
Inheritance in Automated Planning

Josh D. Tenenberg∗

University of Rochester

Computer Science Department

Rochester, New York 14627

josh@cs.rochester.edu

Abstract

The use of abstraction in planning is explored in order
to simplify the reasoning task of an automated agent.
An extension of inheritance (ISA) hierarchies from ob-
ject classes to arbitrary object relations and to the ac-
tions of an agent serves to partition a planning system
into distinct levels. The problem of maintaining the
truth values of assertions at different levels of represen-
tation is addressed by stating the precise relationship
between the different levels. This gives rise to the fol-
lowing correspondence between solutions: for each ab-
stract solution, there exist isomorphic specializations
at each lower level. Thus, the presence of abstract solu-
tions strongly constrains the size of the original search
space.

Introduction

In order to bring about desired states of the world,
agents must compose actions in a purposeful fashion
over a sustained duration of time. In artificial intelli-
gence, the traditional view of planning is as a men-
tal model of activity, where the agent’s actions are
represented as operations upon data structures that
encode world state. Agents can thus search through
representations of world states for those that satisfy
their goals, rather than the costlier operation of search-
ing within the real world itself. Unfortunately, these
mental search spaces typically grow as an exponent of
plan length. To combat this problem, researchers in
planning have attempted to encode problems at differ-
ent levels of abstraction [Alterman, 1987; Kautz, 1987;

∗From Proceedings of the First International Conference
on Principles of Knowledge Representation and Reasoning
From Proceedings of the First International Conference on
Principles of Representation and Reasoning, 1989. This
work was supported in part by the Air Force Systems Com-
mand, Rome Air Development Center, Griffiss Air Force
Base, New York 13441–5700, and the Air Force Office of
Scientific Research, Bolling AFB, DC 20332 under Contract
Number F30602–85–C–0008 which supports the Northeast
Artificial Intelligence Consortium (NAIC).

Knoblock, 1988; Nau, 1987; Sacerdoti, 1974; Yang and
Nau, 1988]. Few such researchers have dealt effec-
tively with the resulting problems of constructing and
maintaining several coherent views of the world, and
of specifying the relationship between these different
views. This is especially difficult given that plan-
ning systems manage propositions whose truth val-
ues change over time. This paper summarizes re-
search which formalizes one particular type of abstrac-
tion, and explores some of the properties and conse-
quences of its use. The abstraction is a generaliza-
tion of inheritance (ISA) hierarchies [Brachman, 1979;
Hendrix, 1979]. The novelty of this approach emerges
from two main sources: 1) the use of inheritance or-
thogonally throughout a planning system, from in-
heritance of object types, to relations between object
types, to actions that effect object types; 2) the pre-
cise specification of the relation between levels, which
entails the relation holding between solutions derived
at these different levels.

Abstract representations typically differ from lower
level representations by distinguishing between those
aspects of a domain which can be considered details,
and those of primary importance. In the described re-
search, the grouping of object classes into superclasses
is used as the basis for making this distinction. An
abstract class is characterized by the features common
to all of its members; details are taken to be those
features that distinguish one subclass from another.
For example, Bottles and Cups can be considered ab-
stractly as Containers. Common features include the
ability of both to hold liquid and to be poured from;
distinguishing features include that Bottles have nar-
row necks and Cups have wide mouths. Object classes
are used as the basis for an inheritance structuring on
relations between objects, and actions applied to ob-
jects. Therefore, abstract actions effect relations be-
tween elements of abstract object classes. For exam-
ple, one might abstract the predicate InBottle(WineX,
BottleY) to InContainer(LiquidX, ContainerY),

and abstract the operator pourBottle(BottleY) to
pourContainer(ContainerY). Abstract plans are
specialized by choosing, for each abstract step, a con-
crete step that achieves the desired effect over a smaller
class of objects.

Abstracting First-Order Theories

Predicate Mappings

An extended STRIPS-style language [Fikes and Nils-
son, 1971] is used as the base representation. Actions
are viewed as operations on sets of sentences denoting
world states. Before considering the abstraction of ac-
tions, the abstraction of these world states will first be
explored. All theorems are stated without proof; such
proofs can be found in [Tenenberg, 1988].

HHHHY
������1

������1
S

So

HHHHY
�

��3

Mug

Bottle

Tumbler

Cup

ContainerBall

Graspable

Figure 1: Inheritance Hierarchy

Figure 1 shows a fragment of a standard ISA-
hierarchy (ignoring for the moment the dotted box).
The nodes denote sets of objects, and the arcs denote
the subset relation. This relation gives rise to inher-
itance, for if some property P is true of all elements
of a set named by node Q, then by definition, P will
be true of all elements of each descendant of Q. For
example, anything true of all Containers is true of all
Bottles.

In the described research, the specification of which
object classes are grouped together (e.g., Bottles and
Cups) is made meta-linguistically by using a predicate-
mapping function which renames predicates between
a concrete and an abstract level first-order language.
Placing this function at the meta-level rather than em-
bedding it implicitly at the object level allows compar-
ison between different abstract class/subclass choices.

No claims are made that, for instance, Bottles are
an inherently concrete level concept, and Containers

are inherently abstract, merely that they are concrete
and abstract with respect to one another. As pictured

in Figure 1, inheritance hierarchies can contain several
levels. The formalism that will be provided focuses on
only two levels (termed the concrete and abstract), such
as that in the dotted box, but is trivially extendible to
arbitrary levels, as will subsequently be seen.

