
Author's personal copy

Int. J. Human-Computer Studies 66 (2008) 484–494

An institutional analysis of software teams

Josh Tenenberg�

School of Informatics, Indiana University, 901 East 10th Street, Bloomington, IN 47408, USA

Available online 29 August 2007

Abstract

Modern software is constructed by teams of software developers. The central question that this paper addresses is what policies should

be enacted for structuring software teams to enhance cooperative as opposed to self-serving behavior? The contribution of this paper is in

viewing software teams as being subject to a set of well-understood collective action problems: there are individual incentives to receive

the joint rewards for a team-developed software project without contributing a fair share to its development. In this paper, an

institutional analysis perspective is used in presenting a set of theoretical principles and an analytical framework recently developed in

game theory, political economy, experimental economics, and natural resource governance for the understanding and resolution of these

collective action problems. The principles and analysis framework are applied to an empirical case study of software teamwork within an

academic setting. This case study shows, first, how to apply the analytic framework on an actual collective action situation. Second, it

demonstrates how the theoretical understandings can be used as a basis to account for outcomes within this setting. And third, it

provides an example of a particular institutional arrangement that elicits high levels of cooperation and low levels of free riding within a

real-world setting. Understanding the importance of institutions for shaping individual and social behavior within software development

teams makes these institutions more amenable to intentional human design.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Free riding; Cooperation; Software management; Teamwork; Social dilemma; Collective action problem

1. The social nature of software development

Modern software is constructed by teams of software

developers and used within social settings. Cain et al.

(1996) capture the inherently social nature of software

development:

Software development is a predominantly social activity.

It is important to view software development groups,

departments, and corporations as social bodies. . . . The

essentially human nature of customer interactions,

programmer creativity, and programming team dy-

namics demand that we deal with the social side of

software production enterprises (Cain et al., 1996).

The central question that this paper addresses is what

policies should be enacted for structuring software teams to

enhance cooperative as opposed to self-serving behavior?

The contribution of this paper is in viewing software teams

as being subject to a set of well-understood collective action

problems: ‘‘[a]ll efforts to organize collective action,

whether by an external ruler, an entrepreneur, or a set of

principals who wish to gain collective benefits, must

address a common set of problems. These have to do with

coping with free riding, solving commitment problems,

arranging for the supply of new institutions, and monitor-

ing individual compliance with sets of rules’’ (Ostrom,

1990, p. 27). Software teams are as subject to these

collective action problems as other settings in which the

institutional approach has been used, such as governance

of the nation-state (Helmke and Levitsky, 2006) or shared

natural resources (Ostrom, 1990). Individual software

developers make choices about the extent to which they

contribute to the joint production of digital artifacts and

the extent to which they free ride on the effort of others so

as to reap the benefits without paying the costs. In this

ARTICLE IN PRESS

www.elsevier.com/locate/ijhcs

1071-5819/$ - see front matter r 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijhcs.2007.08.002

�Corresponding author at: Department of Computing and Software

Systems, Institute of Technology, University of Washington, Tacoma,

1900 Commerce Street, Tacoma, WA 98402, USA. Tel.: +1 253 6925860;

fax: +1253 6925862.

E-mail address: jtenenbg@u.washington.edu

URL: http://faculty.washington.edu/jtenenbg/

Author's personal copy

paper, an institutional analysis perspective is used in

presenting a set of theoretical results and an analytical

framework recently developed in game theory, political

economy, experimental economics, and natural resource

governance for the understanding and resolution of these

collective action problems. The novelty is in bringing these

insights to the enterprise of software development in both

commercial and academic settings.

Key to this social science research is its focus on the

institutions that people develop to organize their collective

action. North (1990) defines institutions as ‘‘the rules of the

game in a society or, more formally, . . . the humanly

devised constraints that shape human interaction.’’ These

institutions indicate what people are permitted, required,

and prohibited from doing, under what circumstances, and

under what costs if they fail to do so. ‘‘Institutions’’ and

‘‘rules’’ will be used synonymously throughout the balance

of this paper. Understanding the importance of institutions

for shaping individual and social behavior within software

development teams makes these institutions more amen-

able to intentional human design.

The paper will be structured as follows. I will begin by

discussing existing accounts of forms of organization for

the management of commercial software teams. These are

centered around relationships of control between managers

and developers to increase the likelihood that developer

effort will be directed toward achieving organizational

goals. These accounts, however, do not provide a

sufficiently fine-grained analytic understanding of how to

resolve these problems of cooperation. I then draw on

research from experimental economics, computer simula-

tion in social science, and natural resource governance to

highlight a set of key theoretical principles associated with

institutions that shape human behavior in collective action

settings. These highlight the importance of face-to-face

communication, repeated interactions, monitoring of rule

compliance, and sanctions for non-compliance. Following

this will be a discussion of an analytic framework for

understanding institutions in existing collective action

settings. This framework is useful for developing a fine-

grained understanding of particular institutional forms in

existing collective action settings.

I then provide an empirical case study of software

teamwork within an academic setting. This case study

shows, first, how to apply the analytic framework on an

actual collective action situation. Second, it demonstrates

how the theoretical understandings can be used as a basis

to account for outcomes within this setting. And third, it

provides an example of a particular institutional arrange-

ment that elicits high levels of cooperation and low levels of

free riding within a real-world setting. Finally, I reiterate

the argument for the value of the institutional analytic

approach, and summarize implications for both research

and practice. For research, these include the use of the

analytic tools and theoretical understandings in the design

of subsequent studies to examine the relationship between

different institutions and their effectiveness in eliciting

cooperation. For practice, these include establishing

conditions that enable self-governance among developers

to emerge, and seeking to reduce the costs of monitoring

and sanctioning.

2. Background literature

2.1. Forms of control in commercial software teams

Miller (1990) states the central collective action problem

associated with teamwork:

In [a simple team setting] . . . individuals would be better

off working hard than shirking. . . . If the other works

hard, each person is better off shirking. If the other one

shirks, each is better off shirking. Each person has a

dominant strategy to shirk, despite the fact that [they]

are worse off when each chooses his or her dominant

strategy.

