
Teaching Data Structures Using Object Oriented
Toolkits

Josh Tenenberg

Computing and Software Systems

Institute of Technology

University of Washington, Tacoma

1900 Commerce St

Tacoma WA 98402-3100

(253) 692-4521

(253) 692-4424 (fax)
jtenenbg@u.washington.edu

Abstract

The emergence of object-oriented toolkit libraries of classic

data structures and algorithms such as the Standard Template

Library and Java's Collection classes has provided a set of

general and efficient software components to practicing

software developers. This paper advocates the incorporation

of such toolkits in the first Data Structures course at the

university level. This represents a paradigm shift from

learning the details of each data structure to an increased

emphasis on the use, integration, and extension of these

existing toolkits. In addition, this paper argues that studying

the toolkits themselves enables students to learn the higher-

order design and engineering skills, particular using object

oriented techniques, that are embedded within the toolkits.

Shifting the data structures curricular
paradigm

Why is it that I ask the students in my advanced classes not

to use their own data structure implementations in their

programming assignments, but rather to use those in standard

libraries such as Standard Template Library (STL) and Java's

Collection classes? How many times in the past have I seen

a junior or senior struggling to debug their “thought this was

working” linked list, or alter a not-very-generic hash table

leaving them with little time for the important parts of the

assignment, such as the genetic algorithm, the parser, the

graph search algorithm? Why do I urge my graduating

students to reuse, reuse, reuse, especially the code from

generic, standardized libraries?

New programming tools and advances both enable and

stimulate the demand for new programming practices and

pedagogies. As high-level programming languages became

more prevalent in the 1960s and 70s, both the demand for

high-level language programmers and the support of high-

level programming increased. The emergence of these new

programming languages effectively brought into existence a

new set of virtual machines, with language translators

allowing programmers to directly program these new virtual

machines with less regard to the specifics of the

implementing hardware and more regard to algorithm design

than in the previous generation.

It is time for the next curriculum paradigm shift in the data

structures curriculum. The existence of robust, standardized,

generic toolkits of data structure and algorithm libraries such

as STL gives rise to a new set of virtual machines. Our

students will be asked to use such toolkits when they leave

the university since software development is increasingly

driven by the need to design larger and more complex

software systems through the integration of existing software

components [7]. The data structures course provides an

excellent opportunity to begin building these higher-level

design skills.

A word on this paper's perspective. As an advocacy paper, I

neither present anecdotal evidence from my own general

adoption of these principles, i.e. this is not an experience

paper, nor do I present results from original empirical studies

in support of my hypothesis. Rather, I present a broader

philosophical rationale in support of a change in objectives,

and some ideas as to how this change might impact the way

in which the course is taught. Given the presence of an

increasing number of textbooks that include discussion of

standardized data structures toolkits (e.g. [1, 2, 3, 4, 5, 22]),

the present paper can be viewed as a rationale for adopting

such texts and a perspective on their use, something that is,

surprisingly, lacking in the texts themselves.

Standardized Toolkits

Standard libraries have existed for decades to provide

functionality that may be required in a large variety of

programming applications. They often encode specific and

subtle design and performance tradeoffs that have evolved

within particular programming communities over many

years. They thus serve as repositories of accumulated

cultural expertise. As described in [18], programmers

become acculturated into programmer communities by

learning the knowledge and language that provides

communicative economy within that community.

In using the library code, the developer both reduces their

debugging time due to the decrease in developer-produced

code, and off-loads a portion of the maintenance task to the

organizations supporting the library. Further, portability is

increased, since virtually all compiler vendors support the

standard libraries. Additionally, standard library use can lead

to more efficient implementations, since the standardization

process enables highly specialized experts to accumulate and

embed their expertise within the library itself. For example,

both STL and the Collection classes implement associative

Maps using Red-Black trees, a complex data structure to

program; by using these library classes, the programmer

without the skill themselves to code such routines can

nonetheless gain their benefits. Standard library reuse thus

leverages someone else's intellectual effort and lets the

programmer employing reuse be smarter than they are.