Formally, predicate mappings are functions that
map predicate symbols from one first-order language
to another. Given two sets of predicate symbols R and

R′, f : R
onto

7→ R′ is a predicate mapping, where f is
not necessarily 1 − 1. This is extended to a mapping

between two first-order languages, f : L
onto

7→ L′, where
the predicates are the only symbols that possibly dis-
tinguish L and L′, and all non-predicate symbols map
to themselves under f . Two or more concrete predi-
cates mapping to the same abstract predicate will be
called analogues. We interpret f−1(ψ) in the obvious
way – as the set of concrete symbols that maps to ψ
under f .

Model Abstraction

Consider the formal semantic models for two lan-
guages1, L and f(L) = L′. Bearing in mind our intu-
itive notion of inheritance, when might we want to say
that a model M′ for L′ is an abstraction of a model
M for L?

A reasonable definition is when both models have the
same objects in their universes, the interpretations as-
signed to the non-predicate symbols are identical, and
all tuples of the interpretation of an abstract predicate
P ′ in M′ are exactly those tuples of the interpretation
of all predicates P in M that map to P ′ under f . This
is stated formally as follows.

Definition 1 Let M = 〈U,G〉 and M′ = 〈U ′, G′〉 be
models of languages L and L′ respectively, (where U

is the universe and G the interpretation function) and
f : L 7→ L′ be a predicate mapping function. M′ is
the abstract model of M through f (that is, M′ is
amf (M)) if and only if by definition

1. U ′ = U ,

2. G′(ψ′) = G(ψ′),
for all non-predicate symbols ψ′ ∈ L′, and

3. G′(R′) =
⋃

R∈f−1(R′)G(R),

for all symbols R′ ∈ PredL′ .

Note that neither exceptions nor inductions are cap-
tured by the abstraction/specialization relationship
between models. If Cup maps through f to Container,
then it is required, without exception, that every Cup

1The symbol PredL will be used to denote the predicate
symbols of language L.

S:

Bottle(x) ⊃ Graspable(x)

Cup(x) ⊃ Graspable(x)

Bottle(x) ⊃ MadeOfGlass(x)

Cup(x) ⊃ MadeOfCeramic(x)

Bottle(A) ∨ Cup(A)

¬Bottle(B)
¬Cup(B)

f:

f(Bottle) = f(Cup) = Container,
f(Graspable) = Graspable,
f(MadeOfGlass) = Breakable

f(MadeOfCeramic) = Breakable

f(S):

Container(x) ⊃ Graspable(x)

Container(x) ⊃ Breakable(x)

Container(A)

¬Container(B)

Figure 2: Predicate Mapping of Clause Set

is a Container in the corresponding models. In addi-
tion, each object taken to be a Container must be an
element of the extension of a predicate that maps to
Container (in the corresponding models). No induc-
tions are made that allow objects to be Containers

that were not one of the known specializations of
Container.

Theory Abstraction

The predicate mapping on languages is extended to a
mapping on sets of sentences in these languages (which
will be taken to be in clause form2 [Robinson, 1965])
in the obvious way. Intuitively, this amounts to rewrit-
ing the original expression and replacing all predicate
symbols by their image under f . By definition, we take
f() =, for every abstraction mapping f . An example of
a clause set rewritten under a predicate mapping func-
tion is provided in Figure 2. Note that PredL, Pred′L
need not be disjoint.

Having considered the abstraction relation between
models, we can similarly consider the abstraction rela-
tion between axiomitizations. Given languages L and
f(L) = L′, when do want to consider a clause set S′ in
L′ to be an abstraction of a clause set S in L? When
models for the respective clause sets are in the previ-
ously defined abstraction relationship:

Definition 2 Let S and S′ be sets of clauses in L and
L′, respectively, and let f : L 7→ L′ be a predicate

2For simplicity, we will take clauses to be disjunctions of
distinct literals. That is, no literal will appear more than
once in any clause.

mapping function. S′ is an abstract clause set of S
through f (that is, S′ is acsfof S) if and only if for
every model M that satisfies S, amf (M) satisfies S′.

A view of this is provided in Figure 3.

&%
'$

S’

fACS
fAM

&%
'$

&%
'$

&%
'$

-

-

66

Semantic

Models

models

models
M

M’

S Concrete

Abstract

Sets

Clause

Figure 3: Relationship of acsf to amf

One might reasonably inquire, for a given abstrac-
tion mapping f and clause set S, if there exists an S′

which is an abstract clause set of S through f? This
question is answered affirmatively in the following sec-
tion, where not only is such an S′ shown to exist, but a
constructive definition of the strongest such S′ is pro-
vided.

Theory Mappings

Suppose we have an axiomitization in the concrete lan-
guage that encodes our knowledge about the objects
and relations in the world. In addition, we also have
a predicate mapping function that indicates the cate-
gories of objects and relations that we consider analo-
gous. We would like to construct a weaker axiomitiza-
tion in the abstract language such that

1. it is faithful to the original axiomitization, in that
no statements true in the abstract theory would be
falsified at the concrete level,

2. it contains no contradictions, assuming that the con-
crete axiomitization is consistent,

3. it includes abstract assertions that hold of all spe-
cializations,

4. it preserves the abstract model property between the
abstract and concrete theories with respect to the
predicate mapping, as defined above.

Note that f itself does not satisfy this criteria, since
it results in too many clauses at the abstract level,
which can result in inconsistency:

Bottle(A),¬Cup(A) 7→f

Container(A),¬Container(A).

Definition 4, however, satisfies this criteria. Intuitively,
the abstract level never includes axioms whose special-
izations distinguish between the analogous predicates.
Before presenting this definition, provability (⊢) must
first be defined.

