNN in a human-

understandable manner is an interesting problem that has attracted

much attention in recent years.

Following a principled approach of interpreting a machine learn-

ing model [4], we regard an interpretation of a PLNN N as the

decision features that define the decision boundary of N . We call a

model interpretable if it explicitly provides its interpretation (i.e.,

decision features) in closed form.

Definition 3.1. Given a fixed PLNN N with constant structure

and parameters, our task is to interpret the overall behaviour of N

by computing an interpretable modelM that satisfies the following

requirements.

Table 1: Frequently used notations.

Notation Description

u(l )i The i-th neuron in layer Ll .

nl The number of neurons in layer Ll .

N The total number of hidden neurons in N .

z(l )i The input of the i-th neuron in layer Ll .

c(l )i The configuration of the i-th neuron in layer Ll .

Ch The h-th configuration of the PLNN N .

Ph The h-th convex polytope determined by Ch .
Fh ( ·) The h-th linear classifier that is determined by Ch .
Qh The set of linear inequalities that define Ph .

• Exactness:M is mathematically equivalent to N such that

the interpretations provided byM truthfully describe the

exact behaviour of N .

• Consistency:M provides similar interpretations for classi-

fication of similar instances.

Table 1 summarizes a list of frequently used notations.

4 THE OPENBOX METHOD
In this section, we describe the OpenBox method, which produces

an exact and consistent interpretation of a PLNN by computing an

interpretation modelM in a piecewise linear closed form.

We first define the configuration of a PLNN N , which specifies

the activation status of each hidden neuron inN . Then, we illustrate

how to interpret the classification result of a fixed instance. Last, we

illustrate how to interpret the overall behavior of N by computing

an interpretation modelM that is mathematically equivalent toN .

4.1 The Configuration of a PLNN
For a hidden neuron u(l )i , the piecewise linear activation function

f (z(l )i ) is in the following form.

f (z(l )i ) =




r1z
(l )
i + t1, if z(l )i ∈ I1

r2z
(l )
i + t2, if z(l )i ∈ I2
...

rk z
(l )
i + tk , if z(l )i ∈ Ik

(3)

where k ≥ 1 is a constant integer, f (z(l )i ) consists of k linear func-

tions, {r1, . . . , rk } are constant slopes, {t1, . . . , tk } are constant in-
tercepts, and {I1, . . . , Ik } is a collection of constant real intervals
that partition R.

Given a fixed PLNN N , an instance x ∈ X determines the value

of z(l )i , and further determines a linear function in f (z(l )i ) to apply.

According to which linear function in f (z(l )i ) is applied, we encode
the activation status of each hidden neuron by k states, each of

which uniquely corresponds to one of the k linear functions of

f (z(l )i ). Denote by c(l )i ∈ {1, . . . ,k } the state of u
(l )
i , we have z(l )i ∈

Iq if and only if c(l )i = q (q ∈ {1, . . . ,k }). Since the inputs z(l )i ’s

are different from neuron to neuron, the states of different hidden

neurons may differ from each other.
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Denote by a vector c(l ) = [c(l )
1
, . . . , c(l )nl ] the states of all hidden

neurons inLl . The configuration ofN is anN -dimensional vector,

denoted by C = [c(2) , . . . , c(L−1)], which specifies the states of all

hidden neurons in N .

The configuration C of a fixed PLNN is uniquely determined by

the instance x. We write the function that maps an instance x ∈ X
to a configuration C ∈ {1, . . . ,k }N as conf : X → {1, . . . ,k }N .

For a neuron u(l )i , denote by variables r(l )i and t(l )i the slope and

intercept, respectively, of the linear function that corresponds to

the state c(l )i . r(l )i and t(l )i are uniquely determined by c(l )i , such

that r(l )i = rq and t(l )i = tq , if and only if c(l )i = q (q ∈ {1, . . . ,k }).
For all hidden neurons inLl , we write the variables of slopes and

intercepts as r(l ) = [r(l )
1
, . . . , r(l )nl ]

⊤
and t(l ) = [t(l )

1
, . . . , t(l )nl ]

⊤
, re-

spectively. Then, we rewrite the activation function for all neurons

in a hidden layer Ll as

f (z(l ) ) = r(l ) ◦ z(l ) + t(l ) (4)

where r(l ) ◦ z(l ) is the Hadamard product between r(l ) and z(l ) .
Next, we interpret the classification result of a fixed instance.