Within teams, including software development teams, the

pursuit of individual self-interest can lead to social

inefficiency, what we have been calling a collective action

problem (Ostrom, 1990) (or, what is sometimes termed a

social dilemma (Miller, 1990)). There are always incentives

to obtain the benefits associated with team-based produc-

tion without carrying out a fair share of the work, what we

have been calling shirking, or free riding. How then do

individuals organize so as to get the benefits of collective

action when they face social dilemmas? How do they

constrain their own and one another’s selfish impulses for

greater individual and collective benefit?

Much of the management science literature on software

team organization is centered on the issue of control of

software development labor. According to Kirsch et al.

(2002), ‘‘[c]ontrol is defined as the set of mechanisms

designed to motivate individuals to work in such a way that

desired objectives are achieved’’. Borrowing from Ouchi

(1979), Henderson and Lee (1992) take control to require

monitoring and evaluation of both software developer

behavior and outcomes. They consider that there are two

main sources of control within a software development

organization: managerial and team-member control. They

argue that both forms of control are necessary for effective

software teamwork, but that they are differentially suited

to different kinds of monitoring and evaluation.

[M]anagerial control appears more effective when it is

behavior oriented while team member control is more

effective when it is outcome oriented. This suggests that

effective teams have a manager with the skills and

capabilities to influence how work is accomplished while

the pressure to meet deadlines and commitments arises

from one’s peers (Henderson and Lee, 1992).

Kirsch (1997) develops an alternative control taxonomy

for software teams. She takes behavioral and outcome

control as basic control regimes that are primarily the

responsibility of hierarchical management structures.

ARTICLE IN PRESS

J. Tenenberg / Int. J. Human-Computer Studies 66 (2008) 484–494 485

Author's personal copy

These regimes are established through formal rules and

procedures, such as explicit development methodologies,

work assignments, performance evaluations, and evalua-

tion of project milestones. Kirsch also states that there are

informal forms of control: self-control and clan control.

Self-control is where ‘‘an individual sets his own goals for a

particular task, then proceeds to self-monitor, self-reward,

and self-sanction.’’

Kirsch borrows the notion of clan control from Ouchi

(1979), who was concerned with the difficulties associated

with purely managerial control: ‘‘a control mode that

depends heavily on monitoring, evaluating, and correcting

in an explicit manner is likely to offend people’s sense of

autonomy and of self-control . . . In this state, people will

require even more close supervision, having been alienated

from the organization as a result of its control mechan-

ism.’’ Clan control involves careful screening and selection

of organization members, and a lengthy training and

socialization process that allows for the internalization of

shared values and norms. Control is achieved because a

clan member ‘‘wants to identify with and emulate a

respected person or group’’ (Ouchi, 1979). Kirsch recom-

mends that management use a ‘‘portfolio’’ of control

modes for the structuring of software teams, and, like

Henderson and Lee (1992), indicates that different forms of

control are appropriate for different aspects of the

development task. Formal modes of control are ‘‘essential

for coordinating task activities by monitoring specific

behaviors and outcomes’’ while informal controls are ‘‘a

means of fostering relationships to ensure cooperation.’’

Although the concepts of behavioral, outcome, and clan

control are important insights, they nonetheless are

inadequate for understanding and designing software team

structures. This stems first from their inability to ground

the different modes of control in individual choice. That is,

might not similar mechanisms of individual choice operate

regardless of the form of external control, whether from

past socialization, one’s peers, or one’s supervisors in a

hierarchy? And second, any theory of team ‘‘management’’

should apply to diverse settings, including student software

teams and open source development efforts. Given the

different goals in these other settings, however, a discourse

centered around ‘‘control’’ makes less sense. Rather,

conditions that elicit cooperation and incentives for

individuals to choose to do so appear to be much more

useful directions to pursue, to which we now turn.

2.2. Institutions, choice, and cooperation

2.2.1. Definitional preliminaries concerning institutions

Ostrom (2005) defines institutions in a manner similar to

that of North (1990), as ‘‘prescriptions that humans use to

organize all forms of repetitive and structured interactions

including those within families, neighborhoods, markets,

firms, sports leagues, churches, private associations, and

governments at all scales.’’ One of the virtues of Ostrom’s

definition, is that it both highlights the diversity of human

settings in which rules are used (i.e. any repeated,

structured social setting), as well as the fact that rules are

often taken for granted by the participants themselves and

not explicitly stated or written. We thus can distinguish

between those rules that have explicit external representa-

tion—rules-in-form (what North (1990) calls formal institu-

tions)—and the rules that participants take as actually

operating within a particular setting, the rules-in-use. These

rules-in-use can ‘‘reinforce, subvert, and sometimes even

supersede formal rules, procedures, and organizations’’

(Helmke and Levitsky, 2006).

Implicit in this perspective is that institutions always

exist, whether by default, by trial and error, or by explicit

design. What this means for software teams, is that rules-

in-form exist to structure virtually all of the human

interactions: those rules between management (or, in an

academic setting, the instructors) and development teams

that determine development methods, standards, and

evaluations of projects and personnel, and rules (whether

explicitly encoded or implicitly understood) among the

software developers themselves that mediate such things

as coding standards, code ownership, code testing, and

conflict resolution.

Rules prescribe what people may, must, or must not do

under particular conditions with particular costs for non-

compliance. Ostrom (2005) defines rules, whether tacitly

understood or explicitly formalized, as having the follow-

ing five elements:

Attribute: the set of individuals to whom the rule applies;

Deontic: one of ‘‘may’’, ‘‘must’’, or ‘‘must not’’;

Aim: constraints on actions or outcomes;

Conditions: when and where the rule applies;

Or-Else: the consequences for when the rule is not

followed.