Definition 3 A (refutation) proof of C from clause
set S is a directed binary tree T = 〈V,E〉, where labels
the root, leaf nodes are labeled either by elements of S
or by ¬C in clause form, and there is an edge 〈v, w〉 ∈
V if and only if the label of v is the resolvent under
full resolution [Robinson, 1965] from the label of w and
some other clause. If there exists a refutation proof of
C from S, then C is provable from S, denoted S ⊢ C.

Note that under this definition, S ⊢ C if and only if
S |= C, since full resolution is a sound and refutation
complete inference rule. In addition, the same clause
can label more than one node of the graph. In particu-
lar, this will occur if the clause is used more than once
in a proof.

In the following, for any clause C, |C| denotes the
number of literals in C, neg(C) denotes the disjunction
of the negative literals of C (or if there are none), and
pos(C) denotes the disjunction of the positive literals
of C (or if there are none).

Definition 4 (Abs Clause Mapping)
Absf (S) = {C ′|

for every N ∈ f−1(neg(C ′)) having
|neg(C ′)| distinct literals,

there exists P ∈ f−1(pos(C ′)) such that
S ⊢ N ∨ P.}

In the degenerate case where C ′ has no negative lit-
erals, the membership condition for C ′ is not trivially
satisfied. Rather, neg(C ′) is defined as , and by def-
inition f−1() = . Therefore, if C ′ has no negative
literals then there exists a unique N ∈ f−1() having
no literals, namely itself, and it is required that there
exist a P ∈ f−1(pos(C ′)) such that S ⊢ ∨P . Put sim-
ply, if C ′ has no negative literals, there must exist a
P ∈ f−1(pos(C ′)) such that S ⊢ P . For example,

Bottle(A) ∨ Cup(A) 7→f Container(A).

The case where there are no positive literals in C ′ is
similar; for every N ∈ f−1(neg(C ′)) having |neg(C ′)|
literals, it must be that S ⊢ N . For example,

¬Bottle(B),¬Cup(B) 7→f ¬Container(B).

If C ′ has neither negative nor positive literals, that is,
C ′ =, then S ⊢. Therefore, if S is inconsistent, so is
Absf (S). An example of a clause set mapping under
Absf is the deductive closure of f(S) from the simple
example of Figure 2.

The following theorems and corollaries all hold,
proofs of which can be found in [Tenenberg, 1988].

Theorem 1 S′ is acsf of S if and only if S′ ⊆
Absf (S).

Corollary 2 If S′ ⊆ Absf (S) then S′ is inconsistent
only if S is inconsistent.

Corollary 3 If Absf (S) is consistent then S is con-
sistent.

Corollary 4 DC(Absf (S)) = Absf (S), where DC

denotes deductive closure.

Corollary 5 Absf (S) is finite if and only if S is the
empty clause set.

Corollary 6 There is no effective procedure for con-
structing Absf (S), for arbitrary S and f .

Since every theory S′ which is an abstract clause set
of S must be a subset of Absf (S), Theorem 1 states
that Absf is as strong as possible. That is, one could
not augment Absf (S) by adding non-theorems, such
that the resulting clause set is acsf of S. As a con-
sequence, however, Absf is not practical to use, due
to the infinite size of the abstract clause sets3 and the
non-existence of an effective procedure for computing
it. However, by Theorem 1, since each subset of Absf is
also acsf of S, one can consider subsets ofAbsf that do
not have its computational problems but that satisfy
the principles given at the beginning of Section 2.4. We
demonstrate one such subset below, which additionally
has a useful proof-theoretic property.

Definition 5 (MembAbs Clause Mapping)
MembAbsf (S) = {C ′|

for every N ∈ f−1(neg(C ′)) having
|neg(C ′)| distinct literals,

there exists P ∈ f−1(pos(C ′)) such that
N ∨ P ∈ S}

The only difference between MembAbsf and Absf

is that specialized clauses must be elements of the
original clause set in MembAbsf , whereas they can
be derivable from the original clause set in Absf . This
results in the following Lemma:

Lemma 7 If S is a set of atoms, then
MembAbsf (S) = f(S).

3Although it is my (as yet unproven) belief that for finite
S, there exists finite S

′ having the same deductive closure
as Absf (S).

MembAbsf is computable in the worst case in time
quadratic in the size of S, and by Lemma 7, linear in
the best case. Note that Corollaries 3, 4, 5, and 6 are
not true of MembAbsf .

In addition to the model-theoretic properties asso-
ciated with MembAbsf stated above, there is the fol-
lowing important proof-theoretic property. The case
where the original clause set, S, is Horn4 will be stated
since it will be required in Section 4, with the more gen-
eral case of unrestricted clause sets provided in [Tenen-
berg, 1988].

Theorem 8 Let S be a Horn clause set in language
L, f : L 7→ L′ be a predicate mapping and G′ be an
atom in L′. If T ′ is a proof of G′ from MembAbsf (S),
then there exists a proof T of G from S such that T is
isomorphic to T ′, and f is a renaming of labels between
the nodes in T and their isomorphic images in T ′.

This theorem demonstrates that finding an abstract
solution (proof) provides a strong constraint on find-
ing a solution to the original problem, since the only
concrete level proofs that need to be pursued are those
that exhibit the isomorphism. That is, given an ab-
stract proof, the concrete level search space has been
reduced from the set of all proofs to the set of isomor-
phisms of T ′.