4.2 Exact Interpretation for the Classification
Result of a Fixed Instance

Given a fixed PLNN N , we interpret the classification result of a

fixed instance x ∈ X by deriving the closed form of F (x) as follows.
Following Equations 2 and 4, we have, for all l ∈ {2, . . . ,L − 1}

a(l ) = f (z(l ) ) = r(l ) ◦ z(l ) + t(l )

By plugging a(l ) into Equation 1, we rewrite z(l+1) as

z(l+1) =W (l ) (r(l ) ◦ z(l ) + t(l ) ) + b(l ) = W̃ (l )z(l ) + ˜b(l ) (5)

where
˜b(l ) =W (l )t(l ) + b(l ) , and W̃ (l ) =W (l ) ◦ r(l ) is an extended

version of Hadamard product, such that the entry at the i-th row

and j-th column of W̃ (l )
is W̃

(l )
i j =W

(l )
i j r(l )j .

By iteratively plugging Equation 5 into itself, we can write z(l+1)

for all l ∈ {2, . . . ,L − 1} as

z(l+1) =
l−2∏
h=0

W̃ (l−h)z(2) +
l∑

h=2

l−h−1∏
q=0

W̃ (l−q ) ˜b(h)

By plugging z(2) =W (1)a(1) + b(1) and a(1) = x into the above

equation, we rewrite z(l+1) , for all l ∈ {2, . . . ,L − 1}, as

z(l+1) =
l−2∏
h=0

W̃ (l−h)W (1)x +
l−2∏
h=0

W̃ (l−h)b(1) +
l∑

h=2

l−h−1∏
q=0

W̃ (l−q ) ˜b(h)

= Ŵ (1:l )x + ˆb(1:l )

(6)

where Ŵ (1:l ) =
∏l−2

h=0 W̃
(l−h)W (1)

is the coefficient matrix of x,
and

ˆb(1:l ) is the sum of the remaining terms. The superscript (1 : l )

indicates thatŴ (1:l )x+ ˆb(1:l ) is equivalent to PLNN’s forward prop-
agation from layer L1 to layer Ll .

Since the output of N on an input x ∈ X is F (x) = a(L) =
softmax (z(L) ), the closed form of F (x) is

F (x) = softmax (Ŵ (1:L−1)x + ˆb(1:L−1) ) (7)

For a fixed PLNNN and a fixed instance x,Ŵ (1:L−1)
and

ˆb(1:L−1)

are constant parameters uniquely determined by the fixed configu-

ration C = conf (x). Therefore, for a fixed input instance x, F (x) is
a linear classifier whose decision boundary is explicitly defined

by Ŵ (1:L−1)x + ˆb(1:L−1) .
Inspired by the interpretation method widely used by conven-

tional linear classifiers, such as Logistic Regression and linear

SVM [4], we interpret the prediction on a fixed instance x by the

decision features of F (x). Specifically, the entries of the i-th row of

Ŵ (1:L−1)
are the decision features for the i-th class of instances.

Equation 7 provides a straightforward way to interpret the clas-

sification result of a fixed instance. However, individually inter-

preting the classification result of every single instance is far from

the understanding of the overall behavior of a PLNN N . Next, we

describe how to interpret the overall behavior of N by computing

an interpretation modelM that is mathematically equivalent toN .

4.3 Exact Interpretation of a PLNN
A fixed PLNN N with N hidden neurons has at most kN config-

urations. We represent the h-th configuration by Ch ∈ C, where
C ⊆ {1, . . . ,k }N is the set of all configurations of N .

Recall that each instance x ∈ X uniquely determines a config-

uration conf (x) ∈ C. Since the volume of C, denoted by |C|, is at

most kN , but the number of instances in X can be arbitrarily large,

it is clear that at least one configuration in C should be shared by

more than one instances in X.

Denote by Ph = {x ∈ X | conf (x) = Ch } the set of instances
that have the same configuration Ch . We prove in Theorem 4.1 that

for any configuration Ch ∈ C, Ph is a convex polytope in X.

Theorem 4.1. Given a fixed PLNN N with N hidden neurons,
∀Ch ∈ C, Ph = {x ∈ X | conf(x) = Ch } is a convex polytope in X.