Unlike most subroutine libraries, such as C's standard

libraries, where specific functionality is encapsulated in

stand-alone procedures, toolkits provide sets of classes that

both collaborate with one another to leverage their

computational power, and are extensible by the programmer

so as to be useful in the widest possible settings. As Gamma

et al [6, p.26] state “A toolkit is a set of related and reusable

classes designed to provide useful, general-purpose

functionality. An example of a toolkit is a set of collection

classes for lists, associative tables, stacks, and the like. ...

They let you as an implementer avoid recoding common

functionality. Toolkits emphasize code reuse.” Toolkits are

also sometimes called frameworks (e.g. in [9]); for

consistency the toolkits terminology will be used throughout.

The generic and collaborative aspects of toolkits require the

use of the most powerful features of object-oriented

languages, such as template classes, function objects, method

and operator overloading, and polymorphism. In addition,

they embed a number of common Design Patterns [6], such

as Template Method and Iterator. With the inclusion of STL

in the C++ standard and the addition of the Collection classes

to Sun's supported Java API's, programmers using these

libraries obtain the benefits of both standardization and the

toolkits themselves.

Objectives of the data structures
course

The first undergraduate data structures course in the United

States has come to be known as “CS2”. This designation

was originally given to the second in an eight course

undergraduate core curriculum as specified in the

Association for Computing Machinery's (ACM) Curriculum

'78 recommendations [14]. The objectives and content of

CS2 were updated by an ACM Curriculum Task Force in

1984 [10, p.815]resulting in the following objectives (quoted

verbatim):

 To continue developing a disciplined approach to

the design, coding, and testing of programs written

in a block-structured high-level language.

 To teach the use of data abstraction using as

examples data structures other than those normally

provided as basic types in current programming

languages; for example, linked lists, stacks, queues,

and trees.

 To provide an understanding of the different

implementations of these data structures.

 To introduce searching and sorting algorithms and

their analysis.

 To provide a foundation for further studies in

computer science.

Despite the ACM's curricular revision in 1991 [19]in which

CS2 was deconstructed into a set of knowledge units that

would flexibly be reconstructed to meet the needs of

particular institutions, CS2 continued to persist throughout

the 1990's much as it was codified in 1984. For example, the

Preface to the 1999 data structures text by Nyhoff [13, p.v]

begins with the sentence: “This text is designed for the

course CS2 as described in the curriculum recommendations

of the ACM” and continues by enumerating each of the

bulleted objectives from [10] quoted above along with an

explanation of how each is realized in the text. Similarly,

looking just at the chapter headings of another recent data

structures text [8] one can discern the pervasive and

continuing influence of CS2 as outlined in [10], updated with

object orientation : Java Programming; Object-Oriented

Design; Analysis Tools; Stacks, Queues, and Dequeus;

Vectors, Lists, and Sequences; Trees; Priority Queues;

Dictionaries; Search Trees; Sorting, Sets, and Selection; Text

Processing; Graphs. Similar tables of contents with minor

variations can also be found in [16, 11, 13, 17] among others.

In the ACM's most recent curriculum recommendations [15],

CS2 re-emerges (though renumbered) as one of the courses

in a suggested introductory sequence using a programming-

first model: “CS112I then extends this base by presenting

much of the material from the traditional CS2 course

[Koffman85], but with an explicit focus on programming in

the object-oriented paradigm.” Note that the reference to

Koffman85 is to the 1984 Curriculum recommendations

whose objectives are quoted above.

The approach that I advocate departs from the way these CS2

courses are realized in practice (as exemplified in the texts

just cited) by de-emphasizing the implementation details of

many of the classic data abstractions, the topic that

dominates both CS2 textbooks and class time. I suggest

instead that students learn how to use the fundamental data

structures, and that they learn how to implement data

structures and algorithms with similar complexity as those of

the standard data structures – especially recursive data

structures, i.e., those with pointers or references to one or

more instances of the same class – but not necessarily the

details of each of these classic structures and algorithms.

Further, students should learn to use the data structures that

are already implemented in the toolkit libraries, and how to

extend these toolkits with their own data structures and

algorithms. As Weiss states in [21, p.xx] “My basic premise

is that software development tools in all languages come

with large libraries, and many data structures are part of

these libraries. I envision an eventual shift in emphasis of

data structures courses from implementation to use.”