STRIPS

Thus far, abstraction mappings have been explored
with respect to first-order theories. This will be ex-
tended to planning systems using a formalization of
the Strips language, which represents actions as oper-
ations on first-order knowledge bases. Strips has been
used extensively in planning systems [Chapman, 1985;
Sacerdoti, 1977; Waldinger, 1977; Wilkins, 1983]. One
of the few attempts at a rigorous formalization is pro-
vided by [Lifschitz, 1986], from which much of the
formalization to be presented has been adapted5 Al-
though most planning researchers are conversant in
Strips, I provide a detailed description, since there are
several variants described in the literature, with some
non-trivial differences between them, and because a

4A Horn clause is a clause in which at most one literal
is unnegated. A Horn clause set is a clause set in which
each clause is Horn.

5The main differences are that I have extended Lifs-
chitz’s formalization in 3 significant ways. First, I consider
a Strips system as defining an entire problem space, not
just a single problem instance. Second, I provide a more
specific semantics in [Tenenberg, 1988] that associates a
set of models with each situation, which provides an inter-
pretation of all of symbols of the logic, not just the truth
values of the sentences. And third, I provide a syntactic
condition that is necessary and sufficient for the existence
of a Strips-model for a given Strips system.

crisp formalization allows for a precise statement of the
main definitions and theorems. For those familiar with
Strips, the balance of this section can be skipped, but
the following aspects of my definition should be noted:

1. the inferring of secondary effects is permitted
through the use of a set of static axioms, which are
elements of each world representation (situation),
and hence never deleted,

2. there is a suitable description of the set of initial
situations that characterize the problem space,

3. all elements of the precondition, add, and delete lists
are atomic.

In the original system [Fikes and Nilsson, 1971],
Strips is both a planning language and a stack-based
control structure for searching the plan space. In the
following, all references to Strips refer only to the lan-
guage component. In Strips, the world is viewed as
being in a particular state at each moment, and only
through the actions of the agent can the world change
state. The state of the world is represented by a set of
sentences in a first-order language, which will be called
a situation, and the actions of the agent are represented
by operators. Associated with each operator is a set of
preconditions specifying the conditions that must be
satisfied by a situation in order for the operator to
apply. The effects of each operator are represented by
the deletion and addition of sentences to the situations
in which they apply. Strips can thus be viewed as a
knowledge base (KB) manager, where the effects of an
action are realized as operations on the KB. In partic-
ular, suppose one has situation S0 and action o, with
the associated sentences Ao to be added, and Do to
be deleted. The new situation resulting from applying
o to S0 is (S0 \ Do) ∪ Ao, that is, the old situation
minus the deleted sentences, plus the added sentences.
By virtue of this syntactic operation, those sentences
not deleted continue to hold in the new situation, (the
so-called strips assumption [Waldinger, 1977]), without
the necessity of a separate axiom and inference step for
each such sentence, as is typically required in situation
calculus approaches [McCarthy and Hayes, 1969]. The
Strips assumption, then, provides a simple approach
to handling the frame problem [McCarthy and Hayes,
1969].

Since some propositions about the world might in-
ferentially depend upon others, this affects the form in
which the world state is encoded so as to facilitate the
change in truth value that might occur as the result
of applying an action. For instance, suppose that in a
typical blocks world scene, there is a stack of blocks. If
the top block is removed from the stack, then the fact

that it is no longer above the remaining blocks in the
stack must be reflected in the axioms used to represent
the world. If Above is encoded explicitly in the knowl-
edge base, then the operator associated with removing
a block must specify the deletion of all of the appro-
priate Above relationships from the KB. Alternatively,
one could store only the On relationships in the KB,
along with an axiom of the form:

∀x,y. On(x,y) ⊃ Above(x,y)

which allows one to infer all of the Above relationships.
In this way, only the single On relation between the top
block and the one just below it need be changed as a
result of the remove action.

This approach will be generalized to all of the ob-
ject relationships encoded in the system, and will be
reflected in the description of the syntax of Strips

systems. A predicate will be either primary, meaning
that it is not dependent upon or derivable from any
others, or secondary, meaning that it is derivable from
the primary relations.

A Strips system, Σ is a quintuple (L,E,O,K, σ),
where L is a first-order language, E is a subset of the
predicates of L (E being the primary predicates), O
is a set of operator schemata, K is a non-empty set of
clauses in language L (the static axioms), and σ is a set
whose elements are sets of ground atoms (the problem
space). There are additional constraints on K and σ

discussed below.
The set K is taken to be Horn in the balance of

this paper. Theorem 9 relies upon the absence of dis-
junction at the concrete level. Set K includes those
clauses which hold in every situation. It is required
that every P ∈ E can occur only in negated literals
of clauses in K, that is, as the antecedent of a Horn
clause. In essence, this ensures that primary atoms
are never derivable in any situation except trivially
through membership.

The set Eφ is defined as the set of ground atoms
formed from predicates in E:

Eφ = {P (x1, . . . , xn)|P ∈ E,

and x1, . . . , xn are ground terms}.

Each element of σ is composed from atoms in Eφ.
An operator schema name is an expression which has

the form

operator(arg1, arg2, . . . , argn)

where operator is a symbol not in L, and the argi are all
variables of L. Associated with each operator schema
name o is an operator schema description (Po, Do, Ao),
referred to as the preconditions, deletes, and adds,

which are sets of atoms. The atoms in Do and Ao

must be atoms from E, which insures that only atomic
expressions formed from primary predicates are explic-
itly managed by the KB operations. The only variables
occurring in (Po, Do, Ao) are the argi of the associated
operator schema. An operator schema name together
with its description will be called an operator schema.
If φ is a substitution of terms for variables, and o is an
operator schema, then oφ is understood in the stan-
dard way as the substitution of each variable in o by
its pairing under φ. We take the set Oφ to be the set of
operator schemata in O under all ground substitutions:

Oφ = {oφ|o ∈ O and φ is a ground substitution}.