Proof. We prove by showing that conf (x) = Ch is equivalent

to a finite set of linear inequalities with respect to x.
When l = 2, we have z(2) =W (1)x+b(1) . For l ∈ {3, . . . ,L−1}, it

follows Equation 6 that z(l ) = Ŵ (1:l−1)x+ ˆb(1:l−1) , which is a linear

function of x, because Ŵ (1:l )
and

ˆb(1:l ) are constant parameters

when Ch is fixed. In summary, given a fixed Ch , z(l ) is a linear

function of x for all l ∈ {2, . . . ,L − 1}.
We show that Ph is a convex polytope by showing that conf (x) =

Ch is equivalent to a set of 2N linear inequalities with respect to

x. Recall that z(l )i ∈ Iq if and only if c(l )i = q (q ∈ {1, . . . ,k }).
Denote byψ : {1, . . . ,k } → {I1, . . . , Ik } the bijective function that

maps a configuration c(l )i to a real interval in {I1, . . . , Ik }, such

that ψ (c(l )i ) = Iq if and only if c(l )i = q (q ∈ {1, . . . ,k }). Then,
conf (x) = Ch is equivalent to a set of constraints, denoted by

Qh = {z
(l )
i ∈ ψ (c

(l )
i ) | i ∈ {1, . . . ,nl }, l ∈ {2, . . . ,L − 1}}. Since z

(l )
i

is a linear function of x andψ (c(l )i ) is a real interval, each constraint

z(l )i ∈ ψ (c(l )i ) in Qh is equivalent to two linear inequalities with

respect to x. Therefore, conf (x) = Ch is equivalent to a set of 2N
linear inequalities, which means Ph is a convex polytope. □

According to Theorem 4.1, all instances sharing the same con-

figuration Ch form a unique convex polytope Ph that is explicitly

defined by 2N linear inequalities in Qh . Since Ch also determines
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Algorithm 1: OpenBox (N ,Dtrain)

Input: N B a fixed PLNN, Dtrain ⊂ X the set of training

instances used to train N .

Output:M B a set of active LLCs

1: Initialization:M = ∅, C = ∅.

2: for each x ∈ Dtrain do
3: Compute the configuration by Ch ← conf (x).
4: if Ch < C then
5: C ← C ∪ Ch andM ←M ∪ (Fh (x), Ph ).
6: end if
7: end for
8: return M.

the linear classifier for a fixed instance in Equation 7, all instances

in the same convex polytope Ph share the same linear classifier

determined by Ch .
Denote by Fh (·) the linear classifier that is shared by all in-

stances in Ph , we can interpret N as a set of local linear classi-
fiers (LLCs), each LLC being a linear classifier Fh (·) that applies to
all instances in a convex polytope Ph . Denote by a tuple (Fh (·), Ph )
the h-th LLC, a fixed PLNN N is equivalent to a set of LLCs, de-

noted by M = {(Fh (·), Ph ) | Ch ∈ C}. We use M as our final

interpretation model for N .

For a fixed PLNN N , if the states of the N hidden neurons are

independent, the PLNN N has kN configurations, which means

M contains kN LLCs. However, due to the hierarchical structure

of a PLNN, the states of a hidden neuron in Ll strongly correlate

with the states of the neurons in the former layers Lq (q < l ).

Therefore, the volume of C is much less than kN , and the number

of local linear classifiers inM is much less than kN . We discuss

this phenomenon later in Table 3 and Section 5.4.

In practice, we do not need to compute the entire set of LLCs

inM all at once. Instead, we can first compute an active subset

ofM, that is, the set of LLCs that are actually used to classify the

available set of instances. Then, we can updateM whenever a new

LLC is used to classify a newly coming instance.

Algorithm 1 summarizes the OpenBox method, which computes

M as the active set of LLCs that are actually used to classify the

set of training instances, denoted by Dtrain.

The time cost of Algorithm 1 consists of the time Tconf to com-

pute conf (x) in step 3 and the time TLLC to compute the LLC

(Fh (x), Ph ) in step 5. Since Tconf and TLLC are dominated by ma-

trix (vector) multiplications, we evaluate the time cost of Algo-

rithm 1 by the number of scalar multiplications. First, since we com-

pute conf (x) by forward propagating from layer L1 to layer LL−1,

Tconf =
∑L−1
l=2 nlnl−1. Second, since (Fh (x), Ph ) is determined by

the set of tuples G = {(Ŵ (1:l ) , ˆb(1:l ) ) | l ∈ {1, . . . ,L − 1}}, TLLC
is the time to compute G. Given (Ŵ (1:l−1) , ˆb(1:l−1) ), we can com-

pute (Ŵ (1:l ) , ˆb(1:l ) ) by plugging z(l ) = Ŵ (1:l−1)x + ˆb(1:l−1) (Equa-
tion 6) into Equation 5, and the time cost is nl+1nl (n1 + 1). Since

Ŵ (1:1) =W (1)
and

ˆb(1:1) = b(1) , we can iteratively compute G. The

overall time cost is TLLC =
∑L−1
l=2 nl+1nl (n1 + 1).

