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This paper describes an empirical study that investigated the knowledge that Computer Science

students have about the extent of their own previous learning. The study compared self-generated

estimates of performance with actual performance on a data structures quiz taken by undergraduate

students in courses requiring data structures as a prerequisite. The study was contextualized and

grounded within a research paradigm in Psychology called calibration of knowledge that suggests that

self-knowledge across a range of disciplines is highly unreliable. Such self-knowledge is important

because of its role in meta-cognition, particularly in cognitive self-regulation and monitoring, as well

as in the credence that instructors give to student self-reports. Our results indicated that Computer

Science student self-estimates are highly correlated with performance, more so for estimates

provided after the performance than before. This high level of calibration, however, was likely the

result of a number of conditions that do not always hold: that the students already had domain

expertise, that the quiz had unambiguous and verifiable answers, and that students expected their

estimates to be validated. When these conditions are not met, it becomes more important for

students to have direct feedback about their performance so as to uncover those areas where their

intuitions might mislead them. Students also had weak knowledge about their standing relative to

their peers, particularly those in the lower performance quartiles, exhibiting the well known better-

than-average heuristic. There was, additionally, no correlation between calibration ability and

degree of liking or difficulty with the data structures material, suggesting that instructors and

researchers should not treat liking or difficulty as reliable indicators of the learning that has

occurred.

1. INTRODUCTION

Do computer science students know what they know? The answer to this question

has several implications. Most importantly, students use self-knowledge for
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metacognitive control of their own learning. For example, Lin and Zabrucky

(1998, p. 384) report that young adults commonly terminate cognition prematurely

due to overconfidence. Instructors use student self-reports in choosing what to review

at the start of a class, for example when asking, ‘‘Are students weak in using

linked lists?’’. Similarly, assessments of teaching effectiveness sometimes hinge on

student self-reports, as in the claim ‘‘students reported that they improved as a

result.’’

But do these student self-assessments bear a close enough correspondence to more

objective measures of performance to justify the confidence students and instructors

sometimes place on them? This paper provides a brief summary of research in

calibration of knowledge, where self-assessment of ability is compared to measures of

performance. Following this, we ask a number of specific research questions related

to teaching Computer Science which can be informed by empirical evidence. We then

discuss an empirical study that we undertook in which we measured student self-

assessment of data structure knowledge against their performance on a data

structures exam. We report on both student test performance, as well as on the

relationship between their self-assessments and performance. Finally, we discuss the

implications of research in knowledge calibration and our results in particular, for

teaching computer science.

2. BACKGROUND

Self-assessment of knowledge is one form of metacognition, which Brown (1987) states

‘‘refers loosely to one’s knowledge and control of [one’s] own cognitive system’’

(p. 66). There have been a number of studies exploring the relationship of self-

assessment of ability to performance across a number of domains, commonly referred

to as studies of knowledge calibration. Performance is typically measured using a test of

knowledge or ability (Everson & Tobias, 1998; Kruger & Dunning, 1999; Glenberg &

Epstein, 1987), though course grades and evaluations by peers or supervisors are also

used (Mabe & West, 1982). Self-assessments are commonly obtained by prompting

subjects to estimate how well they will perform on a given test of ability. Self-

estimates that are made after a performance are called postdictions, and reflect both

knowledge about performance and about the task itself. Self-estimates that are made

before a performance are called predictions. Predictions often require estimates not

only of performance but of the specifics of the performance task that might be

unknown until after the task has been performed. This would be the case for students

who are asked to predict the number of questions that they expect to answer correctly

on an exam that they have not yet seen. It is therefore unsurprising that several studies

demonstrate that postdiction is generally more accurate than prediction (Mabe &

West, 1982; Lin & Zabrucky, 1998).