Operator schemata will never occur in expressions par-
tially instantiated. An operator is an operator schema
fully instantiated by ground terms. Likewise for opera-
tor description and operator name. When the context
is clear, the term operator will often informally be used
to refer to just the operator schema name under a par-
ticular substitution.

A dynamic situation is a subset of Eφ, denoting those
assertions of a situation that might change truth value
as a result of applying an action. A problem is a pair
ρ = (T0, G), where T0 is a dynamic situation called the
initial dynamic situation, and G, the goal, is a sentence
of L. Unless specified otherwise, G is taken to be a set
(conjunction) of atoms.

A plan is a finite sequence of operator names (fully
instantiated), with the length of the plan being the
number of operator names in the sequence. The length
n plan ω = 〈o1, . . . , on〉 defines a sequence of dynamic
situations T0, T1, . . . , Tn, where T0 is the initial dy-
namic situation, and

Ti = (Ti−1 \Doi
) ∪Aoi

, 1 ≤ i ≤ n.

That is, Ti is the dynamic situation Ti−1 without
the deletes of action oi but including the adds of ac-
tion oi. This in turn defines a sequence of situa-
tions S0, S1, . . . , Sn composed of the dynamic situa-
tions unioned with the static axioms, i.e.,

Si = Ti ∪K, 0 ≤ i ≤ n.

An operator o is applicable in situation S if S ⊢ Po.
The plan ω is accepted in Σ with respect to S0, under
the condition that

Si ⊢ Pai+1
, 1 ≤ i < n.

where Si is defined as above. That is, a plan is ac-
cepted if each operator is applicable from the situation
in which it is applied. Sn, the final situation achieved

by executing plan ω from initial situation S0, is called
the result and is denoted Result(ω, S0). The null plan,
denoted 〈〉, will be considered a plan of length zero
accepted in Σ with respect to every situation, where
Result(〈〉, S0) = S0. A situation Si is accessible from
S0 if and only if there exists a plan ω that is accepted
in Σ with respect to S0 and Result(ω, S0) = Si. The
initial situation is accessible to itself by the existence
of the null plan. Plan ω solves problem ρ = (T0, G) if

Result(ω, T0 ∪K) ⊢ G.

A problem is solvable if there exists a plan that solves
it.

The dynamic situations are considered changing pa-
rameters of the system. There are only some dynamic
situations that we will want to consider as possible
values for the changing parameters. These are charac-
terized by the set σ of the quintuple defining Σ. We
take σK to be the set of elements of σ, each unioned
with K:

σK = {T ∪K|T ∈ σ}.

It is required of all Strips systems that σK be closed
under operator application. That is, for all S ∈ σK

and all o ∈ Oφ applicable in S, Result(〈o〉, S) ∈ σK .
Under this definition, σK defines the problem space.
That is, all initial situations are drawn from σK , and all
accessible situations from every S ∈ σK are themselves
elements of σK . For the balance of this paper, the Σ
associated with the concrete level a Strips system will
be taken as defined in Figure 4.

Definition 6 A Strips system Σ=(L,E,O,K, σ) is
consistent if and only if for every situation S ∈ σK ,
every situation accessible from S is (logically) consis-
tent.

A simple example of a Strips system for the stan-
dard blocks world is given in Figure 4. Note that the
static axioms serve primarily as integrity constraints
[Reiter, 1978]. Since any goal is trivially derivable in an
inconsistent situation, one would prefer never to gener-
ate such situations through the use of applicable oper-
ators. This is particularly important with abstraction,
since the abstract solution will be used in constraining
the concrete level search. Thus, being misled by in-
consistencies to believe that the abstract goal is solved
might be excessively costly. There is additionally a se-
mantic motivation for maintaining the consistency of
Strips systems as one ascends the abstraction hierar-
chy. A semantics for Strips is provided in [Tenenberg,
1988], which demonstrates the existence of a Strips-
model if and only if the corresponding Strips system
is consistent.

L :
Constants: C1, C2, . . .

Variables: w, x, y, z

Predicates: On, Clear, 6=
E :

On, Clear
K :

¬On(TABLE,x)
¬On(x,x)
On(x,y) ⊃ ¬Clear(y)
On(x,y) ∧ y 6= z ⊃ ¬On(x,z)
On(x,y) ∧ y 6= TABLE ∧ x 6= z ⊃ ¬On(z,y)
{Ci 6= Cj |i, j ∈ N and i 6= j}

O :
stack(x,y)

P: On(x,TABLE), Clear(y), Clear(x),

x 6= y

D: On(x,TABLE), Clear(y)

A: On(x,y)

unstack(x,y)

P: On(x,y), Clear(x)

D: On(x,y)

A: On(x,TABLE), Clear(y)

σ :
{T|K ∪ T is consistent and T ⊆ Eφ}

Figure 4: Example Strips System

Abstract STRIPS Systems

The intent of abstracting Strips systems is similar to
that of abstracting first-order theories—to enable the
agent to perform search within a smaller space. This
requires abstracting all elements of the quintuple that
define the Strips system, the most difficult of which
is the operator set. The intuition associated with ab-
stracting the operators is that actions performed on
analogous objects for analogous purposes can be con-
sidered the same at the abstract level. These actions
will be determined to be analogous based upon a map-
ping and comparison of the preconditions, deletes, and
adds of the actions under the given predicate mapping
function.

