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Abstract

Clustering has been widely used to identify possible structures in data and help users un-
derstand data in an unsupervised manner. Although clustering methods can provide group
information for users, it is still challenging for users to efficiently and effectively understand
clustering structures. Subspace clustering methods address this challenge by providing each
clustering an understandable feature subspace. Moreover, as high-dimensional data has be-
come more and more popular in real-world applications due to the advances of big data
technologies, some subspace clustering methods are especially scalable for high-dimensional
data.

In this thesis, we study the subspace clustering problem in different application scenar-
ios (e.g., semi-supervised and unsupervised) to bridge the semantic gap between low-level
clustering structures and high-level understandable meanings, that is, providing under-
standable information organization for end users. Specifically, we develop a series of novel
subspace clustering methods for different application purposes. Taking image retrieval in
CBIR without query input as an example, we study how subspace clustering methods can
help retrieve relevant images by relevance feedback, by efficient iterative search, or by data
summarization.

To tackle the challenges arising from real-world applications, we develop three efficient
and effective subspace clustering methods to provide preferred or understandable clustering
structures for end users. First, we present a semi-supervised subspace clustering method to
discover a feature subspace, in which a preferred clustering structure is hidden. Second, we
propose a subspace hierarchical clustering method that can generate a balanced hierarchy
with semantics to help users search friendly and efficiently. Third, we develop a subspace
multi-clustering method that can automatically discover a certain number of feature sub-
spaces, where different clustering structures reside. Comprehensive empirical studies using
synthetic and real data sets demonstrate the effectiveness of our proposed methods.

Keywords: Understandable information organization; semi-supervised subspace cluster-
ing; subspace hierarchical clustering; subspace multi-clustering
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Chapter 1

Introduction

Due to the advances of big data technologies, ample data (e.g., electronic health-care records
or credit card transactions), which are being continuously collected, offer human beings
great opportunity to discover new knowledge. However, it has become more and more
difficult for humans to manually extract useful information from data. For example, it is
impractical for a human being to find Amazon customers with similar behaviors in a limited
time, considering that the number of active Amazon customers had reached 304 millions in
2015 1.

Clustering [61] has been widely used to identify possible structures in data and help end
users understand data in an unsupervised manner. Specifically, clustering methods aim to
group a set of objects in such a way that objects in the same cluster are more similar to
each other than to those in other clusters. Taking computational genomics as an example,
clustering can be used to find groups of genes with related expression patterns and such
groups contain functionally related proteins, such as enzymes for a specific pathway [12].

1.1 Motivation

Apparently, clustering methods can provide useful group information of data, but also
lead to a challenge to end users: how to efficiently and effectively understand clustering
structures. It is due to the reason that there is a big gap between low-level clustering
structures and high-level understandable meanings, that is, semantics.

Meaningful semantics are often hidden in feature subspaces, e.g., a feature subspace
comprised by RGB (i.e., red, green, blue) features of marbles implying a semantic meaning
of color. Subspace clustering methods [100, 123, 57] focus on discoveries of clustering
structures that are hidden in feature subspaces. One major advantage of subspace clustering
methods is that they can provide a corresponding feature subspace for each clustering

1https://www.statista.com/statistics/237810/number-of-active-amazon-customer-accounts-
worldwide/

1
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structure. Then, end users can use feature subspaces to intuitively interpret and understand
clustering structures. Moreover, subspace clustering methods are in a great demand for
high-dimensional data. High dimensionality has become a major challenge in this big data
era. For example, more and more attributes have been collected for each object, and thus
data have become sparse, that is, very few objects are similar to each other on many
attributes. However, groups are observable in specific feature subspaces (e.g., subsets of
features).

End users in many real-world applications can benefit from subspace clustering meth-
ods [100, 57]. In this thesis, we focus on several remaining challenges in this area. Here, we
take content-based image retrieval (CBIR) as an example.

Example 1.1 (Retrieving relevant images in CBIR). CBIR [78] aims to retrieve
images based on their content that refers to colors, shapes, textures, or any other information
that can be derived from an image itself. CBIR is desirable because searches that rely
purely on meta-data (e.g., keywords or tags) are dependent on annotation quality and
completeness. Moreover, having humans manually annotate images by entering keywords
or tags in a large database can be time-consuming and may not capture the keywords desired
to describe an image. CBIR has a board range of applications such as crime prevention,
medical diagnosis, and photograph archives [42].

In a typical CBIR setting, a user poses a query and asks the system to bring out
relevant images from the database. Humans prefer searching images by keywords like sky,
beach, sunset, and so on. However, CBIR systems do not know the relationships between
keywords and image content. Therefore, most existing CBIR systems require users to
translate keywords to particular colors, shapes, or textures (e.g., providing icons, user-
drawn sketches, or example images) [89], so that CBIR systems can compare the query
with images in database using an image similarity measure [113]. In this example, we
consider three different application scenarios in a more user-friendly CBIR system, which
does not require users to input or translate keyword queries.

Scenario I: Retrieving by relevance feedback. One potential way to learn a user’s
query is asking the user to provide relevance feedback on retrieved images. For example, a
CBIR system may randomly show a batch of images (e.g., 20 images as shown in Figure 1.1)
from the database at the beginning. Then, a user can simply tick the relevant images to
provide feedback as shown in Figure 1.1. Thereafter, the ticked images are logged as positive
samples, while the others are regarded as negative samples. A user’s feedback can be used
to guide the search of the next batch of images. This process can be repeated until the user
stops or the search converges (i.e., no more relevant images). Finally, the CBIR system
brings out a ranked list of relevant images to the user, in which the most relevant image is
top-ranked based on the user’s feedback.

2



Figure 1.1: An example of user feedback in CBIR [55]. c© 2006 IEEE.

Distance metric learning (DML) [136] is one of the popular techniques that has been
used to learn a user’s query from his/her relevance feedback. DML aims to find a new
feature subspace (i.e., a linear mapping of the original features), in which samples from
the same group are closer to each other than to those from different groups. Specifically,
positive samples from a user’s feedback are pushed together, while negative samples are
pulled apart from positive samples. Then, a set of potentially relevant images grouped
together with positive samples can be obtained by clustering the database in the new feature
subspace [132, 23]. Finally, the CBIR system can provide the user a ranked list of these
relevant images, in which the most relevant image is the one nearest to the cluster center
in the new feature subspace.

However, DML aims to learn a transformation matrix M with size of d× d, where d is
the total number of features in the original feature space. Learning so many parameters
can easily lead to the overfitting problem, which results in bad generalization performance.
In Chapter 3, we study how to alleviate the overfitting problem in DML.

Scenario II: Retrieving by iterative search. Scenario I provides a possible way to
learn a user’s query by his/her relevance feedback. However, it is hard to determine how
many images a user need to check before he/she obtains the desired result. Many users
may not be willing to check so many images one by one. Moreover, one image is usually a
composition of multiple objects, each having a semantic meaning. For example, the image
in Figure 1.2(a) contains mountains, sea, trees, and goose. When a user ticks it relevant in
Scenario I, it is hard to tell which object(s) in the image is relevant.

3



(a) An image with multiple objects (b) An example of a specific question

Figure 1.2: Exemplar images in CBIR (Images are from scene data [143]).

In Chapter 4, we study how subspace clustering methods can be used to learn a user’s
query by asking the user a sequential set of specific questions in an iterative process as

1. Initialize the whole database as candidate images;

2. Ask one specific question to the user;

3. Obtain the user’s answer;

4. Generate a new candidate set of images (i.e., a subset of the previous candidate
images);

5. Repeat Steps 2 to 4 until there is only one candidate image or the user stops.

Specifically, we explore the following two questions: 1) Can we make the question as specific
as possible? As an instance, in each iteration, the CBIR system shows only one image and
asks if a specific object in it (e.g., the goose shown in Figure 1.2(b)) is relevant. Then, the
user can tick to show that it is relevant, or not otherwise; 2) Can we make the number of
questions as less as possible? That is, the maximum number of objects that a user has to
check is bounded.

Scenario III: Retrieving by summarizing. Scenario II can make the retrieving process
more user-friendly and efficient. However, a user may need to answer many questions one by
one until he/she obtains the desired image(s), although the number of questions is upper-
bounded. Clustering was used to summarize a CBIR database, so that a user can quickly
locate the group of images desired [26]. Specifically, when a user initiates a search, CBIR
systems directly show a certain number of images as shown in Figure 1.3, where each image
is a representative image of a group of similar images. Then, a user can easily tick the
relevant image. If the banana image is ticked, the CBIR system may bring out a ranked
list of banana images to the user.

The main challenge here is that an image can be perceived with different semantic
meanings. A user may tick banana image because he/she wants all banana images. However,
it is possible that the CBIR system uses this banana image to represent a group of yellow

4



Figure 1.3: An example of summarizing in CBIR (Images are from fruit data [58]).

fruits. Therefore, a retrieving failure can happen due to the disparity between a user’s
query concept and a CBIR system’s clustering concept. In Chapter 5, we study how to
automatically discover all potential query concepts in feature subspaces. Then, the CBIR
system can provide representative images under each query concept (i.e., feature subspace)
as shown in Figure 1.4, where RGB implies color and inertial implies shape. Thereafter,
a user can check both the feature subspace and representative images to tick the relevant
image without ambiguity. For example, a feature subspace comprised by only RGB features
indicates a semantic meaning of color. Therefore, each image represents a group of fruits
with the same color.

1.2 Contributions

In this dissertation, we develop three subspace clustering methods for challenges arising from
those three application scenarios discussed above and help bridge the semantic gap between
low-level clustering structures and high-level understandable meanings. In particular, we
make the following contributions.

• Semi-supervised subspace clustering: Distance metric learning (DML) [136] has
been widely used to find a feature subspace, in which a preferred clustering structure
is hidden. However, it has been well recognized that the DML methods suffer a
lot from the overfitting problem. We exploit the dropout technique, which has been
successfully applied in deep learning [54] to alleviate the overfitting problem, for DML.
Different from the previous studies that only apply dropout to training data, we apply
dropout to both the learned metrics and the training data.

• Subspace hierarchical clustering: We propose to generate a balanced hierarchy
with semantics embedded in each level to help end users search friendly and efficiently.
We first present a simple strategy to extract all objects with semantic meanings as
candidate dimensions, and then develop an efficient unsupervised feature/dimension
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Figure 1.4: An example of summarizing in different feature subspaces in CBIR (Images are
from fruit data [58]).

selection method to select a sufficient dimension subset to uniquely identify each im-
age, which naturally constructs a balanced hierarchical clustering structure for images.

• Subspace multi-clustering: We present a novel multi-clustering method, MSC,
that can automatically discover a certain number of feature subspaces, where different
stable clusterings reside. An advantage of our method comparing to the state-of-the-
art multi-clustering methods is that our method can provide users a feature subspace
to understand each clustering solution. Another advantage is that MSC does not
need users to specify the number of clusterings and their number of clusters, which is
usually difficult for users without any guidance.

1.3 Organization of the Thesis

The remainder of this dissertation is structured as follows.

• In Chapter 2, we provide an overview of related work on subspace clustering methods
systematically.
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• In Chapter 3, we propose a regularized distance metric learning method using dropout
to alleviate the overfitting problem, which is a common problem for metric learning
methods. We illustrate that application of dropout to DML is essentially equivalent
to matrix norm based regularization. Compared with the standard regularization
scheme in DML, dropout is advantageous in simulating the structured regularizers.
We verify, both empirically and theoretically, that dropout is effective in regulating
the learned metric to avoid the overfitting problem.

• In Chapter 4, we develop a subspace hierarchical clustering method. To construct a
balanced hierarchy as low as possible, we formulate the problem into an optimization
framework that selects a minimum subset of features/dimensions with semantic mean-
ings. We propose a greedy algorithm that naturally constructs a balanced hierarchy
for searching. Our experiments on several real-world photo/image collections validate
both the efficiency and effectiveness of our proposed method.

• In Chapter 5, we study two fundamental questions in subspace multi-clustering: how
to model quality of clusterings and how to find multiple stable clusterings. We propose
a novel method, MSC, which can heuristically determine the number of clusterings
hidden in a data set and the number of clusters for each clustering. Moreover, MSC
can provide each clustering a feature subspace with understandable meaning for users.
We conduct an extensive empirical study that clearly demonstrates the effectiveness
of our method.

• We summarize the characteristics of the proposed subspace clustering methods in
Chapter 6. Some future directions are also presented.
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Chapter 2

Problem Definition and Related
Work

In this chapter, we first define the general problem of subspace clustering, then we provide
a brief review of related work. The general subspace clustering problem discussed here
includes but not limited to the well-known subspace clustering [123] that aims to discover
multiple clusters each of which is hidden in a lower-dimensional subspace. We use subspace
clustering to indicate this special case thereafter.

2.1 Subspace Clustering Problem

Let X = {x1,x2, . . . ,xn} be a given data set with n objects, where each object xi ∈ Rd is
represented by d attributes from the feature set F = {f1, f2, . . . , fd}. A clustering with k
groups C = {c1, c2, . . . , ck} is a partitioning of those objects in X such that ∪ki=1ci ⊆ X and
ci ∩ cj = ∅ for any 1 ≤ i < j ≤ k. Each ci (1 ≤ i ≤ k) is called a cluster.

2.1.1 Subspaces

One essential challenge of subspace clustering is how to automatically discover feature sub-
spaces which contain meaningful clustering structures. Different types of subspaces have
been explored, which define a feature subspace M differently as follows. Here, M should be
different from the original feature space F and |M | denotes the dimensionality of feature
subspace M .

• Feature transformation [46]: The subspace for feature transformation is defined
as M ∈ Rd×d, where a new set of d features is generated by linear combinations of
all attributes from the original feature space. Therefore, |M | = d. Hopefully, after
transforming data X into subspace M by M>X, a hidden structure of X can be
uncovered.
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• Dimensionality reduction [109]: A subspace used to reduce dimensionality is de-
fined as M ∈ Rd×l where l < d and |M | = l. This kind of subspaces can map the data
X from the original feature space to a lower-dimensional space by M>X, from where
a hidden structure of X can be discovered.

• Feature selection [49]: The above two kinds of subspaces both generate a new set
of features, while feature selection provides subspaces that are comprised by a subset
of the original feature set F . The subspace M formed by feature selection can be
constructed in two different ways. The projected subspace directly uses a subset of
features from F , while the weighted subspace provides each feature of F a weight
to show its importance. Both feature selection strategies are special cases of feature
transformation. For example, in weighted feature selection, M ∈ Rd×d is formed as
Mii = wi, where wi is the weight assigned to the i-th feature in F , while all other
elements in M are zero. We discuss these special cases in feature selection, because
they essentially retain the original feature information. These two types of feature
selection methods are defined as follows, respectively.

– Projected: M ⊂ F , where its dimensionality |M | is the number of elements in
subspace M .

– Weighted: M = {(wi, fi)|fi ∈ F, 0 ≤ wi ≤ 1, 1 ≤ i ≤ d,
∑d
i=1wi = 1}, where

its dimensionality |M | is the number of elements in subspace M with positive
weights.

2.1.2 Problem Formulation

Subspace clustering methods are devoted to discovering high-quality clustering structures
of X hidden in specific feature subspaces defined above. Some quality measures have been
defined for a clustering C = {c1, c2, . . . , ck}, e.g., Davies-Bouldin index [35], Dunn index [40],
and Silhouette coefficient [108]. We let Q(·) ∈ [0, 1] denote a clustering quality function,
higher Q(·) indicating better quality.

Let (M,C) be a clustering C of X found in subspace M . The general problem of
subspace clustering is defined as follows.

Definition 2.1.1 (Subspace Clustering). Given a data set X, generate a clustering O =
{(M,C)} of X such that Q(C) is maximized.

Many subspace clustering methods have been proposed in literature. Different ap-
proaches were presented for different application scenarios.

As an instance, in some applications, users may provide some side information (e.g.,
instance-level constraints like must-links or cannot-links) that can help infer the under-
lying instance-to-cluster assignments [132, 127]. Subspace clustering methods using side
information are categorized as semi-supervised methods.
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As another instance, traditional subspace clustering methods focus on finding a single
way to partition data into groups. However, it has been well recognized that different
outputs are possible if one uses different subsets of features in analysis. This means that
assuming only a single clustering for a data set can be too strict, which has motivated the
emerging area of subspace multi-clustering [57].

In the following review on related work, we categorize subspace clustering methods into
two main classes, subspace single-clustering and subspace multi-clustering, respectively.
Subspace single-clustering aims to find a single partitioning of X in a feature subspace,
while subspace multi-clustering targets at multiple different clustering structures of X, each
hidden in a feature subspace. For each category, both unsupervised and semi-supervised
methods are reviewed.

2.2 Subspace Single-clustering

Subspace single-clustering is devoted to the discovery of a clustering structure hidden in an
unknown feature subspace. The main challenge of subspace single-clustering is how to auto-
matically find a specific feature subspace in which a clustering structure can be uncovered.
Unsupervised methods find the subspace based only on the given data itself, while semi-
supervised methods use some additional information (e.g., instance-level constraints [125])
to guide the search of the subspace.

2.2.1 Unsupervised Methods

Some unsupervised methods have been proposed in the literature. We review them with
respect to different types of subspaces discovered.

Dimensionality reduction

Given X and some notion of similarity Sij ≥ 0 (e.g., RBF [65]) between all pairs of data
points xi and xj , spectral clustering [123] constructs a graph based on the similarity matrix
S and tries to find a feature subspace consistent with the graph structure. Specifically,
the first k eigenvectors of the graph Laplacian corresponding to the k smallest eigenval-
ues constitute a new data representation in a lower-dimensional feature subspace, whose
dimensionality is reduced from d to k. Then, a traditional single-clustering method like
k-means clustering [61] can be applied to the new data representation to obtain a clustering
structure. Spectral clustering has been studied extensively. Please see [123] for a thorough
treatment.

It is worth mentioning that large Laplacian eigengaps can guarantee small perturbations
on the eigenvectors [117]. In Chapter 5, we extend the clustering stability based on large
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eigengap in similarity learning [90] to the multi-clustering problem. We also treat the
eigengap as a search criteria to determine the number of clusters [7].

Feature selection

Feature selection has also been investigated for clustering in an unsupervised manner. The
primary interest is to determine which features can help to obtain better clustering results.

Law et al. [76] presented an expectation-maximization (EM) algorithm for unsupervised
clustering with feature selection. This algorithm estimates the salience of features and the
optimal number of clusters. Later, Witten and Tibshirani [130] proposed a novel framework
for sparse clustering, in which a subset of features is adaptively chosen. The method uses a
lasso-type penalty to select the features. Based on this framework, they developed simple
algorithms for sparse k-means clustering and sparse hierarchical clustering.