The main measure of subject calibration is the Pearson product-moment

coefficient (r) between self-estimates and performance within a study population,

though Goodman-Kruskal’s gamma (G) (treating test scores as ordinal data) is

sometimes used. If subjects within a population are well calibrated, we would expect
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correlations to be positive and close to 1, since this indicates that estimates and

performance increase linearly. The research results do not present a clear and

consistent picture, however. Correlations range from moderate negative correlation,

r¼7.42; p5 .001 in Fitzgerald et al. (1997), to non-significant correlations close to

0, G¼ .02 in Glenberg and Epstein (1987) and 0.05� r� 0.19 in Kruger and

Dunning (1999), to moderate positive correlation, r¼0.46 in Everson and Tobias

(1998). In a meta-analysis of 55 calibration studies with a combined population of

14,811 subjects across a wide variety of domains (e.g. clerical skills, managerial skills,

college coursework, physical abilities, medical skills) Mabe and West reported an

overall correlation of r¼ .29.

Correlation alone, however, does not fully represent accuracy of self-estimates, as

Kruger and Dunning (1999, p. 190) point out. Another measure of calibration that is

sometimes used examines the mean of the absolute magnitude of the difference

between estimates and criterion scores, what we call estimation error. To see how

measures of estimation error can provide a more nuanced view of study data than

correlation alone, consider Table 1, which shows hypothetical calibration data for two

different subject samples. The actual scores are identical for both samples, and the

Pearson correlation coefficient for both is significant and close to 1. But the samples

differ dramatically in terms of estimation error, with the first sample having an

average error of 24 and the second sample having an average error of 1.

Fitzgerald et al. (1997) carried out a calibration study with first-year medical

students, where they simply added the one calibration question ‘‘Please estimate your

percent correct on this exam (0% – 100%)’’ to each of the exams given in all first-year

courses at the University of Michigan Medical School. ‘‘The high level of accuracy in

these students’ self-assessments (within 1% of their actual performance) is striking,

and suggests well-developed self-assessment skills.’’ Kruger and Dunning (1999,

study 3, phase 2) reported mean estimation errors of 3.48 and 1.84 in the bottom

and top performance quartiles, respectively in a study in which subjects graded five

Table 1. Correlation and mean estimation error

Sample 1 Sample 2

Actual Estimate Actual Estimate

30 0 30 29

40 10 40 39

50 50 50 51

60 90 60 61

70 100 70 71

mean 50 50 50 50.2

r .978** .999**

mean j estimation – actual j 24 1

**Correlation is significant at the 0.01 level (2-tailed)
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20-item exams of other students. This error represents the difference between

the number of problems graders scored as correct and the actual number of problems

correct. Lin and Zabrucky (1998) reported on a study by Glover (1989), in which

student subjects had mean estimation errors (predicted to actual) of 1.21 and 7.43 in

the bottom and top performance quartiles, respectively, on the Nelson-Denny

Reading Test.

Mabe and West (1982) suggested that people are in general better at self-assessing

their abilities relative to others than on an absolute scale. ‘‘The issue generally is not

one of how much ability a person has in the absolute sense but rather of how much

ability he or she has in comparison with other people.’’ (p. 290) They found that the

use of social comparison measures (e.g. ‘‘as compared to other students in your

class’’) was one of the main situational factors in the 55 calibration studies that they

examined significantly correlated with high calibration ability.

Kruger (1999), however, cited evidence from a number of empirical studies

indicating that people systematically over-estimate their abilities relative to others:

‘‘As the author of one of the best-selling introductory psychology textbooks in the

United States put it, ‘for nearly any subjective and socially desirable dimension . . .

most people see themselves as better than average’ (Myers, 1998, p. 440).’’ (p. 221)

This is often referred to as the better-than-average or Lake Wobegone effect.

Kruger and Dunning (1999) suggested that systematic over-estimation of relative

performance is associated with low expertise: ‘‘when people are incompetent in the

strategies they adopt to achieve success and satisfaction, they suffer a dual burden:

Not only do they reach erroneous conclusions and make unfortunate choices, but

their incompetence robs them of the ability to realize it . . . In essence . . .the skills that

engender competence in a particular domain are often the very same skills necessary

to evaluate competence in that domain.’’ (p. 1121) In studying the calibration of

college students on tests in humor, logic, and grammar, they found considerable

over-estimation of performance relative to their university classmates among bottom

quartile performers and a small amount of under-estimation among top quartile

performers. Krueger and Mueller (2002) argued that this relationship between

estimates of relative ranking and actual performance does not stem from any

metacognitive differences between expertise-based groups. Rather, it results from

subjects generally employing a better-than-average heuristic along with the statistical

artifact of regression toward the mean. ‘‘With repeated testing, high and low test scores

regress toward the group average, and the magnitude of these regression effects

is proportional to the size of the error variance and the extremity of the initial score.’’