An example of a rule from the case study below

concerning student teams is: Group reports are required

the first class session of each week. The attribute is

contextually understood as all students in the course, the

deontic is taken as ‘‘must’’, the aim is that group reports are

to be written and handed in, the condition is that this is to

occur at the first class session of each week, and the Or-Else

is taken implicitly as ‘‘otherwise your team will receive a

score of zero for the week.’’ Costs associated with making

rules, with monitoring compliance, and with sanctioning

non-compliance are termed transaction costs (Levi, 1988;

Miller, 1990). Ostrom distinguishes rules from norms,

in that norms have all of the same elements except for

the Or-Else, i.e. norms do not include a sanction for non-

compliance.

2.2.2. Rational choice and cooperation

Institutions shape human behavior in that they ‘‘struc-

ture incentives in human exchange’’ (North, 1990). North

states that these incentives reduce the uncertainties

associated with not knowing the actions that others will

take in the absence of these rules. Under certain rule

configurations, individuals face social dilemmas that pit

ARTICLE IN PRESS

J. Tenenberg / Int. J. Human-Computer Studies 66 (2008) 484–494486

Author's personal copy

individual self-interest against collective interest. If people

were purely self-interested utility maximizers, they would

always pursue their own interests at the expense of the

collective in any social dilemma. This is what Hardin

(1968) referred to as the ‘‘tragedy of the commons’’: each

animal herder using a grazing commons agrees to limit

their use of the commons so as to induce others to likewise

limit their use, but then to privately overgraze their own

animals so as to reap additional individual benefit.

Therein is the tragedy. Each man is locked into a system

that compels him to increase his herd without limit—in a

world that is limited. Ruin is the destination toward

which all men rush, each pursuing his own best interest

in a society that believes in the freedom of the commons.

Freedom in a commons brings ruin to all (Hardin,

1968).

Despite Hardin’s pessimistic prediction, there is consider-

able evidence that people do not always follow a selfish

strategy in social dilemmas, and that people engage in

behavior to alter the rules under which they operate to try

to reduce incentives for free riding. Not all commons are

overgrazed; not everyone free rides on the efforts of others;

ruin is only one of several possible futures. One set of

evidence stems from experimental economics, where

individuals interact within a controlled, experimental

setting using game-theoretic rules that create collective

action problems, such as the Prisoner’s Dilemma (Rapo-

port and Chammah, 1965). This work is supplemented by

computer simulations of alternative strategies under

various game-theoretic rules. The second set of evidence

stems from field studies in a variety of communities across

the globe where community members jointly manage

shared resources, such as pasturelands, forests, fisheries,

and groundwater. Citations to some of these literatures are

provided in the balance of this section centered around

some of the key insights that this research has revealed.

2.2.2.1. Face-to-face communication. In lab experiments

where players are engaged in repeated social dilemma

games under conditions of anonymity and independent

action, the ‘‘tragedy of the commons’’ (i.e. players use

equilibrium allocation strategies that are collectively

inefficient) has been repeatedly observed (Ostrom et al.,

1994; Cardenas et al., 2000; Casar and Plott, 2003).

However, simply changing one condition—allowing

players to engage in face-to-face conversation—has a

dramatic effect on outcomes, with players approaching

optimal allocations (Ostrom et al., 1994). Ostrom et al.

(1994) conjecture that there are several reasons for this.

First, ‘‘[s]imply promising to cut back [i.e. be more

cooperative] on their investments in the common-pool

resource led most subjects to change their investment

pattern.’’ Second, participants freely expressed their anger

when others were found to have broken promises made in

previous rounds of play (e.g. ‘‘some scumbucket is

investing more than we agreed upon’’ (Ostrom et al.,

1994)). And third, promise breakers reverted to coopera-

tive behavior after receiving verbal sanctions from the

other players, even under conditions where behavior of the

previous round of play is only reported in the aggregate

(i.e. promise breakers cannot be individually identified).

What is not clear from this research is whether face-to-

face communication might be replaced by electronically

mediated communication to achieve the same effects.

Perhaps with sufficient information bandwidth, real-time

interaction, and effective interface design, similar such

effects could be obtained from geographically dispersed but

electronically mediated groups.

2.2.2.2. Repeatability and reciprocity. In perhaps the

most well-known computer simulations in social science,

Axelrod (1984) ran a computer tournament of alternative

strategies to a repeated Prisoner’s Dilemma game, where

strategies were solicited from game-theorists, mathemati-

cians, and social scientists, encoded as computer programs,

and paired against all others in a series of computer

simulations. One strategy, known as TIT-FOR-TAT

(cooperate on the first play and on each subsequent play

take the action that the other player did on the previous

play), performed best in the tournament. Even after

publishing these results, resoliciting new strategies, and

rerunning the tournament, TIT-FOR-TAT was still the

most successful strategy. Axelrod’s account for these

results highlight the importance of reciprocity and trust-

building.

What makes it possible for cooperation to emerge is the

fact that the players might meet again. This possibility

means that the choice made today not only determines

the outcome of this move, but can also influence the

later choices of the players. The future can therefore cast

a shadow back upon the present and thereby affect the

current strategic situation (Axelrod, 1984).

Repeatability, however, is a two-edged sword, since it

can both allow cooperation to emerge, as well as give rise

to increased non-cooperation in the presence of persistent

free riders. Marwell and Ames (1979) report on a set of

one-shot experiments where people contribute substantial

amounts toward public goods, i.e. goods that are usable by

all parties simultaneously (non-subtractible) and where it is

difficult to exclude any parties from their use (non-

excludable). ‘‘[I]n replication after replication, regardless

of changes in a score of situational variables or subject

characteristics . . . [p]eople contribute substantial portions

of their resources—usually an average of between 40 to 60

percent—to the provision of a public good’’. Yet when

these experiments are altered with only the addition of

repeated interactions among the same players ‘‘after five

trials, the contributions to the public good were only 16

percent of optimum’’ (Thaler, 1991, p. 11). The lab

experiments indicate that not everyone free rides, but that

there are few who will persist in contributing to public

goods in the absence of similar such cooperative efforts by

ARTICLE IN PRESS

J. Tenenberg / Int. J. Human-Computer Studies 66 (2008) 484–494 487

Author's personal copy

other users of the good; no one wants to be a sucker.