At the same time, subspace clustering was developed to discover multiple clusters each of
which is hidden in a lower-dimensional subspace (i.e., a subset of features). Some subspace
clustering approaches aim to assign each object to a unique cluster, where clusters may exist
in different subspaces. For example, PROCLUS [1] is based on the iterative processing of
k-means and selects the most compact projection (subspace) based on the currently selected
medoids. The projections are restricted to be the subsets of the original attributes. Later,
Aggarwal and Yu [2] proposed the ORCLUS method to find arbitrarily oriented projections.
DOC [101] is a Monte Carlo algorithm developed to iteratively compute projective clusters.
PreDeCon [17] introduces the concept of local subspace preferences, which captures the
main directions of high density. Recently, MrCC [28] adopts the multi-resolution indexing
technique to extend the scalability to detect correlation clusters.

In the motivation example of scenario II (i.e., retrieving by iterative search), we also
want to select a limited number of features and construct a clustering structure for search.
However, the objective in our study is critically different from those in the existing work.
While we will present in Chapter 4, our study focuses on finding a minimum set of features
so that every image can be uniquely indexed with a combination of features.

2.2.2 Semi-supervised Methods

Semi-supervised subspace single-clustering methods use some side information (e.g., instance-
level constraints) to guide the search of a feature subspace, in which a similar clustering
structure as those constraints is observable. Apparently, the motivation problem of Scenario
I (i.e., retrieving by relevance feedback) falls into this category. Most approaches proposed
in this category are distance metric learning methods, whose subspaces are discovered by
feature transformation.

11



Feature transformation

Distance metric learning has been well studied during the past years [24, 36, 112, 127, 132]
and detailed investigations could be found in the survey papers [72, 136].

The early works focus on optimizing pair-wise constraints [36, 132] to make sure the
distance between examples from the same class is less than a predefined threshold while
that from different classes is larger than another threshold. Nowadays, triplet constraints,
where the distance of examples from the same class should be marginally smaller than that
of examples from different classes, are preferred due to their superior performance compared
with pair-wise constraints [24, 127]. More analysis shows that triplet constraints have the
large margin property and could be explained as learning a set of local SVMs [37].

However, either taking pair-wise constraints or triplet constraints increases the number
of training data exponentially, which significantly results in the overfitting problem for DML.
In fact, overfitting phenomenon was reported by many DML methods [24, 127], and most
of them try to alleviate it by PSD constraint. PSD constraint, on one hand, is the feasible
set where the optimal metric should live in, and on the other hand, restricts the learned
metric in the PSD cone to reduce the complexity of the model. Given a huge number of
constraints, stochastic gradient descent (SGD) is widely used to learn the metric and PSD
projection occurs at every iteration [114]. Unfortunately, the computational cost of PSD
projection is cubic to the dimension of data, which significantly limits the application of
DML in high-dimensional datasets.

Recent empirical study [24] demonstrates that one-projection paradigm, which performs
PSD projection once at the end of the algorithm, has the similar performance as projecting
at every iteration. In Chapter 3, we bring dropout, a technique developed for training deep
neural networks [54], to overcome overfitting in DML. We adopt triplet constraints and one-
projection paradigm setting, and show that dropout significantly improves the performance
of existing DML methods.

2.3 Subspace Multi-clustering

Subspace multi-clustering methods aim to discover multiple non-redundant clustering struc-
tures in different feature subspaces. In general, there are two kinds of subspace multi-
clustering methods, unsupervised methods and semi-supervised methods, respectively.

2.3.1 Unsupervised Methods

Unsupervised subspace multi-clustering methods try to simultaneously find multiple clus-
terings that are constrained to be different from each other. We review different methods
based on the types of subspaces discovered.
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Dimensionality reduction

Dasgupta and Ng [32] discovered multiple subspaces utilizing different eigenvectors of the
graph Laplacian. The differences between clusterings are achieved by the orthogonality
between eigenvectors. They reduced the dimension from d to only 1. However, each clus-
tering solution is restricted to have two clusters. Niu et al. [99] proposed a multiple spectral
clustering (mSC) method. This method can simultaneously generate m (m is an input)
subspaces and their corresponding cluster membership indicator matrices. Hilbert Schmidt
Independence Criterion [103] is used to quantify the correlation between two subspaces,
which is incorporated into the spectral clustering optimization problem. Recently, Ye et
al. [138] adopted independent subspace analysis (ISA) [118] to find non-redundant lower-
dimensional subspaces. However, the input of ISA relies on approximate solutions, and thus
it limits the quality of subspaces discovered.

Feature selection

To discover multiple clusterings hidden in different subspaces (subsets of features), a brute-
force way is to conduct clustering in each subspace. Due to the exponentially large number,
that is 2d−1, of subspaces, some researches aim to search subspaces which have potentially
dense clusters in them.

CLIQUE [3] is one of the first algorithms that attempt to find subspaces based on
density. It divides each dimension into fixed grid-cells by equal length intervals. Dense
cells that contain more objects than a threshold η are potentially interesting clusters. It
is expensive to search all dense cells in all subspaces. Based on the monotonicity that if a
cell O is dense in subspace M and subspace T ⊆M , O is dense in T , CLIQUE conducts a
bottom-up subspace search starting from subspaces with only one dimension. The search
stops when no new subspaces can be found. Then, in each subspace, connected dense cells
together form a cluster and multiple clusters can be discovered in each subspace.

ENCLUS [27] follows a similar procedure as CLIQUE [3] except that it uses the en-
tropy to select subspaces. A subspace whose entropy is below a predefined threshold is
considered to have good clusters. It can be observed that the above two grid-based meth-
ods highly depend on the size of the grid cells used. The number of grid-cells determines
the computational cost and the quality of the clustering results. Therefore, some meth-
ods [95, 101, 139, 111] were proposed to enhance the quality of grid cells. For exam-
ple, Nagesh et al. [95] proposed the MAFIA method. It also has a similar procedure as
CLIQUE [3]. However, it generates adaptive grid-cells based on the data distribution and
does not require a user to specify the grid size.

Instead of using dense grid cells, SUBCLU [67] uses a well-known spatial clustering
method DBSCAN [43] to generate clusters for each candidate subspace. Therefore, the
shortcomings of grid cells can be avoided. Due to the advantage of DBSCAN, arbitrarily
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shaped clusters can be discovered. However, it is highly inefficient due to repeating applying
of DBSCAN in each subspace. Several techniques [71, 6, 5, 92] were proposed to speed up the
step of generating candidate subspaces, which make these density-based methods scalable
on high-dimensional data. At the same time, Kailing et al. [68] defined the interestingness
of subspaces, where the quality of a subspace is based on the density notion of clusters.
Then, only top-ranked high-quality subspaces are considered for clustering.

Most methods mentioned above in this category are subspace clustering methods, which
aim to find multiple clusters hidden in different subspaces, although each object can be
assigned to different clusters in different subspaces. Therefore, clusters formed in each
subspace may not cover all data points. Moreover, many methods generate redundant
clusters and the relationship between different subspaces is unknown, which is difficult to
understand for users.

To overcome the specific shortcomings of subspace clustering methods, Günnemann et
al. [48] assumed a generative model for given data using multiple mixture models. Each
mixture describes a specific view (subspace) on the data. Recently, the cumulative mutual
information (CMI) [18] method was proposed to select high contrast subspaces that poten-
tially provide high contrast between clusters. However, users need to choose the number of
clusterings and the number of clusters in each subspace.

2.3.2 Semi-supervised Methods

Semi-supervised subspace multi-clustering methods use one or more reference clusterings
as the guidance to find an alternative clustering that is different from the reference cluster-
ing(s).

Feature transformation

Given a reference clustering, one straightforward way is to find an alternative clustering in a
feature subspace orthogonal to the given one. Some feature transformation based methods
focus on finding a transformation matrix M ∈ Rd×d that can map the data into a subspace
orthogonal to the given one.

For example, Cui et al. [29] presented two approaches to generate an orthogonal subspace
based on a given clustering. One way is to project each object onto its cluster center, and
then project onto an orthogonal subspace to form a residue. The other way is to use
PCA [66] to determine p (p ≤ k) strong principle components of the cluster centers, and
then calculate the orthogonal subspace. The redundancy between clustering solutions is
implicitly constrained by the orthogonality between subspaces. More than one alternative
clusterings can be generated sequentially. However, the orthogonality is only specified for
two nearby subspaces, not between all pairs. Davidson and Qi [34] adopted the distance
metric learning [136] technique to obtain an orthogonal subspace based on a given clustering.
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The above two methods focus on finding an alternative subspace totally different from
the given one, but cannot specify which properties of the reference clustering should or
should not be retained. Qi and Davidson [102] proposed a Kullback-Leibler divergence
based approach to discover an alternative subspace. In this work, a user can formally
specify positive and negative feedback based on the given clustering.

It can be easily observed that all these feature transformation based methods are trying
to find a full space transformation matrix that is of size d × d, therefore, they are not
applicable for high dimensional data due to the high time and space complexity.

Dimensionality reduction

To handle high-dimensional data, some works are devoted to discover orthogonal lower-
dimensional subspaces.

Dang and Bailey [30] presented two methods in the semi-supervised scenario where
there is a given (reference) clustering. The first approach, regularized PCA (RPCA), aims
to discover a transformation matrix M ∈ Rd×l (l < d), which can map data from the
original feature space into a new lower-dimensional subspace. This new subspace maximally
preserves the global variance of the data and is also independent from the given clustering.
They also proposed a regularized graph-based method (RegGB). Given the similarity matrix
S derived from the original feature spaceX, RegGB learns a novel set Y = {y1, ...yn}, where
each yi ∈ Rl (l < d) is a new representation of xi. Y optimally preserves the local proximity
of the objects and is independent from the given clustering.

In the motivation application of scenario III (i.e., retrieving by summarizing), we aim
to automatically find multiple clustering structures, each hidden in a lower-dimensional
subspace, that is, a subset of original features. Moreover, end users are not required to de-
termine the number of clusterings or the number of clusters for each clustering. Apparently,
existing subspace multi-clustering methods are not eligible for this application purpose. In
Chapter 5, we propose a novel subspace multi-clustering method, MSC, which can auto-
matically discover a certain number of clustering structures, each corresponding to a subset
of features for user understanding.

2.4 Other Related Work

Besides subspace clustering methods, our work in this thesis is also well related with three
other directions, namely, image annotation, multi-clustering in original full feature space,
and multi-view/multi-source clustering.
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2.4.1 Image Annotation

Automatic image annotation has been widely studied. Many approaches have been pro-
posed. The earliest methods use segmentation and translation. For instance, Mori et
al. [91] introduced a co-occurrence model that uniformly divides an image into regions with
keywords and correlates each image to a set of keywords. Duygulu et al. [41] used a machine
translation approach that translates from a vocabulary of blobs in an image to a vocabulary
of words. They segmented an image into regions that are mapped to keywords.

The early image annotation approaches generally evaluate regions individually and over-
look the correlation between different regions. This has been improved by some later meth-
ods. Jeon et al. [64] proposed the fixed annotation-based cross-media relevance model
(FACMRM), which takes advantage of the joint distribution of words and blobs. The
experiments show that FACMRM performs almost six times better than a word-blob co-
occurrence model and two times better than a model based on machine translation.

More recently, Cao et al. [20] suggested to enhance the annotation performance by first
finding high-confidence annotation labels for certain images and then propagating to the
remaining images according to the similarity of time, location, and visual context.

Our study builds on top of some image annotation techniques. Specifically, as will be
described in Chapters 4 and 5, we apply some state-of-the-art image annotation related
techniques to extract features from a large set of images. However, our goal is not on image
annotation. Instead, in real-world applications, more often than not, we are facing a huge
image collection without any domain knowledge, let alone mentioning training annotations
or image labels. Our work addresses this challenge.

2.4.2 Multi-clustering in original full feature space

In general, there are two kinds of methods for multi-clustering in original full feature space.
Unsupervised methods try to simultaneously generate multiple clusterings that are con-
strained to be different from each other. To obtain multiple clusterings in the original
full feature space, the most straightforward approaches include: (1) applying a traditional
clustering algorithm multiple times with different parameter settings, (2) running different
clustering algorithms, and (3) a combination of the above two strategies [21]. However,
these simple approaches may generate redundant clusterings that are overwhelming for
users. Therefore, meta clustering [21] further finds groups of clusterings that are similar
to each other and outputs a representative clustering from each group. Jain et. al [62]
proposed an optimization model to balance the clustering quality and the dissimilarities
between clusterings, and then simultaneously generate multiple clusterings.

Semi-supervised methods use one or more reference clusterings as the guidance to find
an alternative clustering that is different from the reference clustering(s). For example,
COALA [8] transforms linked pairs from the reference clustering to cannot-link constraints
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and then generates a good but dissimilar clustering. MAXIMUS [9] utilizes a programming
model to find an alternative clustering that can maximize the dissimilarity between the new
clustering and all reference clusterings.

More methods lying in the above two categories are discussed in a recent survey [10]
focusing on the topic of alternative clustering. In Chapter 5, we aim to find different
structures hidden in different subspaces. Apparently, our subspace multi-clustering cannot
be handled by the methods limited in the original full feature space. Moreover, multi-
clustering methods in original full feature space are often not applicable for high-dimensional
data.

2.4.3 Multi-view/multi-source clustering

Multiple clusterings are also involved in multi-view/multi-source clustering [15, 59], but from
a totally different angle. Multi-view/multi-source clustering focuses on the techniques to es-
tablish a consensus clustering by combining multiple clusterings, each from one view/source.
Specifically, each object can be described in different ways using different sources, each way
presenting a view on the object. For example, a web page can be represented by its text or
by anchor text of inbound hyperlinks. Multiple clusterings can be obtained utilizing each
view separately. In multi-view/multi-source clustering, these clusterings are assumed to be
consistent to some degree and are combined to establish a consensus solution.

It has been found that multi-view/multi-source clustering can generate a better clus-
tering than using a single view merging all available features. Bickel and Scheffer [15]
considered that the available attributes can be split into two independent subsets and it-
erated an interleaving EM method over the two views. Kailing et al. [69] presented an
efficient density-based approach to cluster multi-represented data from sparse or unreliable
sources. Later, some researchers studied spectral clustering or fuzzy clustering with multi-
ple views [142, 129]. Some explored the ensemble techniques on the consensus of distributed
sources [63, 86] or subspace clusterings [44, 38]. Recently, Hua and Pei [59] studied a novel
problem of mining mutual subspace clusters from multiple sources.

In summary, multi-view/multi-source clustering focuses on combining multiple similar
clustering structures, while subspace multi-clustering studied in Chapter 5 is to generate
multiple different clustering structures.
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Chapter 3

Learning Distance Metric Using
Dropout

In this chapter, we study subspace single-clustering problem in a semi-supervised setting,
where users provide some side information (e.g., instance-level constraints) about their
preferences on clustering structures.

3.1 Background and Overview

Learning a good distance metric is essential for distance-based clustering methods, e.g., k-
means clustering [85] and spectral clustering [123]. In some applications, users may provide
side information that can help infer the underlying instance-to-cluster assignments. Such
knowledge has been expressed as instance-level constraints for clustering, which reveals
similarity relationships among instances.

Distance metric learning (DML) [136] has been widely used to find a feature subspace, in
which a preferred clustering structure is hidden. DML aims to learn a linear mapping such
that in the mapped space, examples from the same class are closer to each other than those
from different classes. Many methods have been developed for DML [24, 36, 84, 127, 132]
in the past, and DML has been successfully applied in semi-supervised clustering [132, 23].

One problem with DML is that since the number of parameters to be determined in DML
is quadratic in the dimension, it may overfit the training data and lead to a suboptimal
solution [127]. Although several heuristics, such as early stopping, have been developed to
alleviate the overfitting problem [127], their performance is usually sensitive to the setting of
parameters (e.g. stopping criterion in early stopping), making it difficult for practitioners.
Another problem with many existing DML methods is their high computational cost since
they have to project intermediate solutions onto the Positive Semi-Definite (PSD) cone
at every iteration to ensure that the learned metric is PSD. In [24], the authors showed
that it is possible to avoid the high cost of PSD projection by an one-projection paradigm
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that only needs to project the learned metric onto the PSD cone once at the end of the
optimization algorithm. We adopt the one-projection paradigm in this work to alleviate the
high computational cost.

Recently, dropout has been found to be helpful in alleviating the overfitting problem
in training deep neural networks [54]. Dropout was initially proposed to prevent neural
networks from overfitting and can be interpreted as a way of regularizing a neural network
by adding noise to its hidden units [116]. The key idea is to randomly drop units (along with
their connections) from a neural network during training. For example, the neural network
trained in Figure 3.1(a) becomes much thinner after applying dropout in Figure 3.1(b). This

Figure 3.1: An example of dropout in neural networks [116].

prevents the units from co-adapting too much. Apparently, the number of possible thinned
networks is exponential in the number of units in the network. At test time, a number of
thinned networks are combined using an approximate model averaging procedure. Dropout
training followed by this approximate model combination significantly reduces overfitting
and gives major improvements over other regularization methods [115].

Theoretical analysis about the regularization role of dropout in neural networks can be
found in [11]. Besides the success in deep learning, dropout has been applied to regression
in order to obtain robust feature representations [122]. Handling features with artificial
noises has been a classic topic in machine learning and data mining, and has been examined
by many studies [87, 104] with the focus on additive noise that usually leads to a L2

regularizer [16]. Wager et al. [124] analyzed dropout within the framework of regression
and found that dropout is first-order equivalent to a L2 regularizer for the dataset scaled
by the inverse diagonal Fisher information matrix. Although dropout has received a lot of
interests in machine learning and data mining community, to the best of our knowledge,
this is the first study that exploits dropout for alleviating the overfitting problem in DML.
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In this chapter, we, for the first time, introduce dropout to DML. Unlike previous stud-
ies on dropout that only apply dropout to training data, we apply dropout to the learned
metrics. By applying appropriate dropout probabilities to the learned metric, we show
that dropout can be equivalent to Frobenius norm and Lp in expectation. In addition, we
develop a structured regularizer using the dropout technique. Unlike the conventional regu-
larizer that treats diagonal and off-diagonal elements equivalently, the structured regularizer
introduces different dropout probabilities for diagonal elements and off-diagonal elements.

To verify the effect of dropout in DML, we conduct a comprehensive study that compares
the dropout technique to other regularization techniques used in DML. Experimental results
show that dropout significantly improves the prediction performance on most datasets. In
addition, we observe that dropout behaves like a trace norm based regularizer in DML when
applied to training data: it controls the rank of the learned metric and leads to a skewed
distribution of eigenvalues. This is in contrast to the previous studies that view dropout as
a L2 regularizer. Finally, we show that the dropout technique can be easily incorporated
into the state-of-art DML methods and significantly improve their performance for most
cases. The main contribution of this chapter is summarized as follows.

• We, for the first time, introduce dropout to DML and apply it to both the learned
metric and the training data.