The worst case of Algorithm 1 happens when every instance

x ∈ Dtrain has a unique configuration conf (x). Denote by |Dtrain |

the number of training instances, the time cost of Algorithm 1 in

the worst case is |Dtrain |(Tconf +TLLC ). Since nl , l ∈ {2, . . . ,L − 1}

are constants and n1 = d is the size of the input x ∈ Rd , the time

complexity of Algorithm 1 is O ( |Dtrain |d ).
Now, we are ready to introduce how to interpret the classification

result of an instance x ∈ Ph ,h ∈ {1, . . . , |C|}. First, we interpret
the classification result of x using the decision features of Fh (x)
(Section 4.2). Second, we interpret why x is contained in Ph using

the polytope boundary features (PBFs), which are the decision

features of the polytope boundaries. More specifically, a polytope

boundary of Ph is defined by a linear inequality z(l )i ∈ ψ (c(l )i ) in

Qh . By Equation 6, z(l )i is a linear function with respect to x. The

PBFs are the coefficients of x in z(l )i .

We also discover that some linear inequalities in Qh are redun-

dant whose hyperplanes do not intersect with Ph . To simplify our

interpretation on the polytope boundaries, we remove such redun-

dant inequalities by Caron’s method [6] and focus on studying the

PBFs of the non-redundant ones.

The advantages of OpenBox are three-fold as follows. First, our

interpretation is exact, because the set of LLCs inM are mathemat-

ically equivalent to the classification function F (·) of N . Second,

our interpretation is group-wise consistent. It is due to the reason

that all instances in the same convex polytope are classified by

exactly the same LLC, and thus the interpretations are consistent

with respect to a given convex polytope. Last, our interpretation is

easy to compute due to the low time complexity of Algorithm 1.

5 EXPERIMENTS
In this section, we evaluate the performance of OpenBox , and com-

pare it with the state-of-the-art method LIME [35]. In particular, we

address the following questions: (1) What are the LLCs look like?

(2) Are the interpretations produced by LIME and OpenBox exact

and consistent? (3) Are the decision features of LLCs easy to under-

stand, and can we improve the interpretability of these features by

non-negative and sparse constraints? (4) How to interpret the PBFs

of LLCs? (5) How effective are the interpretations of OpenBox in

hacking and debugging a PLNN model?

Table 2 shows the details of the six models we used. For both

PLNN and PLNN-NS, we use the same network structure described

in Table 3, and adopt the widely used activation function: ReLU [14].

We apply the non-negative and sparse constraints proposed by

Chorowski et al. [8] to train PLNN-NS. Since our goal is to com-

prehensively study the interpretation effectiveness of OpenBox
rather than achieving state-of-the-art classification performance,

we use relatively simple network structures for PLNN and PLNN-

NS, which are still powerful enough to achieve significantly better

classification performance than Logistic Regression (LR). The deci-

sion features of LR, LR-F, LR-NS and LR-NSF are used as baselines

to compare with the decision features of LLCs.

The Python code of LIME is published by its authors
1
. The other

methods and models are implemented in Matlab. PLNN and PLNN-

NS are trained using the DeepLearnToolBox [32]. All experiments

are conducted on a PC with a Core-i7-3370 CPU (3.40 GHz), 16GB

main memory, and a 5,400 rpm hard drive running Windows 7 OS.

1
https://github.com/marcotcr/lime

https://github.com/marcotcr/lime
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Table 2: The models to interpret. LR is Logistic Regression.
NS means non-negative and sparse constraints. Flip means
the model is trained on the instances with flipped labels.

Models PLNN PLNN-NS LR LR-F LR-NS LR-NSF

NS × ✓ × × ✓ ✓
Flip × × × ✓ × ✓

Table 3: The network structures (n1,n2, . . . ,nL ) and the num-
ber of configurations |C| of PLNN and PLNN-NS. The neu-
rons in successive layers are initialized to be fully connected.
k = 2 is the number of linear functions of ReLU, N is the
number of hidden neurons.

Data Sets

# Neurons

(n1, n2, . . . , nL )
PLNN PLNN-NS

|C | kN |C | kN

SYN (2, 4, 16, 2, 2) 266 2
22

41 2
22

FMNIST-1 (784, 8, 2, 2) 78 2
10

3 2
10

FMNIST-2 (784, 8, 2, 2) 23 2
10

18 2
10

Table 4: Detailed description of data sets.