Cooperation in this collective action settings is contingent

on the cooperation of others. Repetition can thus lead to

either virtuous circles or vicious circles by bringing the

horizon of the future into focus when making current

choices.

2.2.2.3. Monitoring. Strong evidence for the importance

of monitoring comes from Elinor Ostrom and her

colleagues at the Workshop on Political Theory and Policy

Analysis at Indiana University (Ostrom, 1990). In this

research, they examined case histories of several hundred

communities who had jointly managed common resources

over many years, such as pasturelands, forests, fisheries,

and groundwater, all situations in which cooperation is

contingent and free riding is an ever-present danger. Their

analysis yielded a set of ‘‘design principles’’ that character-

ized those groups who had successfully managed their

resources. Key among these was not only monitoring, but

mutual monitoring by the community members of one

another. For example, in research that they cite by Maass

and Anderson (1986), farmers in the semi-arid Marcia and

Orihuela region of Spain evolved institutions where the

method of water allocation from diverted river water is that

each farmer receives a particular time-slice of water from

the canal. This simplifies and reduces the cost of monitor-

ing, in that the farmer allocated to receive the next time-

slice has an incentive to monitor the recipient of the current

time-slice of water. In addition, guards are also hired by the

farmers to monitor compliance, thus providing two levels

of monitoring. Monitoring is thus low-cost because it is

distributed across the resource users, and it occurs at

multiple levels.

Making the results of monitoring public also serves

further to induce rule compliance. This is what Wade

(1988) calls transparency of institutional arrangements. By

an analysis of historical documents among a large group of

cooperative water distributors in two groundwater systems

in the Los Angeles area, Blomquist (1994) points out how

institutional transparency can achieve high rates of rule

compliance over long periods of time. ‘‘Although the

institutional arrangements have been in effect in Raymond

Basin for nearly 50 years and in Orange County for 40

years, sanctions have never been applied for non-compli-

ance. When instances of non-compliance with rules

requiring meter installations, meter repairs, payment of

contributions, or restrictions on water withdrawals have

occurred, reporting of the violation has sufficed to bring

about compliance in the next time period without the

application of sanctions [emphasis added].’’

The fact that group members themselves do most of the

monitoring has less the character of surveillance by a

superior with its attendant loss of autonomy and aliena-

tion, and seems closely related to direct protection of ones

own interests among peers. This suggests that ‘‘clan

control’’ might require fewer shared norms and values,

but require more mutual oversight so that individuals have

higher degrees of information about one another’s

compliance.

2.2.2.4. Sanctions. The fact that sanctions were not used

in the above groundwater case does not mean that the

threat of sanctions is unimportant. Sefton et al. (in press)

report on an experiment in which players are allowed both

to monitor one another’s actions in previous rounds of a

game that involves contributing to a public good and to

levy sanctions to specific individuals based on their level of

contribution to the public good in previous rounds of play.

The authors conclude that ‘‘we find that sanctioning

sustains public goods provision at a level above that

observed in the absence of sanctioning opportunities’’, even

though there was a cost to both the giver and receiver of

sanctions, and even though levels of sanction were reduced

over time.

Ostrom (1990) as well documents the importance of mutual

and multi-level sanctioning among the successful resource

managing communities studied. In these communities, rules

for sanctioning start with light sanctions for the first

infraction and increase in severity with additional infractions.

Levi (1988) also underscores the importance of sanctions

in a common situation of contingent cooperation: that of

taxpayers within a polity. Because of the high transaction

costs associated with surveillance by the state, systems of

taxation are unsustainable unless taxpayers themselves are

primarily responsible for complying with tax laws. She calls

taxpayer behavior in these situations quasi-voluntary

compliance: ‘‘It is voluntary because taxpayers choose to

pay. It is quasi-voluntary because the non-compliant are

subject to coercion—if they are caught’’ (Levi, 1988).

Sanctions play an important role in ensuring that everyone

is playing by the same rules, thus creating conditions that

give rise to quasi-voluntary compliance. As Levi states,

‘‘[t]he importance of deterrence [i.e. sanctions] is that it

persuades taxpayers that others are being compelled to pay

their share.’’

In summary, the social science research cited provides a

number of insights into determinants of cooperative

behavior, all of which can be applied to the structuring

of team-based software development. These stress the

importance of face-to-face interaction among the partici-

pants, repeated interactions, mutual, multi-level, and

public monitoring, and sanctioning mechanisms to create

disincentives for free riding. Framing these insights within

an institutional analytic framework amounts to under-

standing and designing rules-in-use that create these

conditions under which cooperation is known to emerge.

In the next section, we look at one such framework for

institutional analysis, and apply this framework to an

empirical case study in the section following.

3. The Institutional Analysis and Development framework

The Institutional Analysis and Development (IAD)

framework developed by Ostrom and her colleagues

ARTICLE IN PRESS

J. Tenenberg / Int. J. Human-Computer Studies 66 (2008) 484–494488

Author's personal copy

provides an analytical tool for unpacking the institutional

structure of collective action settings (Ostrom, 2005). This

section provides an overview of the IAD framework,

summarizing the description in Ostrom (2005).

Fig. 1 provides a graphical overview of the main

elements of the IAD framework (in boxes), the causal

relationships between the elements (solid arrows) and the

feedback relation between the elements (dotted arrows). An

action situation exists ‘‘[w]henever two or more individuals

are faced with a set of potential actions that jointly produce

outcomes’’ (Ostrom, 2005). The action situation and the

individuals (or participants) constitute the action arena. In

the case study to follow, the action arena is student

software teams within a software engineering course, with

the participants being the students and the instructor.

There are interactions between the participants and their

external world, which generate outcomes that can be

evaluated using a variety of criteria (e.g. self-reported

learning, quality of software produced, etc.). The exogen-

ous variables consist of the biophysical conditions, com-

munity attributes, and rules-in-use, and are taken as fixed

for purposes of analysis of a particular action arena.