Although there is virtue in the study of elegant and efficient

algorithms in general, the goal should not be that students

retain the details of specific algorithms and data structures so

that they can implement them in a commercial setting. It is

more important that students can implement data abstractions

of similar complexity, that they can integrate their own

abstractions or the abstractions of others into existing toolkit

libraries, that they understand the tradeoffs that went into

toolkit library design, and that they cultivate the judgment

and esthetics to create and use such designs themselves. As

Gamma et al write [6, p.26] “Toolkit design is arguably

harder than application design, because toolkits have to work

in many applications to be useful. Moreover, the toolkit

writer isn't in a position to know what those applications will

be or their special needs. That makes it all the more

important to avoid assumptions and dependencies that can

limit the toolkit's flexibility and consequently its applicability

and effectiveness.”

There are a number of subtle tradeoffs that a toolkit designer

must make to balance efficiency, generality, ease of use, and

maintainability. Some of these specific tradeoffs for the data

structures toolkits include the following. What container

classes should be provided, and what generic algorithms?

How are the generic algorithms to be applied to the different

containers? What operations should be provided by the

different containers? What relationship do the different

containers have to one another? Novice students do not have

the base of expertise to make informed judgments about

these tradeoffs. That is, existing data structure libraries

encode expertise far beyond what students possess, and

hence the architectures for these libraries can be far more

complex, subtle, and useful than any library of data

structures that novice students would be able to write. Just as

students can learn a considerable amount about operating

systems in general by studying the code of existing operating

systems that are beyond their ability to write from first

principles (and similarly with compilers), they can likewise

gain considerable knowledge about data structures,

architecture and engineering tradeoffs in the study of existing

standard data structure libraries.

Implementing the toolkit approach

How does the use of toolkits in a data structures course differ

from a course in which data structures are built from first

principles? First, I advocate that the toolkit designs be

studied in order to see that modern programming involves

sophisticated design techniques that extend above the level of

the individual method and object. This study helps students

to lift their programming a level above the individual class to

the relationship among larger groups of objects that

collaborate in complex and powerful ways. Students may

thus more fully enter the discipline, not only by engaging in

the habits of code reuse and larger scale design, but in

learning the specific idioms of a the programmer community

to which they are becoming acculturated. Some of this

design discussion is included in Bergin’s CS2 text ([1],

especially Chapter 4 and the beginning of Chapter 7).

Second, students should study the existing source code

implementations of the toolkit classes, and alter and extend

these, perhaps simplified as Bergin has done [1]. Alternative

implementations of some of the containers and generic

algorithms can likewise be assigned, and the results

compared with the toolkit implementations. For example,

the recent CS2 texts by Collins [3], Ford and Topp [5], and

Bergin [1] all provide alternative partial implementations of

the STL list container.

Third, the students can be assigned the writing of one or

more of the classic data structures that the toolkit designers

chose not to implement, but doing so in a way that integrates

them into the existing toolkit. For example, both Bergin [1]

and Collins [3] extend STL with a hash table, not yet part of

the STL standard, and Bergin includes an explicit discussion

on how to extend STL with new containers (p.292). This

integration will also provide them with the discipline of

writing code for reuse, e.g. always include an iterator for

every collection, accept parameters that are as general as

possible, etc.

And finally, programs should also be written that leverage

the computational power of the virtual machines that these

toolkit libraries bring into existence, such as application

problems like file compression or Tic-Tac-Toe with alpha-

beta pruning as provided by Weiss in his C++ data structures

text [20, Part III]. All too often, students reuse code with

cut-and-paste strategies, making domain-specific alterations

to standard data structures. By using existing generic

toolkits, students can be taught how to both separate the

domain-specific aspects of the code into the new data

abstractions that they design, and how these new abstractions

can collaborate with the existing – and unaltered – toolkits.

Since novice student designs often have leaky interfaces,

with I/O details and other assumptions about the particular

domain of application creeping into what should be generic

algorithms and data structures, the use of the toolkit thus

encourages better design by enforcing a cleaner separation of

responsibilities.