• We show that it is possible to construct structured regularizers using the dropout
technique, and verify its performance, both theoretically and empirically.

• We apply the dropout to the state-of-art DML methods and show it can significantly
enhance their performance.

The rest of the chapter is organized as follows. Section 3.2 defines the problem of DML.
Section 3.3 describes applying dropout to the learned metric and training data, respectively.
Section 3.4 summarizes the results of the empirical study. Section 3.5 concludes this chapter.

3.2 Problem Definition

In this section, we introduce the DML problem and its popular solver stochastic gradient
descent.

3.2.1 Preliminaries

Given the dataset X = [x1, · · · ,xn] ∈ Rd×n, distance metric learning is to learn a good
Mahalanobis distance metric M , so that for each triplet constraint (xi,xj ,xk) provided,
where xi and xj are in the same class and xk is from a different class, we have

dist(xi,xk)− dist(xi,xj) > 1
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where dist(xi,xj) is the squared Mahalanobis distance between xi and xj and is measured
by

dist(xi,xj) = (xi − xj)>M(xi − xj)

Therefore, the optimization problem based on minimizing empirical risk could be written
as

min
M∈Sd

+

∑
t

`(〈At,M〉)

where Sd+ is the d × d symmetric PSD cone, `(·) is a convex loss function, and At =
(xti − xtj)(xti − xtj)> − (xti − xtk)(xti − xtk)> is induced from the t-th triplet constraint. 〈·, ·〉
denotes the dot product for matrix.

3.2.2 Stochastic Gradient Descent

Since the number of triplets can be very large (it can be as high as O(n3)), the optimiza-
tion problem is usually solved by stochastic gradient descent (SGD) [36, 114]. Instead of
projecting the learned metric onto PSD cone at every iteration, which can be an expensive
operation, we adopt one-projection paradigm [24], which only projects the learned met-
ric onto the PSD cone once at the end of iterations. Empirical studies have shown that
one-projection-paradigm is significantly more efficient and yields the similar performance
as SGD with PSD projection performed at every iteration. Therefore, in this work, we will
focus on the following optimization problem without the PSD constraint.

min
M∈Sd

∑
t

`(〈At,M〉) (3.1)

Algorithm 1 gives the standard SGD algorithm for DML and dropout will be applied to
perturb Step 5. We will discuss the details in the next section within this framework.

Algorithm 1 SGD for DML
1: Input: Dataset X ∈ Rd×n, #Iterations T , Stepsize η
2: Initial M0 as an identity matrix
3: for t = 1, · · · , T do
4: Randomly sample a triplet {xi,xj ,xk}
5: Mt = Mt−1 − η∇`
6: end for
7: return Πpsd(M̄)

3.3 The Proposed Method

In this section, we will discuss two different applications of dropout, that is, application of
dropout to the learned metric and application of dropout to the training data.
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3.3.1 Applying Dropout to Distance Metric

In this section, we focus on applying dropout to the learned metric. Let M be the met-
ric learned from the previous iteration. To apply the dropout technique, we introduce a
Bernoulli random matrix δ = [δi,j ]di,j=1, where each δi,j is a Bernoulli random variable with
δi,j = δj,i. Using the random matrix δ, we compute the dropped out distance metric,
denoted by M̂ as

M̂i,j = δi,jMi,j , i, j = 1, . . . , d

Note that by enforcing δi,j = δj,i, M̂ is ensured to be a symmetric matrix. In the following,
we will discuss how to design the dropout probabilities for the Bernoulli random matrix δ to
simulate the effect of Frobenius norm based regularization and L1 norm based regularization,
respectively.

Frobenius norm

Frobenius norm is the most widely used regularizer in DML [114, 127], and the standard
DML problem with Frobenius norm is given by

min
M∈Sd

1
T

T∑
t=1

`(〈At,M〉) + q

2η‖M‖
2
F (3.2)

The updating rule in SGD for Frobenius norm based regularization is

Mt = Mt−1 − qMt−1 − η∇`t(Mt−1)

where `t(M) = `(〈At,M〉).
Instead of using the regularizer directly, we could simulate the effect of Frobenius norm

based regularization by applying dropout to the learned metric Mt−1. In particular, the
Bernoulli random matrix δ is constructed by sampling each δi,j:i≤j independently from a
Bernoulli distribution with Pr[δ = 0] = q and setting δj,i = δi,j to ensure that δ is symmetric.
It is easy to verify that

E[M̂t−1] = (1− q)Mt−1

and the updating rule becomes

Mt = M̂t−1 − η∇`t(Mt−1)

Theorem 3.3.1. Let M∗ be the optimal solution output by Algorithm 1. Let M̄ be the
solution output by Algorithm 1 with dropout in Step 5 and q be the probability that dropout
occurs in each item of the learned metric. Assume |x|2 ≤ r and q = 1/T , we have

E[`(M̄)]− `(M∗) ≤
1
ηT
‖M∗‖2F + 8ηr2(1 + 1

T
)
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Proof.

‖Mt −M∗‖2F = ‖M̂t−1 − ηAt −M∗‖2F
= ‖δMt−1 − (1− q)Mt−1 +Mt−1 − ηAt −M∗ − qMt−1‖2F
= (δ − (1− q))2‖Mt−1‖2F + ‖Mt−1 −M∗‖2F + η2‖At‖2F
+q2‖Mt−1‖2F − 2η〈At,Mt−1 −M∗〉

+2(δ − (1− q))〈Mt−1,Mt−1 − ηAt −M∗ − qMt−1〉

−2q〈Mt−1,Mt−1 − ηAt −M∗〉

Since the loss function is convex, we have

`(Mt−1)− `(M∗) ≤
1
2η (‖Mt−1 −M∗‖2F − ‖Mt −M∗‖2F )

+η

2‖At‖
2
F + 1

2η
(
(δ − (1− q))2‖Mt−1‖2F + q2‖Mt−1‖2F

+2(δ − (1− q))〈Mt−1,Mt−1 − ηAt −M∗ − qMt−1〉

−2q〈Mt−1,Mt−1 − ηAt −M∗〉)

Taking expectation on δ, we have

E[`(Mt−1)]− `(M∗) ≤
1
2η (‖Mt−1 −M∗‖2F − ‖Mt −M∗‖2F )

+η

2‖At‖
2
F + 1

2η (q‖Mt−1‖2F − 2q〈Mt−1,Mt−1 − ηAt −M∗〉)

≤ 1
2η (‖Mt−1 −M∗‖2F − ‖Mt −M∗‖2F ) + η

2‖At‖
2
F

+ q

2η (2〈Mt−1, ηAt +M∗〉 − ‖Mt−1‖2F )

≤ 1
2η (‖Mt−1 −M∗‖2F − ‖Mt −M∗‖2F ) + η

2‖At‖
2
F

+ q

2η (‖ηAt +M∗‖2F )

≤ 1
2η (‖Mt−1 −M∗‖2F − ‖Mt −M∗‖2F )

+(1 + q)η
2 ‖At‖2F + q

2η‖M∗‖
2
F + q`(M∗)

Since |x|2 ≤ r, ‖At‖F ≤ 4r. Adding iterations from 1 to T and setting q = 1/T , we have

E[`(M̄)]− (1− 1/T )`(M∗) ≤
1
ηT
‖M∗‖2F + 8r2(1 + 1/T )η
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By setting the stepsize η as
η = ‖M∗‖F

r
√

8 + 8T
we have

E[`(M̄)]− `(M∗) ≤
4r
√

2 + 2T
T

‖M∗‖F = O(1/
√
T )

It is well known that O(1/
√
T ) is the minimax convergence rate for SGD, when the loss

function is Lipschitz continuous [146, 52, 53]. As a result, with appropriate choice of dropout
probabilities, dropout will maintain the same convergence rate as the standard SGDmethod.
We also notice that q is suggested to be set as 1/T in order to achieve O(1/

√
T ) convergence.

This result implies that dropout should not be taken too frequently, which is consistent with
the analysis of other corrupted feature methods [16, 122]. Finally, since the derivation of
convergence rates keep the same regardless of the sampling probabilities used in dropout,
the convergence analysis for the following cases is almost identical as the above analysis.
Therefore, the following cases will maintain the same convergence rate as the standard SGD
method.

L1 norm

Besides Frobenius norm, L1 norm also could be used in DML as

min
M∈Sd

1
T

∑
t

`(〈At,M〉) + q

η
‖M‖1

It is known as the composite optimization problem [97] and could be solved by iterative
thresholding method {

M ′t = Mt−1 − η∇`t(Mt−1)
Mt:i,j = sign(M ′t:i,j) max{0, |M ′t:i,j | − q}

With different design of sampling probabilities, we can apply dropout to the learned
metric to simulate the effect of L1 regularization. In particular, we introduce a data-
dependent dropout probability as

Pr[δi,j = 0] = min{1, q

|Mi,j |
}

Now, instead of perturbing Mt−1, we apply dropout to M ′t , that is, the matrix after the
gradient mapping. It is easy to verify that the expectation of the perturbed matrix M̂ ′ is
given by

E
[
[M̂ ′t]i,j

]
=
{

[M ′t ]i,j − sign([M ′t ]i,j)q : q ≤ |[M ′t ]i,j |
0 : q > |[M ′t ]i,j |

24



which is equivalent to the thresholding method stated above.
It is straightforward to extend the method to Lp norm

Lp(M) = (
∑
i,j

|Mi,j |p)1/p

by setting the probability as

Pr[δi,j = 0] = min{1, q|Mi,j |p−2

(
∑
i,jM

p
i,j)1−1/p }

Note that when p = 1, it is equivalent to the probability for L1 norm.

Structured regularizer

Although these conventional regularizers have been applied for DML, the performance could
not be guaranteed. Considering the structure of a metric, the diagonal elements are more
important than those from off diagonal. It is due to the fact that diagonal elements represent
the importance of each feature rather than the interactions between different features, and
they also control the trace of the learned metric. Therefore, the regularizer should be
assigned for diagonal and off-diagonal elements differently. Fortunately, dropout can serve
this purpose conveniently.

Given Q, which is a random matrix with each element from a uniform distribution in
[0, 1], we investigate the matrix

R = (Q+Q>)/2 (3.3)

It is obvious that the diagonal elements of R are still from the same uniform distribution,
while elements in off diagonal are from a triangle distribution with cumulative distribution
function as

F (q) =
{

2q2 : 0 ≤ q < 0.5
1− 2(1− q)2 : 0.5 ≤ q ≤ 1

Figure 3.2 illustrates the cumulative distribution function for the diagonal elements of R
and those living in off diagonal. The dropout probability based on the random matrix R is
defined as

Pr[δi,j = 0] = Pr[Ri,j ≤ q]

First, we consider dropout with the same probability for each item of the metric as for
Frobenius norm. Then, the probability of δ is

Pr[δi,j = 0] = Pr[Ri,j ≤ q] =
{

q : i = j

2q2 : i 6= j
(3.4)
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Figure 3.2: Cumulative distribution function for diagonal elements and those in off diagonal.

Algorithm 2 Dropout as Structured Frobenius Norm (SGD-M1)
1: Input: Dataset X ∈ Rd×n, #Iterations T , Stepsize η
2: Initial M0 as an identity matrix
3: for t = 1 to T do
4: Randomly sample a triplet (xi,xj ,xk)
5: Generate random matrix R as in Equation 3.3
6: Generate dropout parameters δ by Equation 3.4
7: Dropout: M̂t−1 = δMt−1
8: Mt = M̂t−1 − η∇`
9: end for

10: return Πpsd(M̄)

since q = 1/T � 0.5 as indicated in Theorem 3.3.1.
Therefore, the expectation of M̂t−1 is

M̂t−1 =
{

M t−1
i,j − qM

t−1
i,j : i = j

M t−1
i,j − 2q2M t−1

i,j : i 6= j

which is equivalent to solving the following problem

min
M∈Sd

1
T

∑
t

`(〈At,M〉) + q

2η

d∑
i

M2
i,i + q2

η

∑
i,j:i 6=j

M2
i,j

It is obvious that the L2 norm of diagonal elements in the metric is penalized quadrati-
cally more than those from off diagonal. This regularizer seems complex but the implemen-
tation by dropout is quite straightforward and Algorithm 2 summarizes the method.
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Algorithm 3 Dropout as Structured L1 Norm (SGD-M2)
1: Input: Dataset X ∈ Rd×n, #Iterations T , Stepsize η
2: Initial M0 as an identity matrix
3: for t = 1 to T do
4: Randomly sample a triplet (xi,xj ,xk)
5: M ′t = Mt−1 − η∇`
6: Generate random matrix R as in Equation 3.3
7: Generate dropout parameters δ by Equation 3.5
8: Dropout: Mt = δM ′t
9: end for

10: return Πpsd(M̄)

Then, we consider dropout with the probability based on the elements as

Pr[δi,j = 0] = Pr[Ri,j ≤ min{1, q

|Mi,j |
}] (3.5)

=


min{1, q/|Mi,j |} : i = j

2(q/|Mi,j |)2 : i 6= j, q < 0.5|Mi,j |
1− 2(1− q/|Mi,j |)2 : i 6= j, 0.5 ≤ q/|Mi,j | ≤ 1

1 : q > |Mi,j |

It seems too complicated to analyze at the first glance, but Figure 3.2 could help us
to understand the dropout strategy here. For the diagonal elements, they are actually
shrunk by q as the L1 regularizer. For the off-diagonal elements, if |Mi,j | > 2q, the red
dashed curve is under the blue solid one, which means the shrinkage is less than q. When
q ≤ |Mi,j | ≤ 2q, the red dashed curve stands above the blue solid one and the shrinkage on
these elements is much faster than the standard L1 norm. Since q is very small, most of
the off-diagonal elements have relatively larger values and will be shrunk slower than those
with extremely small values. Algorithm 3 summarizes this method. Unlike Algorithm 2,
dropout in Algorithm 3 is performed after updating with gradient.

3.3.2 Applying Dropout to Training Data

Besides dropout within the learned metric, in this section we apply dropout to the training
data as many pervious studies [122, 124]. Since the analysis for data highly dependents
on the loss function, we take the hinge loss, which is the most widely used loss function in
DML [24, 36, 114, 127], as an example.

Hinge loss is defined as `(z) = [1 + z]+, where z = 〈A,M〉 and

A = (xi − xj)(xi − xj)>− (xi − xk)(xi − xk)>
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Apparently, the loss function penalizes A rather than an individual example, so dropout
is taken according to the structure of A. To avoid affecting the decision of hinge loss, we
perturb A after calculating the hinge loss.

We begin with additive noise as

Â = (xi − xj + ε)(xi − xj + ε)>− (xi − xk)(xi − xk)> (3.6)

where ε ∼ N (0, qId×d). So the expectation of Â is

E[Â] = E[(xi − xj + ε)(xi − xj + ε)>]− (xi − xk)(xi − xk)>

= A+ qI

By replacing A in Problem 3.1 with Â, the expectation of the problem becomes

min
M∈Sd

∑
t

`(〈At,M〉) +
∑
t:`t>0

q‖M‖tr (3.7)

Note that the trace norm stands outside of the hinge loss, since the noise is added only after
computing the hinge loss and only active constraints will contribute to the trace norm. We
use the trace norm rather than the trace of the metric, because the final metric will be
projected onto the PSD cone, where the trace of metric is equivalent to the trace norm.
Algorithm 4 describes the details of the method.

Although the Guassian noise could perform as the trace norm, the external noise may
affect the solution. Therefore, we consider dropout instead by

x̂is = xsi ∗ δs, x̂js = xsj ∗ δs

where δs is a binary value random variable and

Pr[δs = 1 + q/(xsi − xsj)2] = 1/(1 + q/(xsi − xsj)2)

It is obvious that E[δs] = 1 and V [δs] = 1 + q/(xsi − xsj)2. Similar to the additive noise, we
only apply dropout for the first item of A as

Â = (x̂i − x̂j)(x̂i − x̂j)>− (xi − xk)(xi − xk)> (3.8)

Note that when we perform dropout to the training data according to this strategy, we
actually drop the rows and the corresponding columns in the first component (xi−xj)(xi−
xj)> of A. Since the expectation of random variables in diagonal is the variance and it is
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Algorithm 4 Additive Noise as Trace Norm (SGD-D1)
1: Input: Dataset X ∈ Rd×n, #Iterations T , Stepsize η
2: Initial M0 as an identity matrix
3: for t = 1, · · · , T do
4: Randomly sample a triplet (xi,xj ,xk)
5: if `(At,Mt−1) > 0 then
6: Generate a Guassian noise vector ε
7: Add noise as in Equation 3.6
8: Mt = Mt−1 − ηÂt
9: end if

10: end for
11: return Πpsd(M̄)

Algorithm 5 Dropout as Trace Norm (SGD-D2)
1: Input: Dataset X ∈ Rd×n, #Iterations T , Stepsize η
2: Initial M0 as an identity matrix
3: for t = 1, · · · , T do
4: Randomly sample a triplet (xi,xj ,xk)
5: if `(At,Mt−1) > 0 then
6: Dropout as in Equation 3.8
7: Mt = Mt−1 − ηÂt
8: end if
9: end for

10: return Πpsd(M̄)

1 in off diagonal, the expectation of Â is

E[Â] = E[(x̂i − x̂j)(x̂i − x̂j)>]− (xi − xk)(xi − xk)>

= A+ qI

By taking Â back to Problem 3.1, we obtain the same problem as Problem 3.7. Algo-
rithm 5 summarizes this dropout strategy for training data.

Theorem 3.3.2. Let M∗ be the optimal solution output by Algorithm 1. Let M̄ be the
solution output by Algorithm 5 and q be the probability that dropout occurs in each feature
of the dataset. Assume |x|2 ≤ r and q = 1/T , we have

E[`(M̄)]−`(M∗)≤
‖M∗‖2F

2ηT +8ηr2+ 1
T

(8ηdr2+4ηr2+‖M∗‖tr)

Proof.

‖Mt −M∗‖2F = ‖Mt−1 − ηÂ−M∗‖2F
= ‖Mt−1 −M∗‖2F + η2‖Â‖2F − 2η〈Â,Mt−1 −M∗〉
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Taking expectation on Â, we have

‖Mt −M∗‖2F
= ‖Mt−1 −M∗‖2F + η2E[‖Â‖2F ]− 2η〈A+ qI,Mt−1 −M∗〉

Since the loss function is convex, we also have

E[`(Mt−1)]− `(M∗) ≤
1
2η (‖Mt−1 −M∗‖2F − ‖Mt −M∗‖2F )

+η

2E[‖Â‖2F ] + q(tr(M∗)− tr(Mt−1))

≤ 1
2η (‖Mt−1 −M∗‖2F − ‖Mt −M∗‖2F )

+ηr2

2 (16 + 16dq + 8q) + q‖M∗‖tr

where q’s high-order items are omitted since q is a small number. After a summation over
the iteration from 1 to T , we have

E[`(M̄)]− `(M∗) ≤
‖M∗‖2F

2ηT + ηr2(8 + 8dq + 4q) + q‖M∗‖tr

The proof is finished by setting q = 1/T .