Rules can be thought of as the main ‘‘degrees of freedom’’

that groups can use to structure their interactions, since

biophysical conditions and cultural characteristics tend to be

much more resistant to deliberate and predictable control.

For purposes of analysis, the IAD framework distinguishes

between three nested levels of rules:

operational rules determine the day-to-day operations

associated with resource extraction and contributions to

public goods;

collective choice rules concern how the operational rules

will be monitored, the sanctions for non-compliance, the

rules used for changing operational rules, and the set of

people eligible to change the rules at the operational level;

and

constitutional rules determine how the collective choice

rules will be monitored, the sanctions for non-compliance,

the rules for changing collective choice rules, and the set of

people eligible to change the rules at the collective choice

level.

The internal structure of action situations consists of the

following seven elements (italicized): participants who hold

positions who can select with some amount of control using

a given amount of information over a set of actions that

yield outcomes with particular costs and benefits. Rules can

be grouped semantically according to the element of the

action situation that the rule primarily impacts:

Position rules define the different positions (or roles)

within the action situation and the associated actions.

Boundary rules indicate which participants can take on

which positions, and how such positions are entered and

exited.

Choice rules specify the conditions under which actions

that participants in particular positions must, must not, or

may take.

Aggregation rules determine who has control, in what

combinations (e.g. by a designated individual, by majority

vote, by consensus) over a decision.

Information rules govern what information needs to be

provided to what participants by whom.

Payoff rules specify the rewards and punishments

associated with actions or outcomes.

Scope rules: constrain outcome variables that may, must,

or must not be affected by actions within the arena.

4. Applying the IAD: a case study of student software teams

4.1. Case rationale

In this section, I present an empirical case study to

illustrate the application of the IAD in an actual setting, to

connect theoretical understandings to actual software

development behavior, and to provide an example of a

particular rule configuration that leads to high levels of

cooperative behavior.

The case study is used as the main method for achieving

these goals, in contrast to, for example, the experimental or

quasi-experimental study (Campbell and Stanley, 1963).

Experimental designs rely upon high levels of control over

individual variables. It is less useful when there are multiple

independent variables (such as degree and type of

monitoring, sanctioning, and interaction among partici-

pants) that interact in complex ways and where the final

outcome depends upon the conjunctive (or configurational

(Blomquist, 1994)) interaction among the variables, as is

ARTICLE IN PRESS

Fig. 1. IAD framework. Source: Ostrom (2005).

J. Tenenberg / Int. J. Human-Computer Studies 66 (2008) 484–494 489

Author's personal copy

the case with field studies on social dilemmas outside the

behavioral lab. As Yin (2003) points out, the case study is

particularly appropriate in settings where there is a strong

connection to theory, where the background contextual

factors and the phenomena of interest are tightly coupled,

and where multiple sources of data can be triangulated in

the analysis, as is the case here.

It is important to underscore that the point of this case

study is not to argue that the particular rule set used here is

optimal or that it is appropriate to apply outside of its

specific setting of use. Rather, it is to show that the

theoretical principles discussed—concerning face-to-face

interaction, repeatability, monitoring, and sanctioning—

can be instantiated within actual settings so as to elicit high

levels of cooperation. These theoretical principles are not

specific to particularities of student software teams, but are

based on the structural characteristics of social dilemmas,

universals of human behavior explored in the behavioral

lab, and characteristics of successful social behavior

uncovered by analyzing collective action in a variety of

field settings.

This case study is within the academic (as opposed to

commercial or open source) setting for four reasons. The

first is the fact that this is the setting for software

development that I know best, both as an educator and

as an educational researcher. Second, and as a consequence

of the first reason, the courses that I teach have provided

the opportunity to capture opportunistic data about the

rules under which students work and the outcomes

associated with their actions. Third, academic settings

have characteristics that make application of the literature

from management science on clan and hierarchical controls

problematic, since student teams cannot rely upon shared

norms and values nor on a strict hierarchical control

regime. And finally, there is a dearth of literature within

education broadly and computing education specifically on

how to structure teamwork so that it serves the learning

goals.

4.2. Case specifics

This case study examines both a graduate-level and

undergraduate-level Introduction to Software Engineering

course at the University of Washington, Tacoma. Data

were collected from all students in the undergraduate

course during Autumn 2004 and Winter 2004, and in the

graduate course in Spring 2004 and Spring 2005, and

all documents handed out to students by the instructor

were analyzed using the IAD. Of these, 17 of 30

undergraduate students and 21 of 34 graduate students

consented to the use of their data for analysis. I discuss

the rules used for structuring student teamwork, present

evidence for the effectiveness of these rules in eliciting

cooperation and discouraging free riding, and conclude

with an account that relates theoretical principles for

eliciting cooperation to the rule structures used and the

associated outcomes.

In teams of 3 or 4, during the course of the academic

term, students develop a piece of software of several

thousand lines of code, comprising approximately 15–20

computational modules. The project has three distinct

phases, each lasting approximately three weeks: the

requirements, the design, and the code and test phases. In

this regard, the project follows a standard waterfall model

of software development (Boehm, 1997). Associated with

the end of each phase is a set of documents, called a

milestone, which is handed in by the entire team.

The great majority of undergraduates in this course took

their first two years of college courses at a regional

community college. Their average age is in the mid-20s

and all but a small handful of students work at least

part-time. All students commute to the university, as

there are currently no residential facilities, and commute

anywhere from 10min to 1 h, though commute times

are frequently longer due to traffic delays. The majority

of undergraduates work at least part-time. The under-

graduate version of this course is between 75% and 85%

male, while graduate courses average 65% male. The

majority of students are Caucasian, though there are

significant numbers of first- and second-generation im-

migrants as well. The graduate version of the course is for

students who do not have an undergraduate software-

related degree (such as Computer Science). Approximately

2/3 of the graduate students are male, and all work at least

part-time.