The Strips system resulting from abstracting all op-
erators will have the downward-solution property. That
is, for every abstract plan ω′ solving abstract goal G′,
there exists some specialization ω of ω′, and G of G′

such that ω solves G.

Let Σ = (L,E,O,K, σ) be a Strips system and f :
L 7→ L′ be a predicate mapping function. The abstract
system Σ′ = (L′, E′, O′,K ′, σ′) associated with Σ is

itself a Strips system, where K ′ = MembAbsf (K),

σ′ = {f(T)|T ∈ σ},

E′ = {f(P)|P ∈ E},

under the restriction that all predicates mapping to the
same symbol are either all primary, or all secondary.

The predicate mapping function, f , can be extended
to a mapping on operator schemata by assigning to
each schema name an abstract name, and mapping
each atom of the description to its image under f . For
example, the concrete operator microWave maps to the
abstract operator cook, where f maps the predicates in
the corresponding positions on the precondition, add,
and delete lists:

microWave(x,y,z)

P: In(x,y), InMicroWave(y,z), Raw(x),

D: Raw(x),

A: MicroWaved(x)

cook(x,y,z)

P: In(x,y), InCooker(y,z), Raw(x),

D: Raw(x),

A: Cooked(x)

Given operator schema o = opname: (P,D,A), de-
fine

f(o) = f(opname) : (f(P), f(D), f(A)).

Likewise for instantiated operator schemata. In addi-
tion, define

f(O) = {f(o)|o ∈ O}.

This mapping is extended to plans, so that if
ω=〈o1, . . . , on〉 then f(ω) = 〈f(o1), . . . , f(on)〉.

Only a subset of f(O) will be used in the ab-
stract level system—in particular, those concrete op-
erators that do not distinguish between the analogous
predicates. This is similar to how previously, given
first-order theory S, only the subset MembAbsf (S)
of f(S) was used for performing abstract level infer-
ence. For instance, in order to map PourFromBottle to
PourFromContainer it is required that PourFromCup

also exist at the concrete level, assuming that cups and
bottles are the only predicates that map to container.
Abstracting an operator o from Σ to Σ′ requires that
there exists in Σ a complete set of analogues of o with
respect to the objects over which o is applied.

The set of abstract level operator schemata, O′ ∈ Σ′,
are defined below. It is assumed that all corresponding
variables in analogous operator schemata in O have
been named identically.

Definition 7 (Operator Abstraction)
O′ = {o′|o′ ∈ f(O) and there exists Q ⊆ O such that

1. for each o ∈ Q, f(o) = o′

2. for each P ∈ f−1(Po′) such that each element of P
is atomic, there exists o ∈ Q such that P = Po,

3. for each o ∈ Q, for each ground substitution φ,
for each element di ∈ Doφ, for each atomic dj ∈
f−1(f(di)), either dj ∈ Doφ or K ∪ Poφ ⊢ ¬dj}.

Informally, for each o′ ∈ O′ there exists a subset
Q of the concrete operator schemata, all of which are
analogous and map to o′ (under the uniform variable
assignments). In addition each specialization of the
precondition list of o′ is the precondition list for some
element of Q. That is, Q is a complete set of ana-
logues. And for each element of Q, for every deleted
atom, every analogous atom either co-occurs on the
delete list, or its negation is derivable whenever the
preconditions of this operator hold. This last require-
ment is imposed in order to insure a correspondence
between the abstract and concrete levels, since other-
wise, if two analogous propositions hold in some sit-
uation at the concrete level and only one is deleted
by an operator o, then in the corresponding abstract
situation, the abstraction of both propositions will be
deleted by the abstraction of o.

A concrete level problem is abstracted as ρ′ =
(T ′, G′) = (f(T), f(G)). Since the abstraction of a
Strips system is itself a Strips system, definitions of
legal situation, plan, consistency, etc., hold for the ab-
stract level. Figure 5 illustrates how several operators
in a concrete level kitchen domain can map to the same
operator at the abstract level (assuming the appropri-
ate predicate mapping function). Note that several
different predicates have been abstracted in this exam-
ple: the cutting surface, the tool, the type of food, and
the type of cutting.

Downward-Solution Property

Given the abstract Strips system defined above, the
abstract level will correspond to the concrete level in
a precise way. Each abstract plan is specializable by
an isomorphic concrete plan such that each intermedi-
ate abstract situation is MembAbsf of the correspond-
ing concrete situation. In addition, each abstract level
precondition proof is specializable by an isomorphic
concrete level precondition proof for the correspond-
ing operator. Thus, for every abstract level inference,
there exists a set of isomorphic images that defines the
space of specializations.

Theorem 9 Let Σ′=(L′, E′, O′,K ′, σ′) be an abstrac-
tion through f of the consistent Strips system
Σ=(L,E,O,K, σ), and let ω′=〈o′1, . . . , o

′

n〉 solve ρ =
(T ′0, G

′) for some T ′0 ∈ σ
′. For every T0 ∈ σ such that

Concrete:
sliceMushroomWithSlicer(x,y,z)

P: On(x,z), Countertop(z), Slicer(y),

Mushroom(x), Held(y), Whole(x)

D: Whole(x),

A: Sliced(x)

sliceMushroomWithChefKnife(x,y,z)

P: On(x,z), CuttingBoard(z), ChefKnife(y),

Mushroom(x), Held(y), Whole(x)

D: Whole(x),

A: Sliced(x)

...

diceHamWithCleaver(x,y,z)

P: On(x,z), CuttingBoard(z), Cleaver(y),

Ham(x), Held(y), Whole(x)

D: Whole(x),

A: Diced(x)