If we set the stepsize η as
η = ‖M∗‖F

2r
√

4T + 4d+ 2
we have

`(M̄)− `(M∗) ≤
1
T

(
2r
√

(4T + 4d+ 2)‖M∗‖F + ‖M∗‖tr )

where O(1/
√
T ) convergence rate, the well known result for standard SGD, is also observed

as in Theorem 3.3.1.
According to Theorem 3.3.2, applying dropout to training data with appropriate compo-

nent and dropout probability does not hurt the convergence performance of standard SGD
method either. Furthermore, q is required to be sufficiently small to avoid the suboptimal
solution, which is also consistent with the analysis in Theorem 3.3.1.

3.4 Experimental Results

Although we aim to learn a good distance metric for clustering, we verify our proposed DML
method using the standard experimental setting for DML. Specifically, six datasets from
different application scenarios are used to verify the effectiveness of the proposed method.
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Table 3.1: Statistics for the datasets used in the empirical study. #C is the number of
classes. #F is the number of features. #Train and #Test represent the number of training
data and test data, respectively.

# C # F #Train #Test
ta 6 106 902 391

semeion 10 256 1,115 478
dna 3 180 2,000 1,186

caltech10 10 1,000 3,151 1,338
protein 3 357 17,766 6,621
sensit 3 100 78,823 19,705

Table 3.1 summarizes the information of these datasets. ta is a social network dataset
with 6 different categories of terrorist attacks [110]. semeion is a handwritten digit dataset
downloaded directly from the UCI repository [83]. caltech10 is a subset of Caltech256
image dataset [47] with 10 most popular categories and we use the version pre-processed by
a previous study [24], where each image is represented by a 1, 000-dimensional vector. The
other datasets are directly downloaded from LIBSVM database [22]. For dna, protein and
sensit, we use the standard training/testing split provided by the original dataset. For the
rest datasets, we randomly select 70% of data for training and use the remaining 30% for
testing. For each dataset, we randomly select T = 100, 000 active triplets (e.g., incur the
positive hinge loss by Euclidean distance) within the range of 3-nearest same class neighbors
as suggested by the study [127]. Instead of using clustering algorithms to cluster the whole
data set, k-nearest neighbor (k=3) classifier is more meaningful in this scenario and is
applied after obtaining the metric, since we optimize the triplets from 3-nearest neighbors.
All experiments are repeated by 5 trials on different randomly generated triplet sets and
the average result with standard deviation is reported.

3.4.1 Comparison with SGD Methods

In the first experiment, we compare the standard SGD for DML to five SGD variants
including our proposed methods (i.e., SGD-M1, SGD-M2, SGD-D1, and SGD-D2). The
methods are summarized as follows.
• SGD: stochastic gradient descent method as described in Algorithm 1.
• SGD-PSD: SGD with PSD projection at every iteration.
• SGD-M1: SGD with dropout for learned metric as structured Frobenius norm (Algo-

rithm 2).
• SGD-M2: SGD with dropout for learned metric as structured L1 norm (Algorithm 3).
• SGD-D1: SGD with additive Guassian noise in training data as trace norm (Algo-

rithm 4).
• SGD-D2: SGD with dropout for training data as trace norm (Algorithm 5).
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Figure 3.3: Trend of effect for dropout as regularizers on dataset caltech. Fig.(a) is the L2
norm of the diagonal elements in the metric learned by SGD-M1. Fig.(b) is the sparsity of
the metric learned by SGD-M2. Fig.(c) is the rank of the metric learned by SGD-D2.

Euclidean distance is also included as a baseline method and denoted as “Euclid”.
All of these SGD methods are applied on the same triplet set and take one-projection

paradigm except SGD-PSD, which projects the learned metric onto the PSD cone at every
iteration. We search the stepsize η in {0.1, 1, 10} by cross validation and η = 1 shows the
best performance, so we fix it for all experiments. The dropout probability parameter q for
the proposed methods is searched in {10−i : i = 1, · · · , 5}. All SGD methods are started
with an identity matrix in the experiment.

Table 3.2 shows the classification accuracy of different SGD methods. First, it is not
surprising to observe that all the DML algorithms improve the performance compared to the
Euclidean distance. Second, for all datasets, we observe that the proposed SGD methods
with dropout (i.e., SGD-M1, SGD-M2, SGD-D1, and SGD-D2) significantly outperform
the baseline SGD methods (i.e., SGD and SGD-PSD), which is also demonstrated by the
statistical significance examined via pairwise t-tests at the 5% significance level. Concretely,
on most datasets, the accuracy of SGD with dropout is about 2% improved compared with
that of SGD and it is even 4% on protein.

Furthermore, we observe that SGD-M1 shows the best performance on semeion, cal-
tech10, and protein, while SGD-M2 outperforms other methods on ta and dna, and SGD-D2
is the best on sensit. It is because dropout in the learned metric and dropout in the train-
ing data represent different regularizers, and different dataset prefers different regularizer.
SGD-D1 and SGD-D2 have the similar performance because they optimize the same trace
norm. However, SGD-D2 is a little bit better than SGD-D1 due to the reason that no
additional Guassian noise is introduced by SGD-D2. Finally, SGD-PSD performs same as
if not worse than SGD, which is consistent with the observation in a previous study [24].

Then, we investigate if dropout can perform as the regularizers as we expected. Fig-
ure 3.3 compares the effect of different norms with different parameters to that of SGD,
where the parameter q of dropout changes and the others are kept the same. First, since
SGD-M1 puts more aggressive penalty on the diagonal, Figure 3.3(a) shows how L2 norm
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Figure 3.4: Comparison of training error and test error of different SGD methods with
different size of triplets. There is no overfitting observed for SGD method with dropout.

of the diagonal elements in the metric learned by SGD-M1 varies as q changes. We observe
that the looser the parameter is, the larger the L2 norm is, and even when q = 10−5, the
L2 norm is still less than that of SGD. It demonstrates that dropout as structured Frobe-
nius norm restricts the size of diagonal elements well. Second, Figure 3.3(b) compares the
sparsity of the learned metric, where sparsity is defined as

Sparsity = #(Mi,j = 0)
d2

Without the constraint of L1 norm, the sparsity of the metric learned by SGD is small as
shown by the blue dashed line. However, in SGD-M2 as plotted by the red dash dotted line,
with an increasing of the structured L1 penalty as the probability of dropout, the learned
metric becomes more sparse, which confirms the effectiveness of SGD-M2. Finally, trace
norm constraint usually leads to a low-rank metric [19], so we study the rank of the learned
metric by SGD-D2 in Figure 3.3(c). As expected, when q becomes larger, more stress is
put on the trace norm and lower-rank metric is induced.
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Since dropout is found to be helpful to overcome overfitting in deep learning [47], we
empirically study the role of dropout for alleviating overfitting problem in DML. Overfit-
ting [51] is especially likely in cases where learning was performed too long, that is, too
many iterations of learning is conducted in iterative methods. SGD methods in this chap-
ter sample one triplet in each iteration. Therefore, more triplets sampled indicates longer
learning. Morevoer, an overfitted model will likely perform worse on validation data out-
side the training data, even though the model performs as well, or perhaps even better,
on the training data [51]. We fix all parameters as above except the number of sampled
triplets, to study how training error and test error on the same training data and test data
change, respectively, as the number of triplets used increases. Figure 3.4 shows the training
error and test error of SGD, SGD-PSD and SGD with best dropout strategy on three small
datasets, while the number of sampled triplets increases from 20, 000 to 100, 000. First, we
observe that the training error of SGD with dropout is a little bit larger than those con-
ventional SGD methods. This gap is from the large dropout probability q as we indicate in
Theorem 3.3.1. However, overfitting is observed for SGD and SGD-PSD when the number
of triplets is up to 40, 000, while there is no overfitting phenomenon for SGD with dropout.
It further demonstrates the overwhelming performance of dropout technique in Table 3.2
and shows that dropout is also helpful to overcome the overfitting problem in DML.

3.4.2 Comparison with State-of-Art Methods

Besides the comparison with various SGD methods, we also compare our proposed dropout
methods to three state-of-art DML algorithms as follows.
• SPML [114]: a mini-batch stochastic gradient descent method for DML to optimize the

hinge loss with Frobenius norm as the regularizer.
• OASIS [24]: an online learning algorithm for DML and the symmetric version is adopted

in the comparison.
• LMNN [127]: a batch learning algorithm with Frobenius norm for DML.

SPML and OASIS use the same triplet set as SGD methods and also adopt one-
projection paradigm. LMNN is a batch learning method, and thus there is no limitation
for the type and the number of triplets that it could use for each iteration. Specifically,
LMNN is not restricted to the set of triplets used by other SGD methods. There is also no
constraint for PSD projection in LMNN and it can perform PSD projection whenever it re-
quires. All codes for these methods are from the authors and the recommended parameters
are used. Since SPML is a stochastic method, it shares the same setting as the proposed
methods, where the parameter for Frobenius norm is searched within the same range as q
to choose the best performance. SPML and OASIS are both initialized with an identity
matrix, while LMNN starts with the matrix from PCA without dimension reduction, which
usually gives a better performance than the identity matrix [127].
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Table 3.3 summarizes the classification accuracy of different DML algorithms. “Dropout”
denotes the best result of dropout methods adopted from Table 3.2. It can be easily ob-
served that, although LMNN is a batch learning method and could utilize much more
information than our method, LMNN only has the similar performance on dna and cal-
tech10, while SGD method with dropout significantly outperforms on all other datasets.
It further demonstrates the effectiveness of the proposed methods. SPML and OASIS are
slightly better than the standard SGD method, but significantly worse than SGD method
with dropout technique. The performance of OASIS could be explained by the fact that it
does not include any regularizer and overfitting could be easily induced. Although SPML
combines the Frobenius norm as the regularizer, it is worse than SGD-M1 and SGD-M2
shown in Table 3.2, which implies that the proposed structured norm by dropout is more
effective than the standard norm.

3.4.3 Wrap Dropout in Existing DML Methods

In this section, we show that dropout can be easily wrapped in the existing DML methods
and help improve the performance. First, we wrap dropout in SPML, which is a state-of-art
mini-batch SGD method for DML. Note that SPML has Frobenius norm as the regularizer,
so we drop it to make sure that there is only one regularizer at one time. Since it is a SGD
method, the dropout onM is the same as Algorithm 2 and Algorithm 3. We denote dropout
as structured Frobenius norm on SPML as “SPML-M1” and dropout as structured L1 norm
as “SPML-M2”. Instead of randomly selecting one triplet at each iteration, SPML samples
b triplets at one time and updates according to the batch of the gradient. Therefore, for
the dropout to the training data, we simply perform the dropout on different matrix A in
the mini-batch as in Algorithm 5 and the method is denoted as “SPML-D”.

Table 3.4 summarizes the results for wrapped SPML methods. First, it is not surpris-
ing to observe that all dropout strategies improve the performance of SPML. On almost
all datasets, the improvement on accuracy is more than 1% and it is even about 3% on
protein, which is also consistent with the observation in the comparison for various SGD
methods. Although SPML applies the standard Frobenius norm as the regularizer, SPML
with different dropout strategies outperforms it significantly according to the statistical sig-
nificance examined via pairwise t-tests at the 5% significance level, which shows the superior
performance of the proposed structured regularizer.

Then, we wrap dropout in OASIS, which is a state-of-art online learning method for
DML. Since online learning has the similar process as stochastic gradient descent method,
wrapping dropout in is pretty straightforward. Figure 3.5 illustrates the procedures of wrap-
ping different dropout strategies in OASIS. Let “OASIS-M1”, “OASIS-M2”, and “OASIS-D”
denote dropout as structured Frobeniuse norm, structured L1 norm, and trace norm in OA-
SIS, respectively. The comparison of classification accuracy applied by 3-NN is summarized
in Table 3.5. The similar phenomenon as for SPML is observed, that is, dropout always
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Figure 3.5: Procedure of wrapping dropout in OASIS.

helps to improve the performance of OASIS significantly according to pairwise t-test at the
5% significance level.

In summary, wrapping dropout in existing DML methods is not only convenient but
also very helpful for performance improvement.

3.5 Summary

In this chapter, we propose two strategies to perform dropout for DML, i.e., dropout in the
learned metric and dropout in the training data. For dropout in the metric, we propose
the structured regularizer, which is simulated with dropout by assigning different dropout
probabilities for the diagonal elements and those living in off diagonal. For dropout in the
training data, the data-dependent dropout probability is adopted to mimic the trace norm.
We develop the theoretical guarantees for both dropout scenarios to show that dropout will
not affect the convergence rate of SGD. Furthermore, we demonstrate that the proposed
strategies are very convenient to wrap in the existing DML methods. Our empirical study
confirms that the proposed methods have the overwhelming performance compared with the
baseline methods, and can significantly improve the classification accuracy for the state-of-
art DML methods.

38



Chapter 4

Mining Balanced Hierarchical
Clustering

In this chapter, we aim to construct a balanced hierarchical clustering structure containing
semantics to help end users efficiently and effectively organize and search in large amount
of data. We study this problem for the specific application of scenario II, that is, retrieving
relevant images from a huge collection of images by iterative search.

4.1 Background and Overview

You just came back from a wonderful vacation at your favorite place. Your digital camera,
equipped with only a 64GB flash memory card, records your lovely memory in thousands of
pictures. In your computer, you have tens of thousands of photos taken in the last 5 years.
You want to share those photos online with your friends, but you face a challenge. Many
of your friends unlikely have the time and patience to browse thousands of photos. Ideally,
you would like to organize your thousands of photo using a small number of meaningful
features, such as “places”, “my kids”, “our pets”, and “classmate reunion”, so that every
photo can be uniquely identified and retrieved using a combination of those features. In
other words, the features have to be discriminative and independent. We call such a small
number of meaningful features a multidimensional index (or index for short) of the photos.
Here, an index is for human users instead of for software search engines. It should be easy
to understand and manipulate.

Creating an index of thousands of photos manually is time-consuming. Moreover, a
manually created index without a careful design may not be able to facilitate search and
retrieval effectively. For example, using too many features may overwhelm users. Some
photos may need a combination of many features to be retrieved, and thus are deeply
hidden. Many photos may not be uniquely identified by feature combinations.
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Figure 4.1: The 1st dimension selected with manual label.

Most existing image retrieval techniques [105] rely heavily on images manually or al-
gorithmically annotated, which is often expensive and unavailable in our problem setting.
Fortunately, by applying the state-of-art methods, we can extract a large set of meaningful
semantics from the original photos as “dimensions”. Concretely, each photo may contain
multiple semantic dimensions, such as “chair”, “computer”, “sunset”, and “ocean”. Inspired
by the idea of multi-instance multi-label learning [82, 144], where each data object is repre-
sented by multiple instances, all meaningful regions for each image can be roughly detected
by image segmentation, and then each region can be presented as an instance. Conse-
quently, each instance can be treated as a semantically meaningful dimension for people to
search, view, and organize these images. For example, given the photo collection from the
KDD2012 conference, the dimension “stand” as red line circled in Figure 4.1 could be used
to indicate whether an image has the content of “stand”.

However, such semantic annotation methods typically generate many features. One may
wonder whether the more features, the better a large set of photos are indexed. If one uses
all features as dimensions, many dimensions may be redundant, since different images may
contain similar content. A dimension existing in all or many images are not discriminative
and not useful for indexing photos. For example, image feature “football” for a collection
of football game photos is not informative, since most photos contain footballs.

Thus, although extracting semantic features from photos is highly feasible, the real
challenge of selecting effective features to efficiently search in a large number of objects
largely remains. Ideally, given a collection of images, we want to find a minimum set of
dimensions such that each image in the collection can be uniquely identified by some of
those selected dimensions. Moreover, any sub-group of images that contain the same subset
of features should be easily located together for search by keywords in mind as “sunset”
and “mountains”.
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One may wonder if this is just an instance of the well studied feature selection prob-
lem [45]. However, the lack of label or class information makes some popular feature se-
lection methods, such as Information Gain, Relief, Fisher Score, and Lasso, not applicable
here. Some unsupervised feature selection methods have been proposed for clustering [4].
However, those methods usually try to select features that can improve the quality of clus-
tering that groups similar objects having similar feature values together. Since our goal
is to uniquely index each image or any sub-group of similar images, the unsupervised fea-
ture selection methods for clustering are not reliable for our problem, either. Therefore,
although our problem is a kind of feature selection, it cannot be tackled well using the
existing methods.

Hierarchical clustering structures generated by traditional hierarchical clustering meth-
ods [94] can provide unique paths to locate each identical object or sub-group of objects.
However, this kind of hierarchies do not contain any semantic meanings. Therefore, it is
impractical to induce understandable questions from the hierarchy to help users search in
the hierarchy. Moreover, traditional hierarchical clustering methods often generate very
unbalanced hierarchies which make search inefficient.

In this chapter, we formulate the problem of subspace hierarchical clustering that aims
to construct a balanced hierarchical clustering structure using a subset of dimensions. More-
over, the hierarchy contains semantics for humans to efficiently search desired objects.
Specifically, this problem can be solved by finding a minimum subset of dimensions such
that each object is uniquely identified. This problem is very challenging, and we prove that
this optimization problem is submodular [77]. Therefore, we propose an efficient greedy
algorithm to naturally construct a balanced hierarchy with semantics. Our experiments
on various real-world image collections validate both the efficiency and effectiveness of our
proposed method.

In the following of this chapter, Section 4.2 formulates our problem. Section 4.3 presents
our method. Section 4.4 reports an empirical study. Section 4.5 summarizes this chapter.

4.2 Problem Definition

In this section, we first describe how we can extract candidate features from a set of raw
images without any domain knowledge. Then, we present our problem of feature selection.

4.2.1 Candidate Feature Extraction

Given a large set of images, without any additional information (i.e., in an unsupervised
manner), how can we extract meaningful features automatically?

As mentioned above, each image may contain multiple meaningful semantics. Each
semantically meaningful region can be detected for each image, which can be roughly done
by the existing image segmentation techniques. For instance, Wang et al. [126] proposed a
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segmentation method that partitions each image into blocks with 4× 4 pixels and extracts
a feature vector for each block (color feature and texture feature). Then the k-means
algorithm [50] is used to cluster the feature vectors into several clusters such that every
cluster contains multiple blocks and form a meaningful region.