(p. 184)

In an attempt to determine the factors that influence calibration differences,

researchers have both experimentally manipulated measurement conditions as well as

asked subjects to self-rate along a number of dimensions other than direct ratings of

exam performance. These dimensions included asking subjects to self-rate their

domain knowledge (e.g. Chemistry or Electronics, Ackerman et al., 2002), general

ability (e.g. ‘‘general logical reasoning ability’’, Kruger and Dunning (1999),

or ‘‘verbal ability’’, Ackerman et al. (2002)), affective assessment of the domain
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(e.g. desirability or interest of domain investigated, Lin and Zabrucky, 1998), or

subjective assessment of subject difficulty (e.g., Kruger, 1999).

Kruger (1999) reported systematic under-estimation on social comparison

measures in domains that subjects rate as difficult and over-estimation in domains

that subjects rate as easy. In partial disagreement with this result, Lin and Zabrucky

(1998) concluded ‘‘according to available data from the postdiction paradigm,

students’ competence in past performance assessments varies as a function of test

item difficulty. Students tend to exhibit less illusion of knowing on easy test items and

are able to calibrate performance on those items with greater accuracy than on

difficult items’’ (p. 370). Mabe and West (1982, p. 293) reported from their meta-

analysis of 55 calibration studies that ‘‘expectation of self-evaluation validation’’ by

subjects is one of the key factors in prediction accuracy. And Ackerman et al. (2002)

found that calibration accuracy with the same population of college graduates from a

variety of majors differs dramatically depending on subject domain. ‘‘The largest

correlations [between self-assessments and performance] were found for the Science

domains (mean r¼ 0.52), followed by Civics (mean r¼ 0.45), Humanities (mean

r¼0.45) and Business (mean r¼0.16)’’ (p. 599).

Lin and Zabrucky (1998) conjectured that ‘‘individual factors, such as interest and

motivation, may mediate the degree to which readers can precisely judge whether a

text is fully comprehended.’’ (p. 363) However, they reported that there is limited

evidence for this, with one study showing a small correlation between interest and

calibration (r¼ .15)

Researchers have also attempted to determine if different subject populations have

different calibration ability. Rammstedt and Rammsayer (2000) investigated the

effect of gender on calibration and found that ‘‘there was some direct evidence for the

assumption that estimates of intelligence are susceptible to gender stereotypes.’’

(p. 869) Ackerman et al. (2002) found that students with college majors in the Social

Sciences or Humanities were accurately calibrated across a variety of knowledge

domains, whereas Business majors consistently over-estimated performance across all

domains.

Several other studies have also attempted to determine if subject domain expertise

has a bearing on calibration accuracy. Lin and Zabrucky (1998), as well as Fitzgerald

et al. (1997), cited several studies that provide evidence that those with high domain

expertise often have the ‘‘illusion of knowing’’: more knowledge sometimes brings

along with it a sense of overconfidence. Agnew et al. (1994) cited a number of studies

demonstrating validation bias associated with expert judgments. As Ehrlinger and

Dunning (2003) pointed out, ‘‘People do not dispassionately count up their success

and failures to form a self-impression as much as they actively interpret them to fit

chronic views, usually positive ones, of the self . . . Positive feedback is more likely to

be accepted unquestioningly; negative feedback is placed under close scrutiny with an

eye toward discounting it.’’ (p. 6)

To summarize, a number of studies indicate moderate calibration ability by

students, although several factors mediate this. These factors likely include

characteristics of the subject domain, test item difficulty, student affect toward the
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subject area, and conditions of the research study itself, such as whether subjects

believed that estimates would be validated through performance tests. Subject

population characteristics, such as gender and college major, also appear to influence

calibration ability, while the evidence is conflicting on whether domain expertise is

related to calibration ability.