4.3. Rules

A key feature of the rules under which teams worked is

that all operational rules concerning the day-to-day

allocations of work are determined completely by the

students, while collective choice rules that concern payoffs

(i.e. criteria for grading/marking), information sharing,

and face-to-face meetings are instructor-specified within

the syllabus.

4.3.1. Operational rules

Based on an analysis of weekly reports from each

student team (described below), the operational rules that

students developed primarily concern the determination of

a task decomposition for the following week, allocating

these tasks among the team members, monitoring previous

individual task completion and monitoring collective

progress toward the next milestone. The student-developed

operational rules change daily to reflect the students’

changing understanding of the project, individual needs for

varying workloads (e.g. when children are ill or when there

are extra demands at their workplaces), differences in

expertise, and different understandings of the need for

coordination and integration of work undertaken indivi-

dually. Some groups carry out virtually all of their work

together in the computer labs, while other groups carry out

virtually all of their work at their individual homes,

meeting together for the minimal weekly group meeting

ARTICLE IN PRESS

J. Tenenberg / Int. J. Human-Computer Studies 66 (2008) 484–494490

Author's personal copy

to ‘‘check in’’ their previous work and determine new work

allocations.

4.3.2. Collective-choice rules

In contrast to the quickly changing operational rules, the

collective-choice rules specified in the syllabus (and other

instructor-provided documents) are constant across the

academic term. These rules primarily specify key positions,

information sharing, and payoffs.

Position rules: There are two explicitly stated team roles:

the scribe who records the minutes for that week’s meeting

(described below) and the facilitator who is responsible for

chairing the weekly meeting.

Boundary rules: At the first team meeting, participants

determine a rotation so that every person takes on each

role in sequence.

Choice rules: All students are required to meet weekly,

face to face with their group for a minimum of 1.5 h, to

read and respond to email daily, and to not share the

team’s intellectual work products with other teams, except

during designated times in the classroom (e.g. during cross-

team design reviews).

Aggregation rules: No aggregation rules were specified.

Information rules: After each regular weekly meeting,

each team writes a report that includes minutes of the

meeting (including duration, location, and who attended),

a task matrix that states for each team member what tasks

they have committed to complete by the next week and

what tasks they completed in the previous week, and an

equity estimator that estimates the percentage of team

effort each team member is undertaking during the

upcoming week and undertook during the previous week.

The task matrix and equity estimator are collectively

constructed as a part of each weekly meeting. Scribes

disseminate typed weekly reports to teammates within 24 h

of each meeting.

One additional information rule is that at the end of each

milestone, students are required to provide to the

instructor an evaluation of their own effort and that of

their teammates in carrying out the milestone along a

number of different dimensions (e.g. ‘‘Ability to meet

deadlines’’, ‘‘Attendance at meetings’’). These evaluations

are kept confidential from the other team members.

Payoff rules: Ten percentage of a student’s final grade

stems from their group’s weekly reports, and 70% of their

grade stems from their team project. Team projects are

assigned a score, and each individual is awarded that score

times an individual multiplier, a real number between 0 and

2, with a default value of 1. This multiplier reflects

contribution toward team effort as documented in weekly

reports and self- and mutual-evaluations.

Scope rules: No scope rules were specified.

4.4. Evidence for cooperation and free riding

The data used to evaluate outcomes consist of weekly

reports, project milestone documents, individual student

reports at the end of the milestones (including self- and

mutual-evaluations), a pre-survey and post-survey that

students filled out concerning attitudes toward teamwork

in academic settings, and grades assigned to students.

These data were examined for evidence of free riding and

for changes to student attitude concerning teamwork.

4.4.1. Student mutual evaluations

Students answered the following question in their self-

and mutual-evaluations following each milestone: ‘‘Sup-

pose you have 100 units of something desirable to

distribute across your team in proportion to their overall

contribution and effort on this project. How would you

distribute it?’’ Questions such as this are not uncommon in

evaluating individual effort in student team projects

(Fincher et al., 2001). I define a ‘‘fair share’’ as being an

equal distribution across all students in the team. Out of

378 total responses to this question for all students in all

courses, 82% of these distributions were within 10% of the

fair share and 93% were within 20% of the fair share.

Students also rated each team member (including them-

selves) on a 5-point scale from Best (5) to Worst (1) along

eight different dimensions, including attendance at meet-

ings, quality of work contributed, communication, meeting

deadlines, and contribution to the team effort. In total,

students made 2889 individual judgments about themselves

and teammates. In 82% of these judgments, the highest

rating was awarded, and in 97% of these judgments one of

the two highest ratings was awarded. Thus, almost always,

students provided judgments under conditions of con-

fidentiality that indicated that they and their groupmates

were carrying out a fair share of the teamwork.

4.4.2. Meeting work commitments

Based on an analysis of all task matrices produced by

students during these terms, each team member averaged

2.4 tasks committed to per week. Aggregating over all

weekly reports of all teams, students completed 94% of the

tasks that they committed to on time. Of the remaining 6%

of the tasks, over 90% of these were committed within two

days of their due date.

4.4.3. Changes in attitude toward teamwork

Students completed a pre-course survey and a post-

course survey concerning their attitudes and beliefs

concerning groupwork. This survey indicated that students

had previously taken an average of 1.9 courses within the

department that involved significant teamwork. Students

answered the following questions on the pre-course survey

related to commitment and free riding on the scale from

strongly agree (5) to strongly disagree (1): ‘‘In my groups

from previous terms, my groupmates lived up to their

group commitments’’ (what I call the commitment question)

and ‘‘My groups from previous terms had one or more

students who did not do their fair share of the work’’ (what

I call the free rider question). The post-course survey asked

identical questions with the words ‘‘this term’’ replacing

ARTICLE IN PRESS

J. Tenenberg / Int. J. Human-Computer Studies 66 (2008) 484–494 491

Author's personal copy

‘‘previous terms.’’ There were statistically and substan-

tively significant differences in the mean responses on both

of these questions between the pre- and post-surveys. For

the commitment question, the pre-survey mean was 3.11

while the post-survey mean was 4.28, po0:001 using a one-

tailed, paired sample t-test. In short, students believed that

teammates from the current term met group commitments

significantly more often than teammates in the past. For

the free rider question, the pre-survey mean was 3.44 and

the post-survey mean was 1.64, po0:001 using a one-tailed,

paired sample t-test. That is, free riding was dramatically

reduced in the current academic term as compared to

teamwork in the past.