We borrow the idea of MIML (Multi-Instance Multi-Label learning) [82, 144], which
present each data object by multiple instances. After segmentation, we present each image
as a bag with multiple regions, that is, Ii = {xij |j = 1, . . . , Ni}, where each region is
described as an instance xij which is the average feature vector over all its blocks, and Ni is
the total number of instances in image Ii. X = {x11, . . . ,x1N1 , . . . ,xn1, . . . ,xnNn} denotes
the set of instances collected from all n images. Therefore, X can be treated as the set of
extracted candidate dimensions, further denoted as D = {d1,d2, · · · ,d|X|}, where each dj
has a meaningful semantic.

We then map each image onto the extracted dimension set D by finding the minimum
Euclidean distance from its instances Ii = {xij |j = 1, · · · , Ni} to each dimension in D.
Formally, each image is represented by the distance feature vector as [φ1, · · · , φ|D|], where
the q-th feature value is calculated as

φq(Ii) = min
j=1,··· ,Ni

((xij − dq)>(xij − dq))
1
2 (4.1)

Thereafter, by comparing the feature value with a predefined distance threshold θ, we
determine if an image contains the corresponding dimension. Specifically, if φiq ≤ θ, then
we set Oiq = 1, which means image Ii has the q-th semantic content, otherwise 0. As
such, a new feature space O ∈ {0, 1}n×|D| is generated. The whole process is illustrated in
Figure 4.2.

4.2.2 Problem Formulation

To construct a balanced hierarchical clustering structure in a minimum subset of dimensions,
we propose to find a minimum subset of dimensions such that each image can be uniquely
indexed. Thereafter, a decision tree [106] for efficient retrieving can be constructed by choos-
ing the most discriminative dimension for each level, although this step will be naturally
embedded into the feature selection step as discussed later.

Specifically, given the candidate dimenion set D and the corresponding presentation
for all images O ∈ {0, 1}n×|D|, suppose that each image can be uniquely represented by
O ∈ {0, 1}n×|D| (cases beyond this assumption will be discussed separately in Section 4.3.2),
which means ∀p, q ∈ [1, n], p 6= q,op 6= oq, our goal is to select a minimum subset of dimen-
sions D′ ⊆ D, such that each image can still be uniquely represented by O′ ∈ {0, 1}n×|D′|.
The problem can be formulated as the following optimization problem.
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Figure 4.2: Feature extraction.

arg min
D′⊆D

|D′|

s.t. o′p 6= o′q, ∀p, q ∈ [1, n], p 6= q

o′i 6= 0,∀i ∈ [1, n] (4.2)

where the second constraint requires that every image should be covered by selected dimen-
sions.

The optimization problem in Equation 4.2 is equivalent to the following optimization
problem.

arg max
D′⊆D

ND′
dif

s.t. ND0
dif < ND′

dif ,∀D0 ⊆ D, |D0| < |D′|,

o′i 6= 0, ∀i ∈ [1, n] (4.3)

where ND′
dif indicates the number of different pairs of images generated upon the dimension

set D′. Taking the image collection in Table 4.1 as an example, dimension set {d1, d2}
generates N{d1,d2}

dif = 2 different pairs 〈o1,o2〉 and 〈o2,o3〉. Both {d1, d4} and {d1, d3, d4}
generate 3 different pairs which is the maximum number, however o3 is not covered by any
dimension selected in {d1, d4}.

Theorem 4.2.1. Optimization problem in Equation 4.2 is equivalent to the optimization
problem in Equation 4.3.
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Table 4.1: An image collection with 3 images on 4 dimensions.

d1 d2 d3 d4

o1 0 1 1 1
o2 1 1 0 0
o3 0 1 1 0

Proof. As stated, we assume that each image is uniquely represented by O ∈ {0, 1}n×|D|,
which means ∀p, q ∈ [1, n], p 6= q,op 6= oq. Suppose the solution set for Equation 4.2 is A
and the solution set for Equation 4.3 is B.

1. For any solution A ∈ A, it provides a minimum subset that every image is uniquely
represented. The number of different pairs generated by A is

(n
2
)
, which is maximal.

The size of |A| is minimum, and thus A ∈ B. Therefore, A ⊆ B.

2. For any solution B ∈ B, since we assume that each image is uniquely represented
by O ∈ {0, 1}n×|D|, NB

dif =
(n

2
)
. Moreover, there exists no other solution B′ that

|B′| < |B|. That means B is a minimum subset of D that can uniquely identify each
image, and thus B ∈ A. Therefore, B ⊆ A.

In summary, A = B.

4.3 The Proposed Method

Now we prove that the optimization problem in Equation 4.3 is submodular [77], that is,
it exhibits a diminishing returns property: adding a dimension when there are only a few
dimensions adds more different pairs than adding it after gathering many dimensions. Let
the number of different pairs generated upon dimension set D be R(D) = ND

dif . We first
give the following lemma.

Lemma 4.3.1. For all dimension sets A ⊆ B ⊆ D and dimension d ∈ D \B,

R(A ∪ {d})−R(A) ≥ R(B ∪ {d})−R(B).

Proof. Given a new dimension d, we can calculate the number of different pairs generated
by it. For instance, d3 in Table 4.1 will generate two different pairs: 〈o1,o2〉 and 〈o2,o3〉.

Let the set of different pairs generated by dimension set {d} be S{d} and that of D
be SD. Obviously, R(A ∪ {d}) − R(A) = |S{d} − SA ∩ S{d}| and R(B ∪ {d}) − R(B) =
|S{d} − SB ∩ S{d}| = |S{d} − (SA ∪ SB−A) ∩ S{d}| = |S{d} − SA ∩ S{d} − SB−A ∩ S{d}| ≤
|S{d} − SA ∩ S{d}| = R(A ∪ {d})−R(A).

Using Lemma 4.3.1, we have the following result.
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Theorem 4.3.1. R(D) is a submodular.

Proof. 1. R(∅) = 0, which is trivial because all images carry the same dimension values
without adding any dimension;

2. Since adding more dimensions does not reduce the number of different pairs, R is
non-decreasing, i.e., R(A) ≤ R(B) for all A ⊆ B ⊆ D;

3. Follow Lemma 4.3.1.
Therefore, R(D) = ND

dif is a submodular.

Maximizing submodular in general is NP-hard [70]. A commonly used heuristic is greedy
algorithm. In our case, the greedy algorithm begins with the empty dimension set D0 = ∅,
and iteratively, in step t, adds dimension dt which maximizes the increased number of
different pairs as

dt = arg max
d∈D\D′t−1

R(D′t−1 ∪ {dt})−R(D′t−1)

Since all dimensions are equally considered, according to theorem stated in [96], if the greedy
algorithm stops when M dimensions are selected,

R(DM ) ≥ (1− 1/e) max
D′⊆D,|D′|=M

R(D′)

which means this simple greedy algorithm is near-optimal.
Therefore, we propose a greedy algorithm summarized in Algorithm 6. It can be ob-

served that this algorithm naturally produces a hierarchical clustering structure in a style
of binary decision tree, where the root is the whole data set, all interior nodes have two
children (i.e., containing a corresponding semantic meaning or not), and each leaf uniquely
identifies each image. Since each step chooses the dimension that generates the largest num-
ber of different pairs, the hierarchy provides efficient paths (i.e., the length of each path is
upper bounded by the height of the tree) to retrieve either a specific image or any sub-group
of similar images. We call this hierarchy is most balanced because for each node in the tree,
the number of images in the leaf child and that in the right child are most balanced.

4.3.1 Analysis

Let the height of the binary tree formed by Algorithm 6 be T , we have log2 n ≤ T � n,
where n is the total number of images. For each level h, there will be at most |D| dimensions
to be selected and for each dimension, we can calculate how many pairs will be added for
each tree node in this level within one step. As we know the total number of tree nodes in
the tree that should be calculated is at most 20+21+22+· · ·+2(T−1) = 2T−1. Therefore, in
the worst case, the total running time is O(|D| ·2T ) that is between O(n|D|) and O(n2|D|),
while in fact, the running time is very close to O(n|D|).
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Algorithm 6 Subspace Hierarchical Clustering
Input: D: Candidate dimension set

O ∈ {0, 1}n×|D|: Image representations over D
Output: D′: Selected dimensions
1: D′ = ∅
2: Initialize root as {1, 2, · · · , n}
3: t = 1
4: while any leaf has more than one image do
5: for each d ∈ D \D′ do
6: calculate the number of added pairs by R(D′ ∪ {d})−R(D′)
7: end for
8: dt = arg max

d∈D\D′
R(D′ ∪ {d})−R(D′)

9: for each leaf do
10: move each image i with oit = 0 to the left child
11: move each image j with ojt = 1 to the right child
12: end for
13: D′ ← D′ ∪ {dt}
14: t = t+ 1
15: end while
16: if the most left image i is represented as o′ = 0 then
17: Randomly pick dt ∈ D \D′ with oiq = 1
18: D′ ← D′ ∪ {dt}
19: end if

4.3.2 Extensions

For real-world image collections, it is possible that all extracted dimensions cannot uniquely
identify each image. In such a case, there is no way to distinguish images with the same
dimension values. If α images have the same dimension values in the original image collec-
tion, we can change the objective to finding a minimum subset of dimensions that at most
α images have the same dimension values, which is formulated as

arg min
D′⊆D

|D′|

s.t. |Leaf |max ≤ α,Leaf = {o′|∀i, j,o′i = o′j}

o′i 6= 0,∀i ∈ [1, n]

Algorithm 6 can be adopted while Line 4 changes to “any leaf has more than α images”.
Moreover, during the search, it is possible that a user may stop the search at the tree

root. For example, a user may stop the search after he/she ticks the “sky” region as shown
in Figure 4.1. It means that the user wants images about “sky”. In the best case, n/2
images have the corresponding dimension value. It is still not convenient for people to view
all output images, while n is very large. In such a scenario, a ranked list of images are
output, where the top-ranked image is with the smallest distance to the ticked dimension
using Equation 4.1, where distances are already stored when calculating O in Section 4.2.1.
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Figure 4.3: Segmentation examples on the kdd2012 data set.

If a user ticks several dimensions, the image with the smallest summation of distances to
all ticked dimensions can be top-ranked.

4.4 Experimental Results

To validate the effectiveness and efficiency of our proposed method, we conduct experiments
on several real-world photo/image collections: the kdd2012 conference photo collection1,
which has 1, 503 images in total, the Image [140] data set with 2, 000 images, the event [80]
data set with 1, 579 images, utoronto [88], a subset of the ImageNet data set with 1, 998 use-
ful images, and avd, a subset of COREL data set with animals, vehicles and distractors [79]
including 3, 979 images.

All our experiments are conducted on a 64bit-Windows sever with a 2.5Hz CPU and 8G
main memory. First, we resize all original images into smaller ones with size no larger than
400 × 400 pixels. It takes about ten minutes to resize 2, 000 images. Following the image
segmentation technique described in [126], each image is segmented into at least 2 and at
most 16 regions. Note that 6 features are used for segmentation: 3 LUV color features
averaged over the 4×4 block and 3 wavelet texture features in the block. It takes about
1.5 hours to segment 2, 000 images. Samples are shown in Figure 4.3, where the upper row
shows the original images and the lower row shows the segmented images with each region
represented by the same color.

After segmentation, each region may contain multiple 4×4 blocks. We represent each
region as an instance by 25 features, 6 features of the cluster center found in the segmenta-
tion process, 3 RGB features averaged over all its blocks, 3 averaged HSV color features, 6
averaged color moment features, 3 averaged wavelet texture features, and the total number

1http://www.flickr.com/photos/sigkdd2012

47

http://www.flickr.com/photos/sigkdd2012


of blocks within this region. Therefore, each image is represented as a bag of at most 16
instances, each with 25 features.

Then, we map each image onto dimensions collected from all images by finding the mini-
mum Euclidean distance from its own instances to each dimension. For convenience, instead
of using the distance value, each image is represented by a weight vector [ψ1, · · · , ψ|D|], where
the q-th value is calculated by ψq = exp (−φq(Ii)2/σ2), and σ is the mean distance follow-
ing the method in [145]. In the experiments, if ψq ≥ θ, where θ is a threshold parameter
and θ ∈ {0.95, 0.90, 0.85, 0.80, 0.75, 0.70}, the image contains the q-th dimension and we set
oiq = 1, otherwise 0.

To the best of our knowledge, there is no existing method that is exactly for our prob-
lem. We propose some simple baselines for comparison. Two baselines are searching by
random selection. RSF (Random Selection Forward searching) begins with an empty set
and randomly selects a feature at each iteration until each image is uniquely represented
and RSB (Random Selection Backward searching) begins with the whole set and randomly
removes a feature at each iteration until at least one image cannot be uniquely identified.
The other baseline is k-CF (k-means Clustering Forward searching) that adopts the k-means
clustering algorithm [50] to do clustering over all features. Then each cluster centroid as a
dimension is selected. However, it is impractical to determine the number of k which can
exactly identify each image uniquely. Therefore, k-means clustering is repeatedly applied
and k is increased by 1 in each iteration from k0 = 1 until each image can be uniquely
identified.

4.4.1 Performance

In this section, we set the parameter θ = 0.70 and compare the performance of our method
to all proposed baselines in four aspects 1) the total number of features selected; 2) efficiency
(CPU time); 3) the maximum number of images that have the same dimension values as
the number of dimensions selected increases (only for forward searching method); 4) the
number of different image sets (a set contains images that have the same dimension values on
current selected dimensions) generated as the number of dimensions selected increases (only
for forward searching method). Specifically, 3rd and 4th aspects are comparing different
methods on their convergence speed. Note that k-means clustering is very slow especially
when k increases to a large number due to the huge number of candidate features as the
CPU time shown in Table 4.2. For example, it takes about 37.5 hours for k-CF to select
only up to 75 features for data set event. Therefore, we compare to k-CF only in the 3rd
and 4th aspets. For RSF and RSB, the best result of 10 trials for each data set is reported.

The total number of candidate dimensions extracted for each data set is summarized in
Table 4.2, from which we can see that the total number of features selected by our method
is much less than RSF and RSB. It indicates that the proposed method can provide much
more efficient hierarchy for search, because the number of selected dimensions determines
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Figure 4.4: Maximum #images with same dimension values as selected dimensions increases
when θ = 0.70.
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Figure 4.5: #Distinct image sets as selected dimensions increases when θ = 0.70.
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Table 4.2: Performance comparison when θ = 0.70.

Method CPU time (sec)
Data set #Images #Candidates Our RSF RSB Our RSF RSB

kdd2012 1, 503 20, 251 64 935 20, 098 54.08 61.55 211.17
Image 2, 000 24, 923 72 612 24, 757 105.28 119.25 420.07
event 1, 579 21, 992 65 463 21, 829 64.89 70.18 293.73
utoronto 1, 998 25, 116 69 812 24, 976 125.37 203.34 314.07
avd 3, 979 56, 900 77 1, 834 56, 561 569.43 613.27 2,021.5

Table 4.3: Effect of θ (“-” means no solution).

Data kdd2012 Image event utoronto avd
Method Our RSF Our RSF Our RSF Our RSF Our RSF

θ = 0.75 71 675 87 1,735 76 531 79 876 100 3,230
θ = 0.80 81 936 110 3,529 98 1,344 96 1,255 133 4,612
θ = 0.85 100 1,899 175 10,002 144 4,022 129 4,455 206 8,112
θ = 0.90 158 3,385 - - 264 6,605 - - 391 16,433
θ = 0.95 367 8344 862 15,750 659 11,014 540 14,003 1,062 38,319

the height of the clustering hierarchy. At the same time, Table 4.2 demonstrates that the
efficiency of our proposed feature selection method is even slightly better than random
searching, due to the relatively smaller number of dimensions selected.

Figure 4.4 shows the maximum number of images that have the same dimension val-
ues on current selected dimensions as the number of dimensions selected increases and
Figure 4.5 shows the number of different image sets generated as the number of selected
dimensions increases. The best result for RSF is plotted too. Figure 4.4 indicates that
our method converges much faster than those baselines, while Figure 4.5 implies that with
the same amount of selected dimensions, the dimensions selected by our method are more
discriminative. Therefore, our method clearly outperforms the baselines.

4.4.2 Effect of Parameter θ

In this section, we study the effect of parameter θ. Since RSB is much worse than RBF
due to the possible reason that it may randomly remove some essential features at the very
beginning, we only compare our method with RSF in this subsection. The larger θ, the
less 1’s generated in O. When θ increases, it is also possible that some images cannot be
uniquely identified using all available dimensions. In this case, there will be no solution for
comparison as shown by “-” in Table 4.3. At the same time, a larger number of features
need to be selected as θ increases, as shown in Table 4.3. Our method is much better than
RSF for different values of θ.
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4.4.3 Illustration of Selected Dimensions

For selected dimensions, we can easily map them back to their specific bag instances and
then locate the corresponding regions in the original images, which, for example, can be
shown as circled in red line in Figure 4.1. With less than 100 dimensions selected, it is much
easier for people to give manual labels as “stand” and “sky” shown in Figure 4.1, compared
with labeling millions of images.

4.5 Summary

To automatically construct a hierarchical clustering structure with semantics for a large im-
age collection without domain knowledge, we first propose a simple strategy to automatically
extract meaningful semantics from original images as dimensions. Upon an even larger set of
dimensions collected, we then propose an efficient unsupervised feature/dimension selection
method to select a sufficient dimension subset to represent each photo within the collection
uniquely for indexing, which naturally constructs a most balanced binary tree structure for
efficient search. Experiments on a board of variety real-world image collections demonstrate
both the efficiency and effectiveness of our proposed method.
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Chapter 5

Finding Multiple Stable
Clusterings

Considering that orthogonal ways may exist to partition a given data set, we study how
to automatically discover multiple clustering structures hidden in a given data and provide
understandable feature subspaces for them to cover users’ search interests in this chapter.

5.1 Background and Overview

Many clustering methods were proposed in literature. Some recent surveys on the subject
include [61, 134, 13, 133]. Traditional clustering methods [61] focus on finding a single way
to partition data into groups. However, it has been well recognized that different outputs
are possible if one varies the parameter setting, changes the clustering algorithm, or uses
different subsets of features in analysis. This means that assuming only a single clustering for
a data set can be too strict, which has motivated the emerging area of multi-clustering [93].

In many situations, different orthogonal ways may exist to partition a given data set,
each way presents a unique aspect to understand the structure of the data. For example,
fruits can be clustered by species or by color. An illustrative example is shown in Figure 5.1.
They can even be clustered by nutrition components and in some other ways. In customer
relationship management, customers can be clustered by gender, region, job, age, religion,
purchase behavior, credit history and many other ways. As another example, mining phe-
notypes [120] is very useful in bioinformatics and healthcare informations, and is essentially
a multi-clustering problem.