3. RESEARCH QUESTIONS

We can now ask a number of specific questions regarding student knowledge and

metaknowledge in computer science: Do students have systematic misconceptions or

lack of retention concerning the data structures material in subsequent courses? Do

student self-estimates correlate with performance, or do students systematically

under- or over-estimate performance? Do most students rate themselves above

average relative to their peers? Does self-assessment of subject difficulty or interest

correlate with either performance or accuracy? Is calibration accuracy related to

domain expertise? Do students with higher scores have the illusion of knowing? Do

those with lower scores suffer the dual burden of incompetence?

We undertook the following empirical study to obtain evidence to inform these

questions. As far as we are aware, these are the first studies to date reported in the

scientific literature on calibration of knowledge within Computer Science. Further,

there currently exists no data on student knowledge retention of data structure

knowledge downstream from the introductory data structures course. Although this

latter question is not our primary concern, it serves as an excellent test-bed for

calibration research, especially given the relative standardization of the material in the

data structures course.

4. STUDY METHODOLOGY

The study examined upper-level computer science students’ ability to self-assess their

prerequisite data structures knowledge. As described in more detail below, students

from two universities took a quiz to measure their data structures knowledge and

completed both pre- and post-quiz self-assessment questionnaires to determine their

calibration ability. The research protocol, quiz and self-assessment questionnaires

were approved by the Institutional Review Boards (IRB’s) at both the University of

Washington, Tacoma and Pacific Lutheran University.

4.1. Subjects

Participants were drawn from undergraduate students enrolled in upper-level

computer science classes at two universities in the Pacific Northwest of the USA.

Twenty-eight subjects were from Pacific Lutheran University (PLU), a private,

suburban, liberal arts university. Approximately 70% of students enter PLU directly

from high school and entering freshmen typically have a 3.0 or better high school

grade point average on a scale from 0 to 4 and a 1000 out of 1600 on the College
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Board SAT exam. Students transferring from other colleges or universities must

usually have a grade point average of 2.5 or better. Thirty-three subjects were from

the University of Washington, Tacoma (UWT), a public, urban university serving

junior and senior level students. Greater than 90% of the students entering the

computer science major transfer from community colleges, all entering students must

have a cumulate grade point average from all previous courses of 2.0 on a scale from 0

to 4, and approximately two-thirds of the students entering the computer science

major complete their degree. Most students were taught Java as their introductory

language, and Java is used as the predominant language throughout the PLU and

UWT computer science curricula.

Seventy-eight students enrolled in four targeted classes were given full credit for

completing the data structures quiz, regardless of their score. Only quiz results from

61 students giving their consent are included in this study. Data on gender was not

collected due to low enrolment of female students (as few as two in some targeted

classes).

4.2. Targeted Classes

The study was conducted in four upper-level undergraduate classes, two at each

institution. These included Programming Languages and Algorithms at PLU, and

Algorithms and Software Engineering at UWT. These classes were selected because they

are required courses for all computer science majors at their respective institutions,

and they require data structures as a prerequisite. Three of the courses have additional

prerequisites: both algorithms courses also require Discrete Math, and the software

engineering course requires both Technical Team Management and Algorithms.

4.3. Data Structures Prerequisite

There are distinct differences in the two prerequisite data structures courses. At PLU,

the class is taught on a semester schedule, requires one semester of Java programming as

a prerequisite, and has an accompanying closed lab. The UWT class is taught on

quarters, requires two quarters of Java programming as prerequisites and does not have

a closed laboratory component. The courses serve different types of students at slightly

different points in their respective programs, and there is some dissimilarity in course

content. For example, PLU focuses more on object oriented programming techniques

and UWT covers a few more advanced topics, such as balanced trees and graphs.

Despite their differences, the classes are largely similar in their traditional data

structures content and in the primary role they play in their respective curricula. Classes

at both institutions include the study of fundamental data structure abstractions and

implementations including lists, stacks, queues, trees, and hash tables. They also cover

recursion and algorithm analysis, particularly within the context of sorting and

searching. Additionally, both courses serve as the typical ‘‘gateway’’ prerequisite to

most upper-level computer science classes. These considerable similarities enabled

the same data structures quiz to legitimately be administered to students at both
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institutions; the differences in context increase confidence in the generalizability of the

results beyond the students at either institution.