4.4.4. Individual sanctions

Individual sanctions for not contributing a fair share to

the software project were represented as multipliers of less

than 1.0 for project milestones. Of the 114 individual

multipliers assigned (three milestones each for 38 students),

sanctions were applied on only three occasions.

4.5. Discussion

There is considerable evidence that the rule structures

under which students operated led to high levels of

commitment and low levels of free riding. It is worthwhile

to review those aspects of the rule structures that,

according to the collective action literature, give rise to

these high levels of commitment toward carrying a fair

share of the work.

Face-to-face communication. Regular face-to-face meet-

ings were required and provided an opportunity for

updating one another on project progress, for integrating

software modules, and for realigning work commitments.

Students reported that they frequently supplemented these

meetings with a variety of communication media, including

instant messaging, cell phones, email, and synchronous

online chat.

Repeatability and reciprocity. Requiring weekly reports

provided repeatability, as did decomposing the final

deliverable into three milestones due three weeks apart.

As indicated above, sustained cooperation relies upon the

development of trust and norms of reciprocity. A team-

based project with only a single deliverable at the end of the

course may not provide the necessary scaffolding for trust

to develop and reciprocity to be practiced. When effort by

any team member is contingent on the effort of others, the

risk of being played the sucker in a one-shot situation may

outweigh the perceived gains from cooperating. Having

weekly ‘‘deliverables’’ by each team member provides a

succession of ‘‘games’’ that team members play in order to

determine whether to continue their effort toward working

toward common goals. In addition, weekly meetings and

the accompanying report provided a mechanism for

individuals to make public promises to undertake work,

which the literature above indicates increases the likelihood

that these commitments will be carried out.

Monitoring. Weekly meetings provided a natural setting

in which low-cost mutual monitoring could occur. Mon-

itoring was strengthened at multiple levels at low cost by

coupling the meetings with the weekly report and the

requirement to complete a task matrix that documents

individual compliance with past commitments. Requiring

scribes to post commitments to all teammates within 24 h

enabled individual self-monitoring, made subsequent mon-

itoring by teammates low cost, and provided the informa-

tion necessary for instructor monitoring without exacting

the high costs and low accuracy that external, managerial

surveillance of student compliance would require. The task

matrices also provide the institutional transparency that

significantly reduce the need for sanctioning. Multi-level,

mutual, and public monitoring emerge as one of the key

elements that allow ‘‘clan control’’ prior to the adoption of

shared norms and values.

Sanctions. Although sanctions in the form of grade

penalties were rarely used, the threat of sanctions and its

occasional use, create conditions for quasi-voluntary

compliance. Further, it is likely that as students develop

trust, norms of reciprocity, and mutual concern, they start

replacing quasi-voluntary compliance with norm-based

compliance, i.e. they comply because they have internalized

cooperative values in working with this group of people.

5. Conclusion

The primary contribution of this paper is in its framing

software development teamwork as subject to a set of well-

known collective action problems. This paper draws on

research from the behavioral laboratory of experimental

economics and on field studies within the natural resource

governance literature to highlight a set of key theoretical

principles for fostering cooperative behavior: face-to-face

communication, repeatability of interactions, mutual, open,

and multi-level monitoring, and explicit use of sanctions

and the threat of sanctions. Taking an institutional analytic

perspective provides an explicit focus on the rules—both

formal and informal—that people use to constrain their

actions so as to increase their cooperation in settings in

which such cooperation is contingent on the cooperation of

others. This perspective contrasts with theories of manage-

rial control from the management science literature, which,

while introducing important concepts concerning behavior-

al, outcome, self, and clan control, fail to provide tools for

subsequent design and analysis of teamwork. These control

based theories are inadequate not only for commercial

settings but are inappropriate for other software develop-

ment settings in which hierarchical control is not a key

feature, such as open source projects and student software

teams in academics.

An implication of this work for research is in the use of

the institutional analytic approach for subsequent studies

of software teamwork, particularly in a variety of different

settings. With additional case studies available, compar-

isons can be made among these cases for effective rule

ARTICLE IN PRESS

J. Tenenberg / Int. J. Human-Computer Studies 66 (2008) 484–494492

Author's personal copy

configurations and how these might change as a result of

differences in the contexts in which teamwork is under-

taken. Of particular interest might be ways in which this

can contribute to understandings and design of teamwork

in settings where team members are geographically

distributed, do not share a common national culture, and

can never (or rarely) meet face to face. Comparisons can

also be made with collective action in non-software

domains to determine if there are behavioral characteristics

specific to software development that do not arise else-

where.

There are implications of this approach for practitioners

in the design of the rules under which software developers

work. These concern applying the theoretical principles

associated with eliciting cooperation to the practical work

of software development, whether in academic, commer-

cial, or open source settings. The stress on face-to-face

communication here echoes (and validates) one of the

‘‘Principles behind the Agile Manifesto’’ (Agile Alliance,

2001), which states ‘‘[t]he most efficient and effective

method of conveying information to and within a

development team is face-to-face conversation.’’ The

importance of repeatability suggests that teams that rotate

members too quickly might lose the foundation by which

reciprocity can develop. The shadow that the future casts

can provide developers with increased incentives to

cooperate in the present. The same principle suggests

breaking teams where recrimination and non-cooperation

are also reciprocated, providing these individuals with the

opportunity to start anew. The principles of mutual,

public, and multi-level monitoring, as well as graduated

and multi-level sanctions, can also be applied within

software development teams. Although not in contra-

diction to management theories involving clan control, the

research presented here suggests that such controls need

not be informal nor based on shared norms or values.