To obtain multiple good and different clusterings, where a specific way of partitioning
the data is called a clustering, two general strategies were proposed. Semi-supervised multi-
clustering methods [10, 31, 137] focus on finding one or more alternative clusterings with
respect to a given clustering. They generate multiple clusterings in a greedy way such
that multiple clusterings are produced sequentially and a new clustering is required to be
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(a) Fruits (b) Clustering by species (c) Clustering by color

Figure 5.1: Fruits can be clustered in different ways (Images are from Internet).

different from the previous ones. For example, COALA [8] aims to find an alternative
clustering of high quality and high dissimilarity comparing to the given clustering. The
major idea is to add instance level constraints, such as linked pairs in the given clustering
being transformed to cannot-link constraints.

Semi-supervised multi-clustering methods highly rely on a given clustering as the input.
Consequently, the alternative clustering result may not capture a user’s interest exactly.
To handle this problem, unsupervised multi-clustering methods [21, 62, 32] try to simulta-
neously generate multiple clusterings that are constrained to be different from each other.
However, to cover users’ interest, unsupervised multi-clustering methods tend to generate
many alternative clusterings. It is hard to constrain the differences between the clusterings
computed. It is also overwhelming for users to absorb and understand the results.

Apparently, multi-clustering methods lead a challenge to end users: how to efficiently
and effectively understand many clusterings. Subspace multi-clustering methods discover
multiple clusterings by considering different feature subspaces. Then, each clustering corre-
sponds to a feature subspace. Users can interpret and understand each clustering structure
using its feature subspace, such as species or color in the example of Figure 5.1. For exam-
ple, CLIQUE [3] divides a multidimensional data space into grid-cells, each dimension being
partitioned into equal-width intervals. Then, dense cells in each subspace are identified us-
ing a density threshold. A group of connected dense cells in a subspace is regarded as a
cluster. A clustering can be produced accordingly within a subspace. Obviously, CLIQUE
has to search an exponential number of subspaces with respect to the number of attributes.
Although some fast heuristic variants, such as INSCY [5], were proposed, the scalability
remains a challenge. Another drawback is that these subspace multi-clustering approaches
cannot explicitly consider the dissimilarity between different clusterings. Such methods
tend to produce many clusterings in order to cover some interesting ones, which may likely
overwhelm users.

In this chapter, we address two fundamental questions: how can we model quality of
clusterings and how can we find multiple stable clusterings in a given data set? We make a
few contributions.
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First, we extend the idea of clustering stability based on Laplacian eigengap, recently
used by Meilǎ and Shortreed in the regularized spectral learning method for similarity
matrix learning [90], to multi-clustering. The intuition is that a clustering is stable if
small distortions on the attribute values do not affect the discoverability of the clustering.
Mathematically, we show that the larger the eigengap, the more stable the clustering.

Second, based on the notion of stability of clusterings and the underlying analysis on the
Laplacian eigengap, we propose a novel subspace multi-clustering method, named multiple
stable clustering (MSC) to obtain a certain number of stable clusterings in different feature
subspaces. We model the problem of finding a stable clustering as an optimization problem
that maximizes the eigengap. The problem is unfortunately non-convex. We propose a
heuristic randomized method using iterative gradient ascent. In order to find multiple
stable clusterings, we introduce to the optimization problem a constraint on the difference
from the clusterings found so far. An advantage of our method comparing to the existing
multi-clustering methods is that our method can provide a feature subspace (i.e., a subset
of original features) to help users understand each clustering solution. Another advantage is
that it does not require users to specify the number of clusters and the number of alternative
clusterings in the data set, which is usually difficult for users without any guidance. Our
method can heuristically determine the number of clusters, and then estimate the number
of meaningful clusterings in a data set. We also discuss techniques to make MSC scalable
on large-scale data. Last, we report an extensive empirical study on synthetic and real data
sets that clearly demonstrates the effectiveness of our method.

This chapter is organized as follows. Section 5.2 defines the problem and models the
stability of clusterings. In Section 5.3, we develop MSC, an algorithm to find multiple stable
clusterings including a practical method to speedup MSC. Section 5.4 reports the results of
an empirical study. Section 5.5 concludes this work.

5.2 Problem Definition

In this section, we model the stability of a clustering. Let us start with some preliminaries
and the intuition.

5.2.1 Preliminaries

We consider a data set X ∈ Rd×n, that is, X contains n instances, each of d features. We
do not assume any knowledge about how the instances in X are partitioned into groups.

A clustering of k clusters C = {c1, c2, . . . , ck} is a partitioning of the instances in X

such that ∪km=1ci = X and ci ∩ cj = ∅ for 1 ≤ i < j ≤ k. Each ci (1 ≤ i ≤ k) is called a
cluster. In clustering analysis, we are interested in the clusterings where objects in a cluster
are similar and objects in different clusters are dissimilar. Here, similarity can be defined
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in many different ways and thus lead to various clustering methods for different application
purposes in the literature [133]. This is not a concern of our work in this chapter.

Multi-clustering aims to find multiple clusterings that are independent and thus different
from each other. How to measure the degree of independency or differences among cluster-
ings is critical in multi-clustering design. In this paper, we explore stability of clusterings
as the measure. A clustering is stable if any small distortions on the attribute values do not
affect the quality of the clustering. Stable clusterings are essential in the multi-clustering
setting. Given an unstable clustering, a small perturbation on the data may change this
clustering to another.

Take data set “donuts” in Figure 5.2 as an example, which contains 2 clusters. If
we do not take the clustering stability into account, both “Clustering 1” and “Clustering
2” contain 2 clusters, and they can be considered as two different clusterings for output.
However, “Clustering 2” is an unstable clustering. Because if we rotate two donuts by five
degrees at the same time, “Clustering 3” can be obtained by doing a cut on x = 0. Obviously,
“donuts” contains many unstable clusterings, such as “Clustering 2” and “Clustering 3”.

Now, the technical question is how we can model the stability of a clustering.

5.2.2 Stability of a Clustering

We consider clusterings in different subspaces by exploring weighting designs of the features.
We use a simplex ∆d to denote all possible feature subspaces, which can be represented as
a set of points

∆d = {w1q1 + w2q2 · · ·+ wdqd|wm ≥ 0,
d∑

m=1
wm = 1}

where qm is a unit vector corresponding to the m-th feature, that is,

q1 = (1, 0, 0, · · · , 0)

q2 = (0, 1, 0, · · · , 0)

· · ·

qd = (0, 0, 0, · · · , 1)

and wm is the weight assigned to the m-th feature. Denote by w = [w1, w2, · · · , wd] the
feature weight vector. When all weights are set to 1/d, it is the conventional full feature
space.

For each data point xi, we can obtain the weighted vector representation by multiplying
each weight wm with the m-th feature, that is,

x′i = w� xi
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Figure 5.2: An example of Donuts data and its potential clusterings with 2 clusters (Clus-
tering 1 is stable while Clusterings 2 and 3 are not).

57



where � is the operation multiplying each element of w with the corresponding feature in
xi. Then, the similarity between two instances xi and xj can be written as

Si,j = e−‖x
′
i−x′j‖

2
2 (5.1)

Now we apply spectral clustering to the similarity matrix S. Note that, although we
discuss only spectral clustering here, any clustering method, such as k-means, can be applied
to the similarity matrix. We calculate the normalized Laplacian by

L = D−1/2SD−1/2 (5.2)

where D is a diagonal matrix formed by

Di =
n∑
j=1

Si,j , i = 1, 2, . . . , n

It is easy to verify that the eigenvectors of the normalized Laplacian here having the
largest eigenvalues are identical to the eigenvectors of I−D−1/2SD−1/2 having the smallest
eigenvalues, as stated in [98].

In spectral clustering, we conduct eigen-decomposition for the Laplacian matrix L and
conduct clustering based on the top k eigenvectors, where k is the number of clusters we
want. Now we show the main theoretical result of this paper, which indicates a nice property
of stable clusterings.

Denote by λk(L) the k-th largest eigenvalue of L. Essentially, we show that, if the
eigengap λk(L)−λk+1(L) is sufficiently large, a small perturbation on the similarity matrix
S or on the weight vector w will not affect the top k eigenvectors, and thus the clusterings
of k clusters obtained are stable.

Theorem 5.2.1 (Stability). Given a Laplacian matrix L, if the eigengap λk(L)− λk+1(L)
is large enough, the top k eigenvectors of Lperb = L + ε are the same as those of L, where
ε is a symmetric perturbation matrix of small spectral norm ‖ε‖2.

Proof. We prove that, for any ε such that

‖ε‖2 <
λk(L)− λk+1(L)

2

the top k eigenvectors of Lperb = L+ ε are the same as those of L.
Since L is positive semi-definite, L has n non-negative real-valued eigenvalues λ1 ≥

λ2 ≥ · · · ≥ λn = 0 with the corresponding eigenvectors v1,v2, . . . ,vn. Denote by β =
λk(L)− λk+1(L). ε must be in one of the following two cases.

• Case 1. ε is from the space spanned by the eigenvectors of L. Then, Lperb = L+ ε can
be represented as

∑n
i=1(λiviv>i + λεiviv>i ), where each vi is an eigenvector of L and
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ε =
∑n
i=1 λ

ε
iviv>i . In this case, ε only affects the eigenvalues of Lperb comparing to

those of L by a factor λεi , and the eigenvectors remain the same. Furthermore, since
‖ε‖2 < β/2, maxi |λεi | < β/2. Therefore,

λk + λεk − (λk+1 + λεk+1) > λk − β/2− (λk+1 + β/2) = λk − λk+1 − β = 0

Thus, the top k eigenvectors of Lperb remain the same, though the ordering of the top
k eigenvectors may not be identical.

• Case 2. ε is not solely from the space spanned by the eigenvectors of L. Then,
Lperb = L + ε can be decomposed into two parts, one from the space spanned by
the eigenvectors of L and the other from the orthogonal space. That is, L + ε =∑n
i=1(λiviv>i +λεiviv>i +λ⊥i uiu>i ), where

∑n
i=1 λ

⊥
i uiu>i is part of ε from the orthogonal

space. The first part is similar to the first case. For the second part, since ‖ε‖2 < β/2,
maxi λ⊥i <= maxi |λ⊥i | < β/2. Therefore,

λk = λk+1 + β ≥ β > max
i
λ⊥i

Thus, the top k eigenvectors of Lperb remain the same as L, though the ordering of
the top k eigenvectors may, again, not be identical.

Remark 5.2.1. In spectral clustering, if the top k eigenvectors are the same for L and
Lperb, the clusterings with k clusters based on the same eigenvectors are the same.

According to Theorem 5.2.1 and Remark 5.2.1, the larger the eigengap between the k-th
and the (k+ 1)-th eigenvalues of L, the more stable the clustering with k clusters obtained
from L.

5.3 The Proposed Method

In this section, we first propose how to find one stable clustering and determine its number
of clusters. Then, we present our novel subspace multi-clustering method: MSC.

5.3.1 Finding a Stable Clustering

According to Theorem 5.2.1, given the number of clusters k, the most stable clustering can
be obtained by maximizing the eigengap, that is,

arg max
w∈∆d

λk(L)− λk+1(L) (5.3)
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where n is the number of instances in the data set, and the stable weight vector w is
searched in the simplex ∆d. Note that the simplex constraint has a good sparsity property
– it automatically eliminates those features of too low weights [107, 56]. This property is
desirable since sparse feature selection has been demonstrated effective by many previous
studies [121, 141, 14, 131].

Although Equation 5.3 models the most stable clustering with k clusters precisely, ap-
parently the optimization problem is non-convex. Thus, it is computationally expensive or
even prohibitive to find the optimal solution.

Moreover, in real-world applications, the number of clusters hidden in data is usually
unknown in advance. We determine the number of clusters by maximizing the eigengap,
that is,

arg max
k

λk(L∗)− λk+1(L∗) (5.4)

where 2 ≤ k ≤ n− 1, and L∗ is the Laplacian matrix constructed by Equations 5.1 and 5.2
when w = [1/d, 1/d, · · · , 1/d]. Specifically, we will only study the case of k that the original
data can provide the most stable clustering. This k can help discover at least one stable
clustering whose perturbation tolerance is comparatively large. Moreover, if all stable clus-
terings with k clusters can be discovered, all other stable clusterings with different number
of clusters are either combing or splitting clusters from the clusterings obtained.

Now given the number of clusters k targeted, as a heuristic solution, we can initialize w
by setting

w0 = [1/d, 1/d, · · · , 1/d]

in the simplex ∆d and solve the optimization problem in Equation 5.3 by iterative gradient
ascent. Specifically, in the t-th iteration (t ≥ 1) of gradient ascent, we set

wt = wt−1 + ηG

where the m-th element of vector G (1 ≤ m ≤ d) is

Gm =
〈
vkv>k ,

∂L

∂wm

〉
−
〈
vk+1v>k+1,

∂L

∂wm

〉
(5.5)

and vk is the k-th eigenvector. The derivation of the gradient is calculated as follows. Since

Lvk = λk(L)vk

we have
v>k Lvk = v>k λk(L)vk

Therefore,

λk(L) = v>k Lvk
‖vk‖22

= v>k Lvk =
〈
vkv>k , L

〉
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Consequently, we have
∂λk(L)
∂wm

=
〈
vkv>k ,

∂L

∂wm

〉
where

∂L

∂wm
= D−3/2 ∂D

∂wm
SD−1/2 +D−1/2 ∂S

∂wm
D−1/2 +D−1/2SD−3/2 ∂D

∂wm

∂Di

∂wm
=

n∑
j=1

∂Si,j
∂wm

, i = 1, 2, . . . , n

and
∂Si,j
∂wm

= −2Si,j(xi,m − xj,m)2wm

since
Si,j = e−‖x

′
i−x′j‖

2
2 = e−

∑
m
w2

m(xi,m−xj,m)2

To constrain w within the simplex ∆d, in each gradient ascent step, we adopt the
projection algorithm proposed by Kyrillidis et al. [75]. Concretely, we project wt obtained
in the t-th iteration onto the simplex by

(P1+(wt))m = [(wt)m − α]+ (5.6)

where α is a threshold that is set to

α = 1
ρ

(
ρ∑
i=1

(wt)m − 1)

where
ρ = max{m : (wt)m >

1
m

(
m∑
i=1

(wt)m − 1)}

Here, α and ρ are calculated by sorting the elements in wt in descending order. Instead
of directly calculating the gradient under the simplex constraint, we first calculate the
gradient without the constraint, conduct the gradient ascent, and then project w back to
the simplex. Kyrillidis et al. [75] proved that the projection algorithm still obtains the same
w as considering the simplex constraint in the gradient calculation.

Algorithm 7 shows the pseudo-code of finding a stable state (FSS), which first determines
the number of clusters we can discover on the data set, and then finds a local optima for the
problem defined in Equation 5.3. Note that Step 4 conducts full eigen-decomposition for L∗

because almost all eigenvalues are required to determine the number of clusters (maximizing
the eigengap), while Step 15 does partial eigen-decomposition on L because only the top
k+1 eigenvalues and their corresponding eigenvectors are useful for the gradient calculation.
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Algorithm 7 Finding a Stable State (FSS)
1: Input: data set X ∈ Rd×n, the number of iterations T , and step size η
2: Initialize weight vector w0 = [1/d, 1/d, · · · , 1/d] in the simplex ∆d

3: Compute L∗ by Equations 5.1 and 5.2
4: Conduct eigen-decomposition for L∗
5: for k = 2 to n− 1 do
6: Calculate λk(L∗)− λk+1(L∗)
7: end for
8: Set k = arg maxk λk(L∗)− λk+1(L∗)
9: for t = 1 to T do

10: Compute G using Equation 5.5
11: wt = wt−1 + ηG
12: Project wt onto the simplex ∆d using P1+ (Equation 5.6)
13: Compute S according to Equation 5.1
14: Calculate the normalized Laplacian L according to Equation 5.2
15: Conduct partial eigen-decomposition for L
16: end for
17: return wT

5.3.2 Finding Multiple Stable Clusterings

In this section, we develop MSC, an algorithm to find multiple stable clusterings. We first
present MSC, and then discuss the techniques to speed up the algorithm.

Finding Multiple Stable States

To find various stable clusterings, we need to search all stable states in the simplex. Al-
though random initialization can give a good start point, two random initialization values
may converge to the same local optimal state. To overcome this problem, we introduce
a constraint on the difference between the current weight vector and those previously ob-
tained.

LetW be the set of weight vectors obtained so far. We enhance the optimization problem
in Equation 5.3 to

arg max
w∈∆d

λk(L)− λk+1(L) + δ

2
1
|W |

∑
wp∈W

‖w−wp‖22 (5.7)

In other words, we want to maximize the sum of the distances between the current weight
vector and those weight vectors obtained previously so as to keep the current clustering far
away from all previous ones. Although we choose the simplest way to constrain the difference
between weight vectors, some alternative ways can be adopted and convex functions such
as Kullback-Leibler divergence [73] are more desired. Convex functions will not add too
much computational burden to our already non-convex optimization problem. Here, δ ≥
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0 is a parameter controlling the tradeoff between the maximization of eigengap and the
dissimilarity of the new stable state. Please note that, the difference between clusterings
can be implicitly constrained by the difference between weight vectors due to the stability.
Specifically, if two different stable weight vectors lead to two different clusterings, they
must be sufficiently different or independent. If two different stable weight vectors provide
similar partitions, they imply the same clustering meaningful for users, especially in multi-
view clustering [44, 38], which aims to combine results from different views to generate a
consensus clustering.

Algorithm 8 describes how to find a new stable state (weight vector), given the set W of
stable states found so far. It solves the optimization problem in Equation 5.7 using gradient
ascent. The derivation of the regularization term can be easily calculated as

∂( δ2
1
|W |

∑
wp∈W ‖w−wp‖22)
∂wm

= δ

|W |
∑

wp∈W
(wm − wp,m)

as stated in Step 8 in Algorithm 8. The regularization term incurs only very light compu-
tational cost.

Algorithm 8 Finding Alternative Stable State (FASS)
1: Input: data set X ∈ Rd×n, the number of clusters k, the number of

iterations T , step size η, the set of previously found stable states W ,
and the tradeoff parameter δ

2: Randomly initialize weight vector w0 in the simplex
3: for t = 1 to T do
4: Compute S by Equation 5.1
5: Calculate the normalized Laplacian L by Equation 5.2
6: Conduct eigen-decomposition for L
7: Compute G by Equation 5.5
8: wt = wt−1 + η(G + δ 1

|W |
∑

wp∈W (wt−1 −wp))
9: Project wt onto the simplex by P1+

10: end for
11: return wT

We can run Algorithm 7 to find the first stable state, and then run Algorithm 8 re-
peatedly with different initialization values to find more stable states. Unfortunately, so far
there is no theoretical guarantee on finding all significantly different clusterings in Equa-
tion 5.7. Heuristically, if Algorithm 8 does not lead to any new stable state in the last l
runs, then we can terminate the process, where l > 0 is a parameter.