4.4. Quiz Construction

To assess students’ data structures knowledge, we constructed a quiz1 using multiple-

choice questions from Advanced Placement (AP) and Graduate Record Examination

(GRE) computer science practice tests (College Entrance Examination Board, 2003;

Horowitz, 2000; Graduate Record Examination, 2001; Teukolsky, 2001). AP and

GRE questions ensured external validity and prevented bias in favor of students at

either university. The multiple-choice format also provided unambiguous correct

answers and allowed us to accurately gauge the number of questions we could

reasonably expect students to answer in 30 minutes. Questions were selected to

closely reflect the topics covered in a typical data structures course. They were also

reviewed by the primary data structures instructor at each institution for consistency

with their course syllabi, especially the proportion of questions on the different topics

(see Table 2 for question topics and a bibliographic source for each question).

Furthermore, to confirm the questions and time constraints were fair and reasonable

for our subjects, we also piloted the quiz with four upper-level computer science

majors, two from each institution.

4.5. Procedure

The quiz was administered in class during the first week of the fall 2003 term.

Students were informed both verbally and in writing that they were required to take

Table 2. Quiz Question Topics

Question Topic & Source

1 singly linked list properties and analysis of opsa(p:60)

2 stacks vs. queues – choosing right data structureb(p:248)

3 binary search vs. sequential searchb(p:161)

4 binary search tree general propertiesb(p:222)

5 binary tree traversalsc

6 hash table properties/definitionsb(p:305)

7 sorting – merge sort vs. insertion sortd(p:310)

8 BST insertion and traversal w/ analysisb(p:263)

9 tracing recursive binary tree methodsc

10 analysis of recursive binary tree methodsc

11 tracing stack operationsc

12 sorting algorithm identificationd(p:310)

13 singly linked list traversalc

14 singly linked list traversal analysisc

aGraduate Record Examination (2001), bHorowitz (2000), cCollege Entrance Examination Board

(2003), dTeukolsky (2001)
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the unannounced quiz, but that they would be given full credit for taking it, regardless

of their scores.

In addition to the quiz, students completed both pre- and post-quiz questionnaires

to assess their calibration ability. To enable students to make an accurate prediction

of their performance on the quiz, we provided them with the following detailed

description on the pre-quiz questionnaire:

You will be completing a 14-question multiple-choice quiz covering material that was

presented in your Data Structures course. The questions are primarily taken from

College Board Advanced Placement (AP) practice books. In particular, this quiz will test

your knowledge of trees, linked lists, stacks, queues, and hash tables. For each of these

topics, there may be questions concerning data structure definitions, operations,

implementations, worst-case time analysis, and tradeoffs between different data structure

choices. In addition, there will be questions about different sorting and searching

algorithms.

Students predicted both the absolute number of questions they would answer

correctly and their relative percentile ranking compared to other students taking the

quiz by responding to the following questions:

1. Based on your assessment of your knowledge of the data structures

material, how many questions in the 14-question quiz do you predict you will

get correct?

2. Compared to the other students taking this quiz, how do you think that

you will place? Provide a number between 0 and 100 that indicates the

percentage of students that you will perform better than. For example,

‘‘10’’ means that you will perform better than 10 percent of the students,

and ‘‘90’’ means that you will perform better than 90 percent of the

students.

To assess the influence individual factors, such as perceived relative domain

difficulty and interest (Lin and Zabrucky, 1998, p. 363), have on performance or

calibration, students were asked to give Likert-type responses to the following

questions:

3. Rank the level of interest you have in the data structures material. (very

uninteresting, somewhat uninteresting, neutral, somewhat interesting, very

interesting)

4. Compared to the other courses that you have taken in college, rank the level of

difficulty that you had in learning the data structures material. (very difficult,

somewhat difficult, neutral, somewhat easy, very easy)

After completing the quiz in the allotted 30 minutes, students completed a

second questionnaire on which they postdicted their absolute and relative quiz

performance.
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5. RESULTS AND DISCUSSION

5.1. Data Structure Knowledge

Performance by students from PLU (N¼28, M¼ 8.36, SD¼ 2.48) was virtually

identical to that of students from UWT (N¼ 33, M¼ 8.42, SD¼ 2.59), and an

independent groups t test indicated no significant difference (t(59)¼ 0:103, p¼ 0:92)

between these groups. Students in the more advanced course for which both

Algorithms and Data Structures are prerequisites performed similarly to the

population as a whole (N¼ 17, M¼ 8.6, SD¼ 2.7). For the balance of this paper,

all students will be treated as belonging to the same population.