Abstract:
makeInPieces(x,y,z)

P: On(x,z), CuttingSurface(z), Knife(y),

Food(x), Held(y), Whole(x)

D: Whole(x),

A: InPieces(x)

Figure 5: Operator Abstraction

f(T0) = T ′0, there exists a plan ω=〈o1, . . . , on〉 accepted
at the concrete level such that

1. f(ω) = ω′,

2. MembAbsf (Result(〈o1, . . . , om〉, T0 ∪K)) =
Result(〈o′1, . . . , o

′

m〉, T
′

0 ∪K
′), 1 ≤ m ≤ n,

3. There exists G ∈ f−1(G′) such that

Result(ω, T0 ∪K) ⊢ G,

4. For each proof W ′ of preconditions Po′
m+1

from

Result(〈o′1, . . . , o
′

m〉, T
′

0 ∪K
′),

there exists proof W of preconditions Pom+1
from

Result(〈o1, . . . , om〉, T0 ∪K)

such that W and W ′ are related as in Theorem 8,
0 ≤ m < n.

Figure 6 provides an example of the above theorem
under a standard interpretation of the predicates and
operators and a suitable predicate mapping.

Concrete Abstract

Goal: Goal:
Diced(A) InPieces(A)

Baked(A) Cooked(A)

Plan: Plan:
openFridge(F) openFoodSource(F)

getFromIn(A,F) getFromIn(A,F)

placeOn(A,C) placeOn(A,C)

getFronOn(K,C) getFromOn(K,C)

sliceHamWKnife(A,K,C) makeInPieces(A,K,C)

placeOn(K,C) placeOn(K,C)

getFromSurface(A,C) getFromSurface(A,C)

putInPot(A,P) putInVessel(A,P)

putInMW(P,M) putInCooker(P,M)

microWave(A,P,M) cook(A,P,M)

Figure 6: Plan Abstraction

Note that although the stated theorems are between
only two levels, the results extend to additional levels,
since the abstract level is itself a Strips systems that
can be abstracted in precisely the same fashion.

Rather than searching in the original problem space,
then, a problem can be abstracted, search can be pur-
sued in the abstract space, and an abstract solution, if
found, can be specialized under the constraints of the
above correspondence.

Note that the converse of the downward solution
property does not hold – there might exist problems
that are solvable at the concrete level for which there
exists no abstract solution. In particular, these will
be problems that rely upon distinguishing features of
analogous concrete level classes, for example, a prob-
lem requiring the larger size of a conventional oven as
opposed to a microwave.

There is, therefore, a delicate balance between the
generality of the abstract level and its usefulness. One
must trade-off the potential gains of search within in-
creasingly simple spaces against the fewer problems
that are solvable within these spaces. I leave it for
future work to develop strategies that can choose pred-
icate mappings for which this trade-off is optimized.

Related Research

There have been several recent suggestions focused
upon abstracting actions, such as that of [Nau, 1987;
Anderson and Farley, 1988; Alterman, 1987; Kautz,
1987]. All of these researchers propose operators that
inherit preconditions and effects, and yet none con-
sider abstract operators to actually be operations on

an abstract representation of the domain. Therefore,
none of their proposals enable the composition of op-
erators, and hence the completion of an entire plan,
at the abstract level. Without the ability to compose
abstract operators, the meaning of such abstract op-
erators is called into question, as well as the nature
of their contribution to the eventual construction of a
concrete level plan.

There are several potential benefit of the approach
detailed within this paper that enables abstract level
plans to be constructed. First, abstract plans allow a
form of least commitment, since they do not require
specialization of the operations until after the entire
abstract level plan has been obtained. For instance,
this might allow the specification of which kind of con-
tainer used in a plan to be pushed closer toward exe-
cution time This is reminiscent of Stefik’s [1981] con-
straint posting. Another advantage is that disjunctive
information which might stymie a low-level planner
need not prevent the formation of an abstract plan.
For instance, if object A is either a bottle or a cup,
planners that require disambiguation before choosing
an action will not be able to proceed, while the plan-
ner described above could continue construction of an
abstract plan.

Future Directions

One type of abstraction that has been considered in
other work involves the use of operator composition,
typified by Macrops [Fikes et al., 1972]. In this ex-
tension of Strips, sequences of operators were param-
etized by replacing constants by variables, and then
stored for possible reuse to solve a subsequent prob-
lem. The drawback with this approach is that as the
number of stored plans increases, the likelihood that a
particular one will apply to a given problem decreases.
In addition, the cost of searching the plan library for
an appropriate plan grows prohibitively. It was clear to
these researchers that there was not sufficient indexical
structure to the library:

The source of this difficulty is that the level of
detail in a Macrop description does not match
the level of planning at which the Macrop is to
be used. ... It may be necessary to consider more
sophisticated abstraction schemes involving alter-
ation of predicate meanings or creation of new
predicates.

This suggests that it is difficult to exploit the ab-
straction inherent in composing operators if one has
no capability for specifying inheritance types of rela-
tionships between the operators. We believe that the
predicate abstraction given here provides just such a
sophisticated abstraction mechanism.

For instance, in the kitchen-world example, the sav-
ing of the specialized plan that was developed might
be of little utility, since the same tools and resources
might not be available in a subsequent similar prob-
lem. In addition, there is a non-trivial overhead cost
associated with determining if a saved plan is directly
applicable. On the other hand, the abstract plan may
be of sufficient generality so that its frequent use offsets
the cost associated with saving it.