After gathering a set of stable weight vectors, we can compute the similarity matrix S
for each stable weight vector w and apply spectral clustering to obtain the corresponding
stable clustering. Each stable clustering obtained as such has a corresponding sparse feature
subspace w for user understanding. The whole algorithm is summarized in Algorithm 9.
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Algorithm 9 Multiple Stable Clustering (MSC)
1: Input: data set X ∈ Rd×n, the number of iterations T , step size η, the tradeoff

parameter δ, and the stopping threshold τ
2: Initialize the stable state set W = ∅ and clustering solution set R = ∅
3: Determine the number of clusters k and obtain the 1st stable state w using Alg. 7
4: W = W ∪w
5: repeat
6: Obtain a new stable state w using Alg. 8
7: W = W ∪w
8: until minwi,wj∈W,i6=j ‖wi −wj‖22 ≤ τ
9: Delete the w ∈W that is last obtained

10: for each w ∈W do
11: Compute S by Equation 5.1
12: Calculate the normalized Laplacian L by Equation 5.2
13: Conduct partial eigen-decomposition for L
14: Get the top k eigenvectors
15: Obtain the clustering C using k-means on the eigenvectors
16: R = R ∪ {(w, C)}
17: end for
18: return R

A unique advantage of our method is that our method can provide feature subspaces
for clustering understanding, and it does not need users to specify the number of clusters
and the number of clusterings in the data set, which is usually difficult for users without
any guidance. The optimization on both the eigengap and the weight vector dissimilarity
leads to stable clusterings discovered in the iterations. The mining method terminates when
no new stable and substantially different clustering can be found. As demonstrated in the
experimental results in Section 5.4, our method can heuristically estimate the number of
meaningful clusterings in a data set, which is infeasible in the existing multi-clustering
methods.

Speedup

To find a stable state vector w, we conduct gradient ascent for T iterations. In each iteration,
we have to compute the full similarity matrix S based on the weight vector obtained in the
previous iteration. Thus, the time complexity is O(n2). We also have to conduct eigen-
decomposition for the Laplacian matrix L, whose computational cost is O(n3). To compute
the gradient, we need to compute ∂L

∂wm
for each element in w, whose computational cost

is O(n2). All other computation steps are cheaper comparing to these two. This heavy
computational cost limits the application of MSC to large-scale data sets that have many
instances.
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Algorithm 10 Speedy MSC (SMSC)
1: Input: data set X ∈ Rd×n, the number of iterations T , step size η, the tradeoff

parameter δ, the stopping threshold τ , and the number of representatives r
2: Initialize the stable state set W = ∅ and clustering solution set C = ∅
3: Perform k-means clustering method on X, and generate r clusters
4: Generate X(r) that are nearest to each cluster center
5: Determine the number of clusters k and obtain the 1st stable state w

using Algorithm 7 based on X(r)

6: W = W ∪w
7: repeat
8: Obtain a new stable state w using Algorithm 8 based on X(r)

9: W = W ∪w
10: until minwi,wj∈W,i6=j ‖wi −wj‖22 ≤ τ
11: Delete the w ∈W that is last obtained
12: for each w ∈W do
13: Conduct spectral clustering on S(r) computed by Equation 5.1 on X(r)

14: Obtain clustering c by assigning each point in X to the nearest
center within subspace w

15: C = C ∪ {(w, c)}
16: end for
17: return C

Although some techniques, such as Nyström method [128, 39] and column sampling [81],
can be adopted to approximate the similarity matrix and the corresponding top eigenvectors,
those methods cannot be easily extended to approximate the full eigen-decomposition on
L∗ and the gradient calculation of ∂L

∂wm
. Therefore, we adopt a strategy that can benefit all

above heavy steps.
We select an affordable size r of representative data points from the original data as

some existing fast spectral clustering methods [135, 25] do. Here we can randomly selecting
r data points or apply the k-means clustering method on the original large-scale data and
generate r clusters. Then, we choose the data points nearest to the cluster centers as the
representative data points X(r) ∈ Rd×r. The stable weight vectors are produced by MSC
method based on X(r). Thereafter, we extend the k-means-based approximate spectral
clustering [135] to conduct spectral clustering for each obtained subspace w. Specifically,
we first apply the standard spectral clustering on those representatives within the subspace
discovered by w. Then, the cluster memberships for the rest data points are determined by
assigning them to the nearest cluster centers within subspace w.

In summary, Algorithm 10 shows how we can speed up the proposed MSC algorithm.
Please note that, Steps 3 and 4 can be replaced by randomly select r data points as needed.
It can be easily observed that the computational complexity of generating r representatives
using k-means is O(rnt), where t is the number of iterations set by k-means and is usually a
constant as the maximum number of iterations allowed. The time complexity can be further
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Figure 5.3: Eigengap distribution over #Clusters on the synthetic data {0, 1}50×3.

reduced to O(nt) by applying the approximate k-means algorithm [74]. Meanwhile, the
time complexity of calculating the similarity matrix, conducting eigen-decomposition, and
computing the gradient can be reduced to O(r2), O(r3), and O(r2), respectively. Finally,
the step to obtain clustering solutions incur a computational cost of O(r3 +nr). Therefore,
the overall computational complexity of SMSC is O(nr+r3). This makes our MSC method
applicable on large-scale data.

5.4 Experimental Results

To test our proposed MSC method, we conduct an empirical study on both synthetic and
real data sets. We report the results in this section.

5.4.1 A Case Study Using Synthetic Data

In this subsection, we report a comprehensive empirical study on synthetic data. We
randomly generate 50 data points with 3 binary features, that is, the synthetic data
X ∈ {0, 1}50×3. By checking the eigengap distribution over different number of clusters
on the original data in Figure 5.3, we can determine that the number of clusters desired on
this data set is k = 4.
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Settings

We randomly initialize w0 in the simplex ∆3 during the calling of Algorithms 7 and 8. We set
the number of iterations T = 30. The step size starts with η = 1, and is decreased according
to 1 → 1/2 → 1/3 → · · · when necessary, guided by the norm of the gradient during the
process. MSC stops when no more sufficiently different stable state can be discovered. We
consider two weight vectors wi and wj are sufficiently different when the difference between
any corresponding element is larger than 0.05 (note that all weight vectors are within the
simplex), which means if ‖wi−wj‖22 ≤ 0.0025d, wi and wj are considered similar and thus
the stopping threshold is set as τ = 0.0025d. Since we have d = 3 on this synthetic data,
τ = 0.0075. If in l = 3 successive calling of Algorithm 8, no sufficiently different stable state
can be discovered, MSC stops.

The Tradeoff Effect Controlled by Parameter δ.

Next we study how the tradeoff parameter δ can affect the performance of MSC. Due to
the reason that the eigengap is between 0 and 1 exclusive (usually less than 0.1), and for
any i, j, 0 ≤ ‖wi−wj‖22 ≤ 2, we show the effect of δ by setting it to 0.0001, 0.001,0.01, 0.1,
and 1. We find that if we pay too much attention to the dissimilarities of weight vectors,
the stability of the clustering is sacrificed. It leads to unstable clusterings that are not
meaningful for users. For example, when δ = 1, we obtain four weight vectors, that is,
w1 = [0.4881, 0.5119, 0], w2 = [1, 0, 0], w3 = [0, 0, 1], and w4 = [0, 1, 0], where the first
weight vector is obtained only considering the eigengap. It is obvious that w2 to w4 cannot
provide stable clustering for k = 4, whose low stability can also be observed from Figure 5.4.
We can observe from Figure 5.4 that states 2 to 4 (i.e., w2, w3, and w4) converge to unstable
clusterings with too small eigengaps, while only state 1 (w1) that pays attention only on the
eigengap can converge to a stable clustering with relatively large eigengap. When δ = 0.1,
four out of ten states discovered are unstable as w2 to w4.

When we set δ = 0.01, 0.001, or 0.0001, MSC can discover the same set of four stable
states as shown in Table 5.1. Figure 5.5 shows how the eigengap of each stable state
converges as the number of iterations increases. It can be easily observed that gradient
ascent converges quickly within 10 iterations. By comparing each stable clustering obtained,
we find that clustering solutions obtained in the discovered subspaces exactly match the
ground truth as expected. Meanwhile, MSC discovers three stable states (i.e., w1, w3,
and w4) that each is composed by almost equivalent weighting on two features. It is as
expected since any combination of two features on this synthetic data can identify 4 clusters
as shown by the cluster patterns in Table 5.1. On the other hand, w2 equally weights three
features, which tells 4 clusters in another interesting independent way as shown in Table 5.1.
Therefore, to determine the tradeoff parameter δ, we propose to check the eigengap when
determining the number of clusters. Generally, if eigengap is around 10−m, δ can be set to
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Figure 5.4: The changes of eigengap in iterations on the synthetic data {0, 1}50×3 when
δ = 1.

Table 5.1: Results on the synthetic data {0, 1}50×3.

Stable States w Eigengap Cluster Patterns
w1 = [.4881, .5119, .0000] .0152 (00∗, 11∗, 10∗, 01∗)
w2 = [.3208, .3348, .3444] .0414 (11∗, ∗00, 01∗, ∗01)
w3 = [.5051, .0000, .4949] .0137 (0 ∗ 1, 0 ∗ 0, 1 ∗ 0, 1 ∗ 1)
w4 = [.0000, .4900, .5100] .0129 (∗01, ∗10, ∗00, ∗11)

10−(m+1). Apparently, setting the parameter δ is easier for users comparing to setting the
number of clusterings if no guidance is given.

Performance Comparison

To better interpret the relationships between the stable states and clustering solutions, and
compare the clustering performance, we further set the number of clusters k = 2. According
to the above study in Section 5.4.1, we set δ = 0.001.

Baselines. To the best of our knowledge, existing unsupervised subspace multi-clustering
methods are mainly subspace clustering methods. Although subspace clustering methods
can provide a subset of features for each clustering, a clustering in a feature subspace often
covers only a subset of data points which is totally different from our setting. At the
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Figure 5.5: The changes of eigengap in iterations on the synthetic data {0, 1}50×3 when
δ = 0.001.

same time, existing semi-supervised subspace multi-clustering methods are usually based
on feature transformation or dimensionality reduction, and thus their subspaces are not
intuitively understandable as feature selection in our method. We thus focus on comparing
the clusterings and the ground truth here.

Moreover, the existing semi-supervised multi-clustering methods, such as COALA [8],
often require a given clustering. Although one can use some traditional clustering method,
such as k-means clustering and spectral clustering method, to generate a clustering solu-
tion as an input, many methods may still provide only one alternative clustering. MSC
can discover a certain number of clusterings. It is unfair and difficult to compare methods
that generate different numbers of clusterings. Therefore, we compare with the most ef-
fective unsupervised multi-clustering method, meta-clustering [21], in which the number of
clusterings generated can be specified.

Specifically, we use k-means clustering with different initializations to generate 50 clus-
terings at first. Then, we use the Rand Index (RI) [60] to measure the similarities between
clusterings. Spectral clustering [123] is further applied on the similarity matrix to group
those 50 clusterings. Finally, we choose the clustering nearest to each group center as the
representative clustering to output. The number of groups for clusterings is an input item
that can be varied for the purpose of comparison.
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In addition, we compare the clusterings produced by MSC with the results from two well
known clustering methods: k-means [85] and normalized spectral clustering [123], denoted
by “k-means” and “Spectral” hereafter, respectively.

When applying above mentioned baselines, we project the data to subspace

w = [1/d, 1/d, · · · , 1/d]

because those methods cannot find the weights of features automatically.
We report the matching quality between two clusterings using five popularly used mea-

sures: Normalized Mutual Information (NMI), Rand Index (RI), Adjusted Rand Index
(AR), Mirkin’s Index Distance (MI), and Hubert’s Index (HI) [60]. The smaller MI, the
more similar the two clusterings under comparison. For the other four measures, the larger
the values, the more similar the two clusterings.

Results. Due to the binary features, each feature solely can group the data points into
2 clusters, where the feature itself is a subspace. Therefore, we have 3 clusterings in the
ground truth denoted by “Clustering 1”, “Clustering 2”, and “Clustering 3”, respectively.
MSC produces 3 stable clusterings as shown in Table 5.2.

The clustering produced by k-means matches Clustering 1 in the ground truth, man-
ifested by the first feature, though all attributes are equivalently weighted in k-means.
However, k-means can only produce a single partitioning, and cannot produce the other
two clusterings in the ground truth, which is also the case for the normalized spectral clus-
tering method. The spectral clustering method produces a clustering solution relatively
consistent with but not perfectly matching Clustering 2 in the ground truth, manifested by
the second feature.

As shown in Table 5.2, MSC finds the three clusterings perfectly in the ground truth.
Moreover, MSC also discovers the three stable states (weight vectors) exactly as expected
– each feature providing a perfect feature subspace for a 2-way clustering, as shown in the
last column of Table 5.2. These weight vectors obtained confirm the sparse property of the
simplex constraint. The eigengaps for those three stable states are much larger than the
eigengap in the clustering produced by the spectral clustering method. This result clearly
demonstrates that, by maximizing the eigengap, MSC can find stable clusterings.

Although our extension of meta-clustering also discovers three clusterings on this data
set, where each one exactly matches one of the ground truth, the meta-clustering method
first generates 50 clusterings, which is computationally expensive. Moreover, generally it is
hard to determine how many groups of clusterings should be generated in advance. More
importantly, those clusterings cannot provide the additional subspace information of each
clustering for user understanding.
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Figure 5.6: The changes of eigengap in iterations on the synthetic data {0, 1}50×3 when
k = 2.

Figure 5.6 shows how the eigengap of each clustering solution converges as the number
of iterations increases. Our gradient ascent method converges very quickly. This result also
demonstrates the effectiveness of our method.

Results on Large Data Sets

We show that our scalable version of MSC, SMSC, is capable of processing large-scale data.
We randomly generate 200,000 data points as X ∈ {0, 1}200,000×3. We set the number
of representatives r = 2000, that is, 1% of the original data. Instead of using k-means
clustering to generate r representatives, we randomly select r data points from X as the
representative data points.

This experiment is conducted on a desktop computer with an Intel Core i7-2600 3.40GHz
CPU and running Windows Operating System. SMSC stops after calling Algorithm 8 10
times. It discovers 4 stable states as shown in Table 5.3, where each clustering solution
exactly matches a specific cluster pattern. Although the cluster pattern for w2 is not the
same as above findings, it is also a different partition comparing to other three clusterings.

Table 5.4 shows the CPU time required for each essential step in SMSC. It indicates
that SMSC is capable on large-scale data.
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Table 5.3: Results on the synthetic data {0, 1}200,000×3

Stable States w Cluster Patterns
w1 = [.4869, .5131, .0000] (00∗, 10∗, 11∗, 01∗)
w2 = [.3356, .3293, .3251] (110, ∗00, 1 ∗ ∗ − 110, 00∗)
w3 = [.4993, .0000, .5007] (0 ∗ 0, 1 ∗ 1, 0 ∗ 1, 1 ∗ 0)
w4 = [.0000, .4861, .5139] (∗00, ∗11, ∗01, ∗10)

Table 5.4: CPU time on the synthetic data {0, 1}200,000×3 when r = 2, 000.

Steps CPU time (sec.)
Select representatives .0156
Discover stable states 2.7333× 103

Clustering 31.5590

5.4.2 A Case Study on an Image Data Set

Besides synthetic data, we conduct a case study on a set of images of three types of fruits,
namely apples, bananas, and grapes, in different colors, namely red, yellow, and green for
apples, yellow and green for bananas, and red and green for grapes. There are two different
clusterings in the ground truth: the clustering by fruit category, denoted by Clustering-by-
Category, and the clustering by color, denoted by Clustering-by-Color.

Data Preparation

We collect from Internet 15 images for each sub-group, that is, red apples, yellow apples,
green apples, yellow bananas, and so on. In total, there are 15×7 = 105 images in the data
set, 45 about apples, 30 about bananas, and another 30 about grapes. Orthogonally, there
are 30 images about red fruits, 30 about yellow fruits, and 45 about green fruits.

For each image, we first partition it into blocks of 4 pixels by 4 pixels each, and then
extract the color and texture features for each block. For the color features, we trans-
form the RGB images into the HSI color space, which is appropriate for object recognition
as suggested by the study in [113]. Thereafter, the color feature of each block is repre-
sented by the average value of each channel. Thus, each block has three color features,
corresponding to the channels of Hue, Saturation, and Intensity, respectively. For the tex-
ture features, we employ the one-level two-dimensional Daubechies-4 wavelet transforma-
tion [33] to decompose each block to four frequency bands. Each band has four parameters
{ck,l, ck,l+1, ck+1,l, ck+1,l+1}. We then calculate the features by

f = (1
4

1∑
i=0

1∑
j=0

c2
k+i,l+j)

1
2
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Figure 5.7: Exemplar images in the fruit data set.

with the bands about activities in horizontal, vertical and diagonal directions [126], which
also lead to three features for a block.

For an image with multiple six dimensional blocks, we apply k-means for segmentation
as recommended by the study in [126]. After segmentation, we then use raster scanning [113]
to get all connected components. A region whose number of blocks is below a threshold is
set to be background. We erase background regions. Then, each fruit region is represented
by the average color features and the normalized inertia as the shape features [126]

l(H, γ) =
∑
x ∈ H‖x− x̂‖γ

V (H)1+γ/k

where H is the fruit region, V (H) is the number of blocks in the region and x̂ is the center
of the region. We respectively set γ = 1, 2, 3 to calculate the shape features, and thus the
total number of features for each fruit region is 6. Figure 5.7 shows some exemplar images.
The first row is the original images collected from Internet sources, and the second row is
the recognized fruit regions bounded and represented by the average RGB colors.

Results

MSC determines k = 3 based on the original full feature space. The eigengap distribution
over the number of clusters is shown in Figure 5.8. According to the parameter studied in
the above section, we set τ = 0.0025d = 0.015 and δ = 0.0001.

Table 5.5 shows the results of k-means, spectral clustering, meta-clustering, and MSC on
this image data set. Interestingly, the clustering results produced by k-means and spectral
clustering are almost identical, which are more consistent with the ground truth clustering
by color than that by category.

In this data, users may expect the method to generate only two clusterings. This is a
good guidance for meta-clustering. Meta-clustering can generate more than two clusterings
to let the users to choose. However, user may feel overwhelming. Therefore, we set the
number of clustering groups to 2 and it generates two clusterings as the result. Although 50
clusterings are generated at first, the two output clusterings are quite similar. In addition
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Figure 5.8: Eigengap distribution over #Clusters on the fruit data set.

to the high computational cost, it is difficult to determine the proper number of groups for
those clusterings in general. Moreover, meta-clustering cannot provide additional subspace
information of each clustering for user understanding.

