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All About (Multi-)Clustering

• Explorative
• Iterative
• Subjective
• “Every model is wrong, but some are more useful 

than the others”
• “If you torture the data long enough, it will confess” 

– Ronald H. Coase
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Why Multiple Clusterings?

• Phenotype finding
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Why Multiple Clusterings?

• Categorization

Grouping 3: nutrition components
…
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Why Multiple Clusterings?

• Customer relation management

Given: profiles of customers

Task: product recommendation

Possible way: Group customers 
with similar behavior

Grouping 1: profession
Grouping 2: hobbies
Grouping 3: gender
…
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Traditional Clustering

• Goal
– Group similar objects in one group 
– Separate dissimilar objects in different groups

• Examples: k-means, PAM, DBScan, …
• BUT, only a single clustering solution is given

– A clustering consists of multiple clusters
• Challenges

– How to find multiple independent clusterings? 
– How to measure the independency among different 

clusterings?

Finding Multiple Stable Clusterings 6



IDEAL
Intelligent Data Engineering and Analytics Lab 

Related work

• Alternative clustering (e.g., COALA [Bae & Bailey, ICDM’06])
– Given a clustering
– Dissimilarity + Quality
– Highly sensitive to the input clustering

• Meta-clustering[Caruana et al., ICDM’06]

– Generate many clusterings
– Dissimilarity
– High computational cost

• Subspace multi-clustering 
– Different subspaces reflect different perspectives
– Exponential number of subspaces & overwhelming results
– E.g., CLIQUE[Agrawal et al., SIGMOD’98], grid-based
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Challenges Remained

• Too many clusterings – overwhelming
• Stable clusterings – not sensitive to initialization 

and noise
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Problem Formulation

• Input
– Data
– The number of clusters (in each clustering) 

• Output
– A clustering                                   is an exclusive 

partitioning of the input data
– Multiple clusterings

• Feature subspaces within the simplex 
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X 2 Rd⇥n

c = {X1, X2, . . . , Xk}
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IDEAL
Intelligent Data Engineering and Analytics Lab 

Similarity between Two Objects

• Under a feature weight vector

– Where 
• Similarity matrix 
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Clustering Stability

• Normalized Laplacian matrix
– Where D is a diagonal matrix formed by  

• In spectral clustering, if the top k eigenvectors are 
the same for L and Lperb, the clusterings based on 
the same eigenvectors are the same

Finding Multiple Stable Clusterings 11

L = D�1/2SD�1/2

Di =
nX

j=1

Si,j , i = 1, 2, . . . , n

Given a Laplacian matrix L, if the eigengap �k(L)��k+1(L) is large enough,
the top k eigenvectors of Lperb = L+ ✏ are the same as those of L, where ✏ is a
symmetric perturbation matrix of small spectral norm k✏k2.
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Finding one stable clustering

1. Randomly initialize w
2. Iterative gradient ascent

Eigengap

Weight Vector

global optimal
local optimal
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Multiple stable clusterings

Previously obtained solutions

Sequentially finding stable and different weight vectors
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Synthetic Data Sets

• , k = 2
• Ground truth: each feature itself
• Baselines: k-means and spectral clustering
• Convergence
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X 2 {0, 1}50⇥3

Experiments



IDEAL
Intelligent Data Engineering and Analytics Lab 

Results on synthetic data
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Image data

Each image is represented by 6 features
- 3 average color features and 3 shape features
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Results on image data

Cluster representatives that are
nearest to the cluster centers for
clustering 2 and clustering 3
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Conclusions

• Contributions
– Introduce a new measure for multi-clustering

• Clustering stability
– Propose a new multi-clustering method MSC

• Empirically finding all hidden stable clusterings

• Future directions
– 𝑘 is not fixed
– Different stable clusterings have different number of 

clusters

Finding Multiple Stable Clusterings 18