Abstraction also appears useful for plan adaptation
or repair. That is, if one has a particular plan that
is being executed, errors or unforeseen events might
occur at runtime–the chef’s knife is not available, for
instance, or the microwave oven is not functioning. In
this case, then, the hierarchical structure of the plan
provides a basis for quickly repairing the problem on-
line. This type of computation can be found in [Alter-
man, 1987] who uses a script-based [Schank and Abel-
son, 1977] problem representation. When a plan step
fails due to the inability to satisfy the precondition of
an operator, an analogous operator is attempted that
has the same abstract effect, but that has a different
specialized precondition. This would amount to using
a cleaver as a substitute for the missing chef knife.

Conclusion

This research has centered around the principle that
in any reasoning system using multiple levels of rep-
resentation, there should be a precise correspondence
between the different levels. In addition, the manner
in which inference at one level can guide inference at
another level should be made explicit. Such a spec-
ification for planning systems has been hindered by
the difficulty of managing propositions at two differ-
ent levels each of whose truth values might change
over time. This paper addresses these problems by ex-
tending the notion of inheritance from object classes,
to relations on object classes, to actions over object
classes. A model-theoretic semantics is presented for
abstracting first-order theories that generalizes ISA-
hierarchies, through the use of a predicate mapping
function. This mapping is then extended to Strips

systems. A powerful inferential relationship between
levels is shown to hold – abstract plan solutions to
problems can be specialized by choosing a specializa-
tion of each abstract plan step, and thus concrete solu-
tions that are not isomorphic in this fashion need never
be explored.

Acknowledgements

I am indebted to Dana Ballard for his encouragement
and critical insights in his role as my dissertation ad-
visor. In addition, I would like to thank Leo Hartman,

Jay Weber, James Allen and Lenhart Schubert for the
numerous readings of drafts and fruitful discussions.

References
[Alterman, 1987] Alterman, Richard 1987. Issues in
adaptive planning. Technical Report 304, University
of California at Berkeley.

[Anderson and Farley, 1988] Anderson, J. and Farley,
A. 1988. Plan abstraction based on operator general-
ization. In Proceedings of the 7th AAAI.

[Brachman, 1979] Brachman, Ron 1979. On the epis-
temological status of semantic networks. In Asso-
ciative Networks. Findler, Nicholas (ed.), Academic
Press.

[Chapman, 1985] Chapman, David 1985. Planning for
conjunctive goals. AI Technical Report 802, Mas-
sachusetts Institute of Technology.

[Fikes and Nilsson, 1971] Fikes, Richard and Nilsson,
Nils 1971. Strips: A new approach to the applica-
tion of theorem proving to problem solving. Artificial
Intelligence 2:189–208.

[Fikes et al., 1972] Fikes, Richard; Hart, Peter; and
Nilsson, Nils 1972. Learning and executing gener-
alized robot plans. Artificial Intelligence 3:251–288.

[Hendrix, 1979] Hendrix, Gary 1979. Encoding knowl-
edge in partitioned networks. In Associative Net-
works. Findler, Nicholas (ed.), Academic Press.

[Kautz, 1987] Kautz, Henry 1987. A Formal The-
ory of Plan Recognition. Ph.D. Dissertation, Univer-
sity of Rochester, Department of Computer Science,
Rochester, New York.

[Knoblock, 1988] Knoblock, Craig 1988. Automati-
cally generating abstractions for planning. In Proceed-
ings of the First International Workshop in Change
of Representation and Inductive Bias. 53–65.

[Lifschitz, 1986] Lifschitz, Vladimir 1986. On the se-
mantics of strips. In Proceedings of the Workshop on
Reasoning about Actions and Plans, Timberline, Ore-
gon.

[McCarthy and Hayes, 1969] McCarthy, John and
Hayes, Patrick 1969. Some philosophical problems
from the standpoint of artificial intelligence. In
Machine Intelligence 4. Edinburgh University Press.

[Nau, 1987] Nau, Dana 1987. Hierarchical abstraction
for process planning. In Proceedings of Second Inter-
national Conference in Applications of Artificial In-
telligence in Engineering.

[Reiter, 1978] Reiter, Raymond 1978. On closed world
data bases. In Logic and Data Bases. Gallaire and
Minker (eds.), Plenum Publishing Corporation.

[Robinson, 1965] Robinson, J. 1965. A machine-
oriented logic based on the resolution principle. Jour-
nal of the ACM 12(1):23–41.

[Sacerdoti, 1974] Sacerdoti, Earl 1974. Planning in a
hierarchy of abstraction spaces. Artificial Intelligence
5:115–135.

[Sacerdoti, 1977] Sacerdoti, Earl 1977. A Structure for
Plans and Behavior. American Elsevier.

[Schank and Abelson, 1977] Schank, R. and Abelson,
R. 1977. Scripts, Plans, Goals and Understanding.
Lawrence Erlbaum Associates.

[Stefik, 1981] Stefik, Mark 1981. Planning with con-
straints. Artificial Intelligence 16(2):111–140.

[Tenenberg, 1988] Tenenberg, Josh 1988. Abstrac-
tion in Planning. Ph.D. Dissertation, University of
Rochester, Dept. of Computer Science, Rochester,
NY.

[Waldinger, 1977] Waldinger, R. 1977. Achieving sev-
eral goals simultaneously. In Machine Intelligence 8.
Elcock and Michie (eds.), Ellis Horwood.

[Wilkins, 1983] Wilkins, David 1983. Representation
in a domain-independent planner. In Proceedings of
the 8th IJCAI.

[Yang and Nau, 1988] Yang, Qiang and Nau, Dana
1988. The formal specification of task reduction
schemas for hierarchical planning. University of
Maryland.