MSC produces 4 stable clusterings on this data set. It is out of the users’ expectation
(two different clusterings). Each clustering solution of MSC is manifested by a feature
subspace, so that users can understand each clustering by exploring its feature subspace
and choose what they want. For instance, Clustering 3 produced by MSC corresponds to a
feature subspace that only considers the color features. Consequently, Clustering 3 is very
consistent with Clustering-by-Color in the ground truth, and is also more consistent than the
clusterings generated by the baselines with respect to Clustering-by-Color. Simultaneously,
Clustering 2 focuses on both the color and the shape features and puts more weight on
the shape feature. Clustering 2 is substantially closer to Clustering-by-Category than those
produced by the baselines. A clustering using both the shape and color features is highly
reasonable. To distinguish between apples, bananas and grapes, only the shape features
may not be enough. For example, a bunch of bananas may happen to have a shape similar
to that of a bunch of grapes. Thus, we need to get help from the color attributes. For
example, it happens that this data set does not have red bananas.

In addition to those two clusterings, MSC also produces two other stable clusterings,
Clustering 1 and Clustering 4 in Table 5.5. Those two stable clusterings put weights on
totally different subspaces. The 4 stable clusterings produced by MSC have low redundancy
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Figure 5.9: The changes of eigengap in iterations on the fruit data set.

– all pairwise NMIs between them are smaller than 0.55. Moreover, MSC provides different
subspaces for the stable clusterings, which is helpful for user understanding. Interestingly,
two different subspaces lead to two somehow similar clusterings on the data, such as Clus-
tering 2 and Clustering 4 in Table 5.5. An important application of different weight vectors
leading to similar clusterings is multi-view clustering [44, 38] which aims to combine results
from different views to generate a consensus clustering.

Figure 5.9 shows how the eigengap of each clustering solution converges as the number
of iterations increases. Figures 5.10(a) and 5.10(b) show the images that are closest to
the cluster centers of Clustering 2 and Clustering 3, respectively. The cluster centers for
Clustering 2 are apple, banana and grape, respectively, which is consistent with Clustering-
by-Category in the ground truth. The cluster centers of Clustering 3 are yellow, green, and
red, respectively, which matches the ground truth of Clustering-by-Color. Please note that
colors green and red here are both represented by grapes. This further verifies that MSC
can find meaningful weight vectors (subspaces) corresponding to different stable clusterings
hidden in data.

5.4.3 More Results on the UCI Data Sets

We also test MSC on some real data sets from the UCI Machine Learning Data Reposi-
tory [83]. We report the results on 4 data sets here as examples. The information about
the data sets used in this subsection is summarized in Table 5.6.

77



(a) MSC: Clustering 2 (Category)

(b) MSC: Clustering 3 (Color)

Figure 5.10: The images closest to the cluster centers.

Table 5.6: Statistics of UCI data sets.

Data # Instances # Features # Clusters
balance 625 4 3
iris 150 4 3
letter 20,000 16 26
skin 245,057 3 2
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Figure 5.11: Eigengap distribution over #Clusters on the iris data set.

Note that each data set in this subsection provides only one ground-truth clustering
with a specific number of clusters. We find that if MSC is used to determine the number of
clusters based on the original data, it is not surprising to find that the value of k determined
by MSC is different from the number of clusters in the ground truth. Because more stable
clusterings may be hidden in the data besides the ground-truth clustering. For example,
the eigengap distribution in Figure 5.11 over the number of clusters on the original iris
data determines that k = 2. By studying its features, we find that the third feature (petal
length) has a large gap that can clearly separate the iris plants into two clusters as plotted
by the histograms in Figure 5.12.

To facilitate the comparison of clustering performance, we set k as the number of clusters
in the ground truth for each data except the largest data set skin. For meta-clustering, we
set the number of groups of clusterings in the second step as the number of clusterings
output by our method MSC, which is generally not available for real tasks.

Results on Data Sets Balance and Iris

The parameters are set accordingly as τ = 0.0025d = 0.01 and δ = 0.001.
Table 5.7 compares the clusterings produced by the methods tested against the ground

truth. MSC obtains two stable states on the balance data set. One of the stable states
weights more on the first and second features, while the other stable state puts more weights
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Table 5.8: Clustering redundancy.

Clusterings compared NMI RI AR MI HI

Data set balance
k-means vs. Spectral .1598 .6103 .1233 .3897 .2206
Meta-clustering 1 vs. Meta-clustering 2 .4706 .6438 .4697 .2362 .5276
MSC: Clustering 1 vs. MSCk: Clustering 2 .2714 .6438 .1988 .3562 .2875

Data set iris
k-means vs. Spectral .9398 .9825 .9610 .0175 .9649

on the second and third features. The sparse property of the simplex constraint can also
be observed from the values of these two obtained weight vectors.

The clustering generated by the first stable state is much more consistent with the
provided ground truth than the clusterings produced by the baselines. The clustering
produced by MSC has a larger eigengap than that produced by the spectral clustering
method.

To understand the redundancy between clusterings, Table 5.8 compares the clusterings
produced by k-means and Spectral, and the clusterings produced by meta-clustering. The
redundancy between the clusterings produced by k-means and Spectral on the balance data
set is low. This confirms that using different clustering methods may generate substantially
different alternative clusterings. The second clustering produced by MSC is substantially
different from the first one, which confirms the effectiveness of the stability measure. Al-
though meta-clustering generates two different clusterings, the two clusterings are very
similar.

On the iris data set, MSC finds a stable state that weights more on the third and the
fourth features. The clustering is much more consistent with the ground truth comparing to
the clusterings produced by the baselines, especially Spectral that has much smaller eigen-
gap. These two methods generate very similar clusterings on this data set and thus fail to
provide different alternative clusterings. Remarkably, MSC produces only one stable clus-
tering on this data set. The result from MSC heuristically indicates that the data set may
not contain multiple interesting clusterings. This information is very helpful in practice,
since existing multi-clustering methods cannot determine the number of alternative cluster-
ings in a data set exactly or heuristically. We let meta-clustering generate two clusterings.
However, the two clusterings are the same.

Figure 5.13 shows how the eigengap converges as the number of iterations increases. On
both data sets, the eigengaps converge in less than 20 iterations.
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Figure 5.13: The changes of eigengap in iterations on the balance and iris data sets.

Table 5.9: CPU time (sec.) when r = 2, 000.

Steps letter skin
Select representatives 57.2500 0.0400
Discover stable states 46.6200 186.5370
Clustering 2.3500 20.3500

Results on Large Data Sets Letter and Skin

Letter and skin are larger data sets. We test whether SMSC can handle these large data
sets.

For letter, the parameters are set accordingly to τ = 0.0025d = 0.0025 ∗ 16 = 0.04 and
δ = 0.001. To compare the clustering performance, we set k = 26 as the ground truth,
since there are 26 different letters. We run k-means clustering to select r = n ∗ 1% = 200
representatives at first. SMSC produces 8 stable states by calling Algorithm 8 14 times.
CPU time costs shown in Table 5.9 indicate that SMSC is capable on this large data set.
Meanwhile, we compare the first clustering generated by SMSC with the ground truth, and
the RI is 0.9272. We also apply 10 times of k-means clustering on the whole data set without
using any sampling strategy and choose the best result to report, whose RI is 0.9299. This
further demonstrates the scalability of our SMSC method.

Skin has 3 color features: B(lue), G(reen), and R(ed). These three values were collected
by randomly sampling from RGB values of each face image. It contains 245,057 samples,
out of which 50,859 is the skin samples and 194,198 is non-skin samples. The parameters
are set accordingly to τ = 0.0025d = 0.0025× 3 = 0.0075 and δ = 0.001.

We randomly select r = 2, 000 representatives at first. Then, SMSC determines the
number of clusters k = 2 following the eigengap distribution in Figure 5.14. SMSC pro-
duces 6 stable states by calling Algorithm 8 14 times. The most similar one compared
to the ground truth is with RI 0.8609, while the best k-means result without using any
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Figure 5.14: Eigengap distribution over #Clusters on 2, 000 representatives randomly se-
lected from the skin data set.

sampling strategy is 0.8673. For this clustering result, SMSC also provides a subspace of
[0.3235, 0.3006, 0.3759]. It indicates that, to distinguish between skin and non-skin, we need
to consider all color features. Besides, SMSC provides some other stable clusterings with
2 clusters in different subspaces, e.g., [0.3865, 0.0000, 0.6135]. The clustering performance
and the CPU time cost shown in Table 5.9 both verify the effectiveness of our speed-up
technique in SMSC.

5.5 Summary

In this chapter, to address the practical demands on multi-clustering, we tackle the chal-
lenges of how to model the quality of clusterings and how to find multiple stable clusterings
in a given data set.

We apply the idea of clustering stability based on Laplacian eigengap to multi-clustering.
Mathematically, we prove that the larger the eigengap, the more stable the clustering. Then,
We develop a novel subspace multi-clustering method MSC based on the notion of clustering
stability. We model the problem of finding a stable clustering as an optimization problem
maximizing the eigengap over the feature subspaces. The number of clusters k is deter-
mined by maximizing the eigengap on the original data. We find that when k is fixed, the
optimization problem is unfortunately non-convex, and thus we propose a heuristic random-
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ized method using iterative gradient ascent. In order to find multiple independent stable
clusterings with the same number of clusters, we introduce to the optimization problem a
constraint on the differences between weight vectors.

A unique advantage of our method comparing to the existing multi-clustering methods
is that our method can provide interpretable feature subspaces to help users understand
corresponding clusterings. Another advantage is that users do not need to specify the
number of clusters and the number of alternative clusterings in the data set, which is
usually difficult for users without given any guidance. Our method can heuristically estimate
the number of meaningful clusterings in a data set, which is generally infeasible in the
existing multi-clustering methods. An empirical study on synthetic and real data sets
clearly demonstrates the effectiveness of our method.
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Chapter 6

Conclusions

In this big data era, obtaining large amount of data has become more and more feasible,
while the main challenge rises from discovering new knowledge from raw data itself, that is,
discovering without any domain knowledge. Clustering methods can provide useful group
information of data to help users extract new knowledge. However, the challenge to effi-
ciently and effectively understand a clustering structure remains, due to the reason that
there is a big semantic gap between low-level clustering structures and high-level under-
standable meanings.

Subspace clustering methods have strengths on either finding feature subspaces in which
preferred (by end users) clustering structures reside or helping end users intuitively interpret
clustering structures discovered in specific feature subspaces. That is, subspace clustering
methods, more often than not, can provide understandable information organizations for
end users. Specifically, subspaces are used to bridge the semantic gap. Due to the high
demand of subspace clustering methods in real-world applications, such as content-based
image retrieval, customer relationship management, and DNA microarray analysis, efficient,
effective, and user-friendly methods have received more and more attentions from the re-
search community. In this thesis, we develop three subspace clustering methods to tackle
arising challenges from real-world applications.

In this chapter, we first summarize the thesis, and then discuss a few interesting future
research directions.

6.1 Summary of The Thesis

In this thesis, we study subspace clustering problem in different application scenarios (e.g.,
semi-supervised and unsupervised). We propose three efficient and effective subspace clus-
tering methods and make the following contributions.

• We develop a regularized distance metric learning method for a semi-supervised sce-
nario, in which end users may provide limited amount of side information (e.g.,
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instance-level constraints) to tell their preferences on the clustering structures. To
alleviate the common overfitting problem in DML, we, for the first time, introduce
dropout to DML and apply it to both the learned metric and the training data. We
illustrate that application of dropout to DML is essentially equivalent to matrix norm
based regularization.

– Applying dropout to metric: we show that dropout can be equivalent to Frobe-
nius norm and Lp in expectation by applying appropriate dropout probabilities
to the learned metric. Besides, we develop a structured regularizer to introduce
different dropout probabilities for diagonal elements and off-diagonal elements.

– Applying dropout to data: we observe that dropout behaves like a trace norm
based regularizer in DML when applied to training data. Therefore, it controls
the rank of the learned metric and leads to a skewed distribution of eigenvalues.
This is in contrast to the previous studies that viewed dropout as a L2 regularizer.

Compared with the standard regularization scheme in DML, dropout is advantageous
in simulating the structured regularizers. We verify, both empirically and theoretically,
that dropout is effective in regulating the learned metric to avoid the overfitting
problem.

• We, for the first time, develop a subspace hierarchical clustering method to help users
view, search, and organize a large amount of data. To construct a hierarchy with
semantics for efficient search, we present a simple strategy to extract all meaningful
semantics from objects as candidate dimensions, and then develop an efficient unsu-
pervised feature/dimension selection method to select a sufficient dimension subset to
uniquely identify each object, which naturally constructs a most balanced hierarchi-
cal clustering structure for objects. We study this problem in a specific application
scenario, that is, a large amount of raw images in CBIR.

– Feature extraction: we treat each image as a bag of instances, where each instance
is basically a sub-region of the image and has semantic meaning as “sky”, “trees”,
or “mountains”. We then extract all instances from the image collection and
consider them as a candidate dimension set with semantics.

– Feature selection: we formulate the problem of subspace hierarchical clustering as
an optimization problem which aims to discover a minimum subset of dimensions
such that each image can be uniquely identified in the lowest level of the hierarchy.
Due to the hardness of this problem, we propose a greedy algorithm that selects
a most discriminative dimension in each iteration.

We empirically verify that a relatively smaller subset of dimensions are selected to
build a most balanced (i.e., the number of images in the left child is almost the same
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as that in the right child) binary tree structure. That is, our subspace hierarchical
clustering structure supports more efficient search of relevant images in the hierarchy.

• We, for the first time, introduce the notion of clustering stability based on Laplacian
eigengap into multi-clustering. We mathematically prove that the larger the eigen-
gap, the more stable the clustering. Furthermore, we propose a novel multi-clustering
method, MSC, based on the clustering stability. An advantage of our method compar-
ing to the state-of-art multi-clustering methods is that our method can provide users
a feature subspace to understand each clustering solution. Another advantage is that
MSC does not require users to specify the number of clusterings and their number of
clusters, which is usually difficult for users without any guidance.

– The number of clusters: we use the number of clusters which can maximize the
eigengap in the original feature subspace, because if we can find all stable clus-
terings with a fixed number of clusters, other clusterings with different number
of clusters are basically combining or splitting clusters.

– The interpretable feature subspace: we use a feature-weighting vector to indicate
a feature subspace, and it can show used features and their importance.

– The number of clusterings: we search all different and stable weight vectors in
the simplex, which heuristically determines the number of clusterings.

We also discuss a practical way to make MSC applicable to large-scale data. We verify
MSC on both synthetic and real, small and big data sets.

6.2 Future Study: Extending the Thesis Directly

It is interesting to extend our subspace clustering methods in this thesis to other well related
application scenarios. Some of them are listed below.

• Semi-supervised subspace clustering: In Chapter 3, we aim to discover a feature sub-
space, in which a global distance metric is applicable to all data points. In some
applications, such as fine-grained visual categorization, we need to distinguish subor-
dinate categories within each entry-level category. For example, an animal collection
may contain images of “cat”, “dog”, “bird” and so on. However, the task is to dis-
tinguish their subordinate categories. That is, we need to recognize different species
of different entry-level categories at the same time, such as “siamese” and “persian”
for cat, “poodle” and “beagle” for dog, and “northern cardinal” and “indigo bunting”
for bird. Different entry-level categories usually have their own ways to define their
species. Therefore, it is difficult for a single feature subspace or a global metric to
capture both the properties of the entry-level categories and their subordinate cate-
gories. A straightforward way is to conduct a two-stage metric learning, where the first
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stage distinguishes entry-level categories and the second stage distinguishes species.
However, we need to learn multiple metrics, each for an entry-level category in the
second stage, which is computationally expensive. Therefore, how to effectively and
efficiently use DML to find one or multiple feature subspaces for this kind of problems
is an challenging future direction.

• Subspace hierarchical clustering: In Chapter 4, we propose to choose a minimum sub-
set of semantic dimensions to construct a hierarchical clustering structure for efficient
search in a large amount of raw images. Here, the image collection is static. How-
ever, in real-world applications, image collections are usually dynamic. For example,
the number of photos in our phones is increasing every day, an X-ray image collec-
tion can be enlarged every day from routine examinations, and Instagram users are
posting 216,000 new photos every minute 1. The easiest way to maintain the hierar-
chical clustering structure is inserting each new image into the already constructed
hierarchy using selected dimensions. However, the number of images in the leaves
will increase and the hierarchy is likely to degenerate into a huge collection of images
again. Moreover, discriminative dimensions changes when adding images. It seems
that it is wiser to repeat the whole process periodically. However, it is too expensive
to handle high-volume and high-velocity data set in such a way. Therefore, there is a
great demand on online subspace clustering methods for this kind of applications.

• Subspace multi-clustering: It is often hard for users to determine the number of clus-
terings without substantial domain knowledge. In Chapter 5, MSC can heuristically
determine the number of clusterings hidden in a given data set. Specifically, MSC
keeps searching different subspaces with stable clusterings in the simplex until no new
subspace can be found. However, there is no theoretical guarantee that the number
of clusterings discovered by MSC matches the ground truth. This is still an open
challenge. Moreover, to tackle large-scale data, we present a potential strategy. We
select a reasonable number of representatives from the whole data set. Then, multi-
ple clusterings are generated on these representatives. Thereafter, the rest data are
assigned to their nearest clusters in the corresponding subspace. However, the clus-
tering quality is to some extent compromised. Therefore, more efficient and effective
subspace multi-clustering approaches are necessary in the future.

6.3 Future Research Directions

Besides extending our work in this thesis, it is highly interesting to provide understandable
information organizations for other general applications using subspace clustering methods.
Several potential ones are as follows.

1http://time.com/73581/data-generated-online-every-minute-domo/
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• Time-series clustering: Clustering has been widely used for time series data with ap-
plications in a board range of scenarios, e.g., finding regions with similar temperature
or cities with similar population growth. Many previous researches focused on the
similarity measures between two finite-length time series, either on raw data or ex-
tracted features. However, time series are often high-dimensional or even infinite in
the time space. Therefore, each time series becomes more and more unique as time
goes. In fact, clusters of time-series are often hidden within specific time subspaces.
Moreover, different time may promote different groups. Values observed at other time
spots can be harmful for discovering these clusters. Many biclustering methods have
been proposed to handle similar problems on gene expression data [119]. However, it
is still a challenge to discover this kind of clusters when considering time as an infinite
space.

• Subspace multi-clustering with multiple sources/views: Data can be collected from
different sources, e.g., audio, image and text, each providing a representation of the
data. Therefore, multiple clusterings can be obtained by considering each representa-
tion separately. Many previous researches focus on the techniques to establish a single
clustering by combining information obtained from different sources/views. However,
different sources/views may represent totally different perspectives of the data, and
thus provide independent structures over the data. Moreover, it is still possible that
a single source/view may be too weak to provide a sufficiently stable clustering. How
to obtain multiple independent partitions from multiple views/sources will be an in-
teresting and meaningful future direction.
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