Data Sets

Training Data Testing Data

# Positive # Negative # Positive # Negative

SYN 6,961 13,039 N/A N/A

FMNIST-1 4,000 4,000 3,000 3,000

FMNIST-2 4,000 4,000 3,000 3,000

We use the following data sets. Detailed information of the data

sets is shown in Table 4.

Synthetic (SYN) Data Set.As shown in Figure 1(a), this data set
contains 20,000 instances uniformly sampled from a quadrangle in

2-dimensional Euclidean space. The red and blue points are positive

and negative instances, respectively. Since we only use SYN to

visualize the LLCs of a PLNN and we do not perform testing on

SYN, we use all instances in SYN as the training data.

FMNIST-1 and FMNIST-2 Data Sets. Each of these data sets

contains two classes of images in the Fashion MNIST data set [43].

FMNIST-1 consists of the images of Ankle Boot and Bag. FMNIST-2

consists of the images of Coat and Pullover. All images in FMNIST-

1 and FMNIST-2 are 28-by-28 grayscale images. We represent an

image by cascading the 784 pixel values into a 784-dimensional

feature vector. The Fashion MNIST data set is available online
2
.

5.1 What Are the LLCs Look Like?
We demonstrate our claim in Theorem 4.1 by visualizing the LLCs

of the PLNN trained on SYN.

Figures 1(a)-(b) show the training instances of SYN and the pre-

diction results of PLNN on the training instances, respectively. Since

all instances are used for training, the prediction accuracy is 99.9%.

In Figure 1(c), we plot all instances with the same configuration in

the same colour. Clearly, all instances with the same configuration

are contained in the same convex polytope. This demonstrates our

claim in Theorem 4.1.

Figure 1(d) shows the LLCs whose convex polytopes cover the

decision boundary of PLNN and contain both positive and negative

2
https://github.com/zalandoresearch/fashion-mnist
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(a) training data of SYN
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(b) prediction results of PLNN
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(c) convex polytopes
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(d) LLCs

Figure 1: The LLCs of the PLNN trained on SYN.

instances. As it is shown, the solid lines show the decision bound-

aries of the LLCs, which capture the difference between positive

and negative instances, and form the overall decision boundary

of PLNN. A convex polytope that does not cover the boundary of

PLNN contains a single class of instances. The LLCs of these convex

polytopes capture the common features of the corresponding class

of instances. As to be analyzed in the following subsections, the

set of LLCs produce exactly the same prediction as PLNN, and also

capture meaningful decision features that are easy to understand.

5.2 Are the Interpretations Exact and
Consistent?

Exact and consistent interpretations are naturally favored by human

minds. In this subsection, we systematically study the exactness

and consistency of the interpretations of LIME and OpenBox on

FMNIST-1 and FMNIST-2. Since LIME is too slow to process all

instances in 24 hours, for each of FMNIST-1 and FMNIST-2, we

uniformly sample 600 instances from the testing set, and conduct

the following experiments on the sampled instances.

We first analyze the exactness of interpretation by comparing

the predictions computed by the local interpretable model of LIME,

the LLCs of OpenBox and PLNN, respectively. The prediction of an

instance is the probability of classifying it as a positive instance.

In Figure 2, since LIME does not guarantee zero approximation

error on the local predictions of PLNN, the predictions of LIME are

not exactly the same as PLNN on FMNIST-1, and are dramatically

different from PLNN on FMNIST-2. The difference of predictions is

more significant on FMNIST-2, because the images in FMNIST-2 are

more difficult to distinguish, which makes the decision boundary

of PLNN more complicated and harder to approximate. We can also

see that the predictions of LIME exceed [0, 1]. This is because the

https://github.com/zalandoresearch/fashion-mnist
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Figure 2: The predictions of LIME, OpenBox and PLNN. The
predictions of all methods are computed individually and
independently. We sort the results by PLNN’s predictions in
descending order.
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Figure 3: The cosine similarity between the decision features
of each instance and its nearest neighbour. The results of
LIME andOpenBox are separately sorted by cosine similarity
in descending order.

output of the interpretable model of LIME is not a probability at all.

As a result, it is arguable that the interpretations computed by LIME

may not truthfully describe the exact behavior of PLNN. In contrast,

since the set of LLCs computed by OpenBox is mathematically

equivalent to F (·) of PLNN, the predictions of OpenBox are exactly

the same as PLNN on all instances. Therefore, the decision features

of LLCs exactly describe the overall behavior of PLNN.

Next, we study the interpretation consistency of LIME and

OpenBox by analyzing the similarity between the interpretations

of similar instances.