Conclusion

When our students enter the commercial workplace, they will

be asked to write software within a distributed, highly

dynamic, multi-person and increasingly multi-national

context. This will require much more use of existing

software components, such as STL and Enterprise

JavaBeans, and the integration of a variety of components

together into a coherent program. Budd [2, p.viii] states that

“Many authors have predicted that in the future most

programs will be constructed by piecing together off-the-

shelf components, and the percentage of programs that are

developed entirely from scratch will diminish considerably.

Therefore, although it may be important for students to know

how to construct a linked list, it will be much more important

to know how to use the list container in the standard library.”

Alexander Stepanov [12, p.xxvii], one of the creators of STL,

is even more emphatic about the importance of standardized,

component-based software development. “STL presupposes

a very different way of teaching computer science. What 99

percent of programmers need to know is not how to build

components but how to use them. People who write their

own code, instead of using standard components, should be

dealt with like people who propose designing nonstandard,

proprietary CPUs.”

Students of the next generation will be programming a

different virtual machine -- one at a much higher level of

abstraction – than that of most of us who are teaching these

students. Many of our students will make this leap of

abstraction without us (or in spite of us). We can, however,

aid them in this enterprise, and the increasing availability of

textbooks that incorporate these toolkits (e.g. [1, 2, 3, 4, 5,

22]) makes this task considerably easier. The use of

standardized component object toolkits in the first university-

level Data Structures course brings the component-based

paradigm shift that is already occurring in programming

practice into the university classroom.

References

[1] Joseph Bergin. Data Structures and the Standard

Template Library. Springer, 2003.

[2] T. Budd. Data Structures in C++ Using the Standard

Template Library. Addison Wesley, 1998.

[3] William Collins. Data Structures and the Java

Collections Framework. McGraw Hill, 2002.

[4] William Collins. Data Structures and the Standard

Template Library. McGraw Hill, 2003.

[5] W. Ford and W. Topp. Data Structures with C++ using

STL. Prentice Hall, 2nd edition, 2001.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

patterns: Elements of reusable object-oriented software.

Addison-Wesley, 1994.

[7] W. Gibbs. Software's chronic crisis. Scientific American,

pages 86--95, 1994.

[8] M. Goodrich and R. Tamassia. Data Structures and

Algorithms in Java. Wiley, 2nd edition, 2000.

[9] C. Horstmann. Core Java 2, volume II: Advanced

Features. Prentice Hall, 2000.

[10] E. Koffman, D. Stemple, and C. Wardle. Recommended

curriculum for CS2, 1984. Communications of the ACM,

28(8):815--818, 1985.

[11] Michael Main and Walter Savitch. Data structures and

other objects using C++. Addison Wesley, 2nd edition,

2001.

[12] D. Musser, G. Derge, and A. Saini. STL Tutorial and

Reference Guide. Addison Wesley, 2nd edition, 2001.

[13] L. Nyhoff. C++: An Introduction to Data Structures.

Prentice Hall, 1999.

[14] ACM Curriculum Committee on Computer Science.

Curriculum '78: Recommendations for the undergraduate

program in computer science. Communications of the ACM,

22(3):147--166, 1978.

[15] ACM Joint Task Force on Computing Curricula.

Computing Curricula 2001: Computer Science. IEEE, 2002.

[16] Bruno Preiss. Data structures and algorithms with

object-oriented design patterns in C++. Wiley, 1998.

[17] Clifford Shaffer. Practical Introduction to Data

Structures and Algorithm Analysis (C++ edition). Prentice

Hall, 2nd edition, 2001.

[18] J. Tenenberg. On the meaning of computer programs.

In M. Beynon, C. Nehaniv, and K Dautenham, editors,

Cognitive Technology: Instruments of Mind. The Fourth

International Conference, pages 165--174. Springer, 2001.

[19] Allen Tucker. Computing curricula 1991.

Communications of the ACM, 34(6):68--84, 1991.

[20] M. Weiss. Algorithms, Data Structures, and Problem

Solving with C++. Addison Wesley, 1996.

[21] M. Weiss. Data Structures and Problem Solving using

C++. Addison Wesley, 2nd edition, 2000.

[22] M. Weiss. Data Structures and Problem Solving using

Java. Addison Wesley, 2 edition, 2002.