Instead, developers can develop their own explicit rules

(facilitated, perhaps, by management) that include mechan-

isms for rule enforcement by developers amongst them-

selves. It is, in fact, such monitoring and sanctioning that

distinguishes rules—and the predictability that they pro-

vide through their explicitness—from norms. This can thus

relieve management of high transaction costs associated

with developer surveillance while preserving developer

autonomy and motivation.

Acknowledgments

Thanks to Elinor Ostrom, Vincent Ostrom, Charlotte

Hess, and the participants of the Institutional Analysis and

Development seminar during Autumn, 2006 at the Work-

shop in Political Theory and Policy Analysis at Indiana

University for their insights about the nature of social

dilemmas and the ingenuity that people have used in a

variety of settings in crafting institutions to resolve these

dilemmas. Thanks to Gwen Arnold, Joohyung Kim, Anna

Zachrison, Verlon Stone, and James Nachbaur for discus-

sions on the relationship of social dilemmas to software

teams. Particular thanks to James Walker, Sally Fincher,

and anonymous reviewers for their extensive comments on

earlier drafts of this paper. I am grateful to the University

of Washington for providing a sabbatical release during

which this research was undertaken, and to the School of

Informatics at IU for hosting me during this time. And

finally, I am grateful to the students of the software

engineering courses I have had the privilege to teach who

demonstrate time and again how much can be achieved

when people cooperate.

References

Agile Alliance, 2001. Principles behind the Agile Manifesto. http://

agilemanifesto.org/principles.html, accessed April 10, 2007.

Axelrod, R., 1984. The Evolution of Cooperation. Basic Books, New

York.

Blomquist, W., 1994. Changing rules, changing games: evidence from

ground-water systems in Southern California. In: Ostrom, E.,

Gardner, R., Walker, J. (Eds.), Rules, Games, and Common-Pool

Resources. The University of Michigan Press, pp. 283–300.

Boehm, B., 1997. A spiral model of software development. In: Dorfman,

M., Boehm, B. (Eds.), Software Engineering. The Institute of Electrical

and Electronics Engineers, pp. 415–426.

Cain, B., Coplien, J., Harrison, N., 1996. Social patterns in productive

software development organizations. Annals of Software Engineering

2, 259–286.

Campbell, D.T., Stanley, J.C., 1963. Experimental and Quasi-Experi-

mental Designs for Research. Houghton Mifflin, Boston, MA.

Cardenas, J.-C., Stranlund, J., Willis, C., 2000. Local environmental

control and institutional crowding-out. World Development 28 (10),

1719–1733.

Casar, M., Plott, C., 2003. Decentralized management of common

property resources: experiments with a centuries-old institution.

Journal of Economic Behavior and Organization 51, 217–247.

Fincher, S., Petre, M., Clark, M. (Eds.), 2001. Computer Science Project

Work: Principles and Pragmatics. Springer, New York.

Hardin, G., 1968. The tragedy of the commons. Science 162, 1243–1248.

Helmke, G., Levitsky, S. (Eds.), 2006. Informal Institutions and

Democracy: Lessons from Latin America. The Johns Hopkins

University Press, Baltimore, MD.

Henderson, J., Lee, S., 1992. Managing I/S design teams: a control

theories perspective. Management Science 38 (6), 757–777.

Kirsch, L., 1997. Portfolios of control modes and IS project management.

Information Systems Research 8 (3), 215–239.

Kirsch, L., Sambamurthy, V., Ko, D.-G., Purvis, R., 2002. Controlling

information systems development projects: the view from the client.

Management Science 48 (4), 484–498.

Levi, M., 1988. Of Rule and Revenue. University of California Press,

Berkeley, CA.

Maass, A., Anderson, R., 1986. And the Desert Shall Rejoice:

Conflict, Growth, and Justice in Arid Environments. R.E. Krieger,

Malabar, FL.

Marwell, G., Ames, R., 1979. Economists free ride, does anyone else:

experiments in the provision of public goods IV. Journal of Public

Economics 15, 295–310.

Miller, G., 1990. Managerial dilemmas: political leadership in hierarchies.

In: Cook, A., Levi, M. (Eds.), The Limits of Rationality. University of

Chicago Press, Chicago, IL, pp. 325–357.

North, D., 1990. Institutions, Institutional Change, and Economic

Performance. Cambridge University Press, Cambridge.

Ostrom, E., 1990. Governing the Commons: The Evolution of Institutions

for Collective Action. Cambridge University Press, Cambridge.

ARTICLE IN PRESS

J. Tenenberg / Int. J. Human-Computer Studies 66 (2008) 484–494 493

Author's personal copy

Ostrom, E., 2005. Understanding Institutional Diversity. Princeton

University Press, Princeton.

Ostrom, E., Gardner, R., Walker, J., 1994. Rules, Games, and Common-

Pool Resources. University of Michigan Press, Ann Arbor, MI.

Ouchi, W., 1979. A conceptual framework for the design of organizational

control mechanisms. Management Science 25 (9), 833–848.

Rapoport, A., Chammah, A., 1965. Prisoner’s Dilemma: A Study

in Conflict and Cooperation. University of Michigan Press, Ann

Arbor, MI.

Sefton, M., Shupp, R., Walker, J., in press. The effect of rewards and

sanctions in provision of public goods. Economic Inquiry, doi:10.1111/

j.1465-7295.2007.00051.x.

Thaler, R., 1991. The Winner’s Curse: Paradoxes and Anomalies of

Economic Life. Free Press, New York.

Wade, R., 1988. Village Republics: Economic Conditions for Collective

Action in South India. ICS Press, San Francisco, CA.

Yin, R., 2003. Case Study Research: Design and Methods, third ed. Sage

Publications.

ARTICLE IN PRESS

J. Tenenberg / Int. J. Human-Computer Studies 66 (2008) 484–494494