In general, a consistent interpretation method should provide

similar interpretations for similar instances. For an instance x, de-
note by x′ the nearest neighbor of x by Euclidean distance, by

γ ,γ ′ ∈ Rd the decision features for the classification of x and x′,
respectively. We measure the consistency of interpretation by the

cosine similarity between γ and γ ′, where a larger cosine similarity

indicates a better interpretation consistency.

As shown in Figure 3, the cosine similarity of OpenBox is equal

to 1 on about 50% of the instances, because OpenBox consistently

gives the same interpretation for all instances in the same convex

polytope. Since the nearest neighbours x and x′ may not belong to

the same convex polytope, the cosine similarity of OpenBox is not

Table 5: The training and testing accuracy of all models.

Data Set FMNIST-1 FMNIST-2

Accuracy Train Test Train Test

LR 0.998 0.997 0.847 0.839

LR-F 0.998 0.997 0.847 0.839

PLNN 1.000 0.999 0.907 0.868

LR-NS 0.772 0.776 0.711 0.698

LR-NSF 0.989 0.989 0.782 0.791

PLNN-NS 1.000 0.999 0.894 0.867

always equal to 1 on all instances. In constrast, since LIME computes

individual interpretation based on the unique local perturbations

of every single instance, the cosine similarity of LIME is signifi-

cantly lower than OpenBox on all instances. This demonstrates the

superior interpretation consistency of OpenBox .
In summary, the interpretations of OpenBox are exact, and are

much more consistent than the interpretations of LIME.

5.3 Decision Features of LLCs and the Effect of
Non-negative and Sparse Constraints

Besides exactness and consistency, a good interpretation should

also have a strong semantical meaning, such that the “thoughts”

of an intelligent machine can be easily understood by a human

brain. In this subsection, we first show the meaning of the decision

features of LLCs, then study the effect of the non-negative and

sparse constraints in improving the interpretability of the decision

features. The decision features of PLNN and PLNN-NS are computed

by OpenBox . The decision features of LR, LR-F, LR-NS and LR-NSF

are used as baselines. Table 5 shows the accuracy of all models.

Figure 4 shows the decision features of all models on FMNIST-1.

Interestingly, the decision features of PLNN are as easy to under-

stand as the decision features of LR and LR-F. All these features

clearly highlight meaningful image parts, such as the ankle and heel

of Ankle Boot, and the upper left corner of Bag. A closer look at the

the average images suggests that these decision features describe

the difference between Ankle Boot and Bag.
The decision features of PLNN capture more detailed difference

between Ankle Boot and Bag than the decision features of LR and

LR-F. This is because the LLCs of PLNN only capture the difference

between a subset of instances within a convex polytope, however,

LR and LR-F capture the overall difference between all instances

of Ankle Boot and Bag. The accuracies of PLNN, LR and LR-F are

comparable because the instances of Ankle Boot and Bag are easy to
distinguish. However, as to be shown in Figure 5, when the instances

are hard to distinguish, PLNN captures much more detailed features

than LR and LR-F, and achieves a significantly better accuracy.

Figure 5 shows the decision features of all models on FMNIST-2.

As it is shown, LR and LR-F capture decision features with a strong

semantical meaning, such as the collar and breast of Coat, and the

shoulder of Pullover. However, these features are too general to

accurately distinguish between Coat and Pullover. Therefore, LR
and LR-F do not achieve a high accuracy. Interestingly, the decision

features of PLNN capture much more details than LR and LR-F,

which leads to the superior accuracy of PLNN.
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Figure 4: The decision features of all models on FMNIST-1.
(a)-(e) and (f)-(j) show the average image and the decision
features of all models for Ankle Boot and Bag, respectively.
For PLNN and PLNN-NS, we show the decision features of
the LLCwhose convex polytope contains themost instances.
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Figure 5: The decision features of all models on FMNIST-2.
(a)-(e) and (f)-(j) show the average image and the decision
features of allmodels forCoat andPullover, respectively. For
PLNN and PLNN-NS, we show the decision features of the
LLC whose convex polytope contains the most instances.

The superior accuracy of PLNN comes at the cost of cluttered

decision features that may be hard to understand. Fortunately, ap-

plying non-negative and sparse constraints on PLNN effectively

improves the interpretability of the decision features without af-

fecting the classification accuracy.

In Figures 4 and 5, the decision features of PLNN-NS highlight

similar image parts as LR-NS and LR-NSF, and are much easier to

understand than the decision features of PLNN. In particular, in

Figure 5, the decision features of PLNN-NS clearly highlight the

collar and breast of Coat, and the shoulder of Pullover, which are

much easier to understand than the cluttered features of PLNN.

These results demonstrate the effectiveness of non-negative and

sparse constraints in selecting meaningful features. Moreover, the

decision features of PLNN-NS capture more details than LR-NS and

LR-NSF, thus PLNN-NS achieves a comparable accuracy with PLNN,

and significantly outperforms LR-NS and LR-NSF on FMNIST-2.
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Figure 6: (a)-(d) show the PBFs of the PLNN-NS on FMNIST-1.
(e)-(h) show the PBFs of the PLNN-NS on FMNIST-2.

Table 6: The PBs of the top-3 convex polytopes (CP) contain-
ing the most instances in FMNIST-1. “/” indicates a redun-
dant linear inequality. Accuracy is the training accuracy of
LLC on each CP.

CP z(2)
6

z(2)
11

z(3)
2

z(3)
4

#Ankle Boot #Bag Accuracy

1 / > 0 > 0 / 3,991 3,997 0.999

2 ≤ 0 > 0 / ≤ 0 9 0 1.000

3 / ≤ 0 / > 0 0 3 1.000

Table 7: The PBs of the top-3 convex polytopes (CP) contain-
ing themost instances in FMNIST-2. Accuracy is the training
accuracy of LLC on each CP.

CP z(2)
4

z(2)
5

z(2)
8

z(3)
2

#Coat #Pullover Accuracy

1 > 0 > 0 > 0 > 0 3,932 3,942 0.894

2 > 0 ≤ 0 > 0 > 0 32 10 0.905

3 > 0 ≤ 0 ≤ 0 > 0 18 0 0.944

In summary, the decision features of LLCs are easy to understand,

and the non-negative and sparse constraints are highly effective in

improving the interpretability of the decision features of LLCs.

5.4 Are PBFs of LLCs Easy to Understand?
The polytope boundary features (PBFs) of polytope bound-
aries (PBs) interpret why an instance is contained in the convex

polytope of a LLC. In this subsection, we study the semantical mean-

ing of PBFs. Limited by space, we only use the PLNN-NS models

trained on FMNIST-1 and FMINST-2 as the target model to interpret.

The LLCs of PLNN-NS are computed by OpenBox .

Recall that a PB is defined by a linear inequality z(l )i ∈ ψ (c
(l )
i ),

where the PBFs are the coefficients of x in z(l )i . Since the activation

function is ReLU, z(l )i ∈ ψ (c
(l )
i ) is either z(l )i > 0 or z(l )i ≤ 0. Since

the values of PBFs are non-negative for PLNN-NS, for a convex

polytope Ph , if z
(l )
i > 0, then the images in Ph strongly correlate

with the PBFs of z(l )i ; if z(l )i ≤ 0, then the images in Ph are not

strongly correlated with the PBFs of z(l )i .

The above analysis of PBs and PBFs is demonstrated by the re-

sults in Tables 6 and 7, and Figure 6. Take the first convex polytope
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in Table 6 as an example, the PBs are z(2)
11
> 0 and z(3)

2
> 0, whose

PBFs in Figures 6(b)-(c) show the features of Ankle Boot and Bag, re-
spectively. Therefore, the convex polytope contains images of both

Ankle Boot and Bag. A careful study of the other results suggests

that the PBFs of the convex polytopes are easy to understand and

accurately describe the images in each convex polytope.

We can also see that the PBFs in Figure 6 look similar to the deci-

sion features of PLNN-NS in Figures 4 and 5. This shows the strong

correlation between the features learned by different neurons of

PLNN-NS, which is probably caused by the hierarchy network struc-

ture. Due to the strong correlation between neurons, the number

of configurations in C is much less than kN , as shown in Table 3.

Surprisingly, as shown in Table 7, the top-1 convex polytope on

FMNIST-2 contains more than 98% of the training instances. On

these instances, the training accuracy of LLC is much higher than

the training accuracies of LR-NS and LR-NSF. This means that the

training instances in the top-1 convex polytope are much easier to

be linearly separated than all training instances in FMNIST-2. From

this perspective, the behavior of PLNN-NS is like a “divide and

conquer” strategy, which set aside a small proportion of instances

that hinder the classification accuracy such that the majority of the

instances can be better separated by a LLC. As shown by the top-2

and top-3 convex polytopes in Table 7, the set aside instances are

grouped in their own convex polytopes, where the corresponding

LLCs also achieve a very high accuracy. Table 6 shows similar phe-

nomenon on FMNIST-1. However, since the instances in FMNIST-1

are easy to be linearly separated, the training accuracy of PLNN-NS

marginally outperforms LR-NS and LR-NSF.

5.5 Can We Hack a Model Using OpenBox?
Knowing what an intelligent machine “thinks” provides us the

privilege to “hack” it. Here, to hack a target model is to signifi-

cantly change its prediction on an instance x ∈ X by modifying

as few features of x as possible. In general, the biggest change of

prediction is achieved by modifying the most important decision

features. A more precise interpretation on the target model reveals

the important decision features more accurately, thus requires to

modify less features to achieve a bigger change of prediction. Fol-

lowing this idea, we apply LIME and OpenBox to hack PLNN-NS,

and compare the quality of their interpretations by comparing the

change of PLNN-NS’s prediction when modifying the same number

of decision features.

For an instance x ∈ X, denote by γ ∈ Rd the decision features

for the classification of x. We hack PLNN-NS by setting the values

of a few top-weighted decision features in x to zero, such that the

prediction of PLNN-NS on x changes significantly. The change

of prediction is evaluated by two measures as follows. First, the

change of prediction probability (CPP) is the absolute change
of the probability of classifying x as a positive instance. Second,

the number of label-changed instance (NLCI) is the number of

instances whose predicted label changes after being hacked. Again,

due to the inefficiency of LIME, we use the sampled data sets in

Section 5.2 for evaluation.

In Figure 7, the average CPP and NLCI of OpenBox are always

higher than LIME on both data sets. This demonstrates that the
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Figure 7: Thehacking performance of LIMEandOpenBox . (a)-
(b) show the Average CPP. (c)-(d) show the NLCI.

interpretations computed byOpenBox are more effective than LIME

when they are applied to hack the target model.

Interestingly, the advantage of OpenBox is more significant on

FMNIST-1 than on FMNIST-2. This is because, as shown in Fig-

ure 2(a), the prediction probabilities of most instances in FMNIST-1

are either 1.0 or 0.0, which provides little gradient information for

LIME to accurately approximate the classification function of the

PLNN-NS. In this case, the decision features computed by LIME

cannot describe the exact behavior of the target model.

In summary, since OpenBox produces the exact and consistent

interpretations for a target model, it achieves an advanced hacking

performance over LIME.

5.6 Can We Debug a Model Using OpenBox?
Intelligentmachines are not perfect and predictions fail occasionally.

When such failure occurs, we can apply OpenBox to interpret why

an instance is mis-classified.

Figure 8 shows some images that are mis-classified by PLNN-NS

with a high probability. In Figures 8(a)-(c), the original image is a

Coat, however, since the scattered mosaic pattern on the cloth hits

more features of Pullover than Coat, the original image is classified

as a Pullover with a high probability. In Figures 8(d)-(f), the original

image is a Pullover, however, it is mis-classified as a Coat because
the white collar and breast hit the typical features of Coat, and
the dark shoulder and sleeves miss the most significant features of

Pullover. Similarly, the Ankle Boot in Figure 8(g) highlights more

features on the upper left corner, thus it is mis-classified as a Bag.
The Bag in Figure 8(j) is mis-classified as an Ankle Boot because it
hits the features of ankle and heel of Ankle Boot, however, misses

the typical features of Bag on the upper left corner.
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(a) CO (b) CO: 0.04 (c) PU: 0.96 (d) PU (e) CO: 1.00 (f) PU: 0.00

(g) AB (h) AB: 0.16 (i) BG: 0.84 (j) BG (k) AB: 1.00 (l) BG: 0.00

Figure 8: The mis-classified images of (a) Coat (CO), (d)
Pullover (PU), (g)Ankle Boot (AB), and (j)Bag (BG). (a), (d), (g)
and (j) show the original images. For the rest subfigures, the
caption shows the prediction probability of the correspond-
ing class; the image shows the decision features supporting
the prediction of the corresponding class.

In conclusion, as demonstrated by Figure 8, OpenBox accurately

interprets the mis-classifications, which is potentially useful in

debugging abnormal behaviors of the interpreted model.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we tackle the challenging problem of interpreting

PLNNs. By studying the states of hidden neurons and the configura-

tion of a PLNN, we prove that a PLNN is mathematically equivalent

to a set of LLCs, which can be efficiently computed by the proposed

OpenBox method. Extensive experiments show that the decision

features and the polytope boundary features of LLCs provide exact

and consistent interpretations on the overall behavior of a PLNN.

Such interpretations are highly effective in hacking and debugging

PLNN models. As future work, we will extend our work to inter-

pret more general neural networks that adopt smooth activation

functions, such as sigmoid and tanh.
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