The mean score for the population of students was just above one-half of the

questions (N¼ 61, M¼ 8.39, SD¼ 2.52), with one student scoring the maximum

possible score of 14 and five students with the lowest score of 4. There is probably

some upward bias in these results, since students who did not give consent to use their

quiz results were largely those who had dropped or were doing poorly in their classes.

Figure 1 shows, for each question, both the number and the percentage of subjects

answering that question correctly. Students performed best on questions testing

knowledge of the stack, queue, and tree interface, and performed worst on questions

testing knowledge of comparing runtime efficiency of binary and sequential searches,

as well as in identifying whether a piece of code is an example of selection sort,

insertion sort, mergesort, or quicksort. Questions involving code tracing or imple-

mentation knowledge of linked lists, trees, and recursion were answered correctly by

one-half to two-thirds of the students.

5.2. Knowledge Calibration

5.2.1. Raw score error and correlation. Descriptive statistics are provided for the full

sample of 61 students in Table 3 for actual score, prediction, postdiction, prediction

Figure 1. Subjects answering correctly (N¼ 61)
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error, and postdiction error. We defined the prediction error of a subject as the

absolute value of the difference between the subject’s predicted and actual scores,

similarly for postdiction error. Although this provides some measure of accuracy, it

can underestimate metacognitive error. This would occur when a student believes

that one question is answered correctly and another is answered incorrectly, both of

which are false beliefs.

Paired samples T tests indicated that the difference between mean actual scores

and predictions is significant (t(60)¼74:03, p5.001), as is the difference between

mean actual scores and postdictions (t(60)¼72:24, p5.05).

Table 4 shows the correlations (Pearson’s product-moment coefficient, r) between

estimations, actual scores, and estimation error. Overall, both predictions and

postdictions were positively and significantly correlated with actual scores. Since the

predictions were made prior to viewing the exam questions, they are based on more

generalized student beliefs about their data structures knowledge, cued by the topic

areas specified in the directions (e.g. linked lists, trees). It is not surprising then, that

both correlation increases and estimation error decreases after subjects view the exam

itself.

Overall, prediction calibration is moderate, with postdiction calibration being

relatively high, especially in comparison to research studies cited above. We believe

that this high postdiction calibration is a result of several factors. One is that much

of computer science in general, and data structures in particular, lends itself to

high calibration given its objective nature. Second, we took care in our study design to

Table 3. Descriptive statistics: Raw scores

Min Max M SD

Raw score actual 4 14 8.39 2.52

Raw score prediction 5 14 9.69 2.08

Raw score postdiction 4 14 8.99 2.41

Score prediction error 0 7 2.30 1.62

(jRaw score – Predictionj)
Score postdiction error 0 7 1.65 1.40

(jRaw score – Postdictionj)

Table 4. Pearson’s Product-Moment Coecient: Raw scores

Actual Score Predicted score Postdicted score Prediction error

Predicted score .418**

Postdicted score .643** .581**

Prediction error 7.464** .158 7.145

Postdiction error 7.249 7.011 .055 .378**

**Correlation is significant at the 0.01 level (2-tailed)
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use clearly stated questions having definitive answers, since, as the literature indicates,

low estimation accuracy might simply reflect ambiguity in exam questions or in the

instructions to the subjects. And third, consistent with the findings of Mabe and West

(1982) that calibration improves when subjects expect self-estimates to be validated,

the setting of the exam made clear that subject self-estimates would be compared to

actual performance, thus reducing some of the incentive to inflate estimates.

5.2.2. Calibration and expertise. Did those performing the worst provide the least

accurate predictions? Table 4 shows that there is a moderate, inverse correlation

between prediction and calibration error, i.e. error decreases as scores increase. But

the negative correlation between error and performance is weak and non-significant

for raw score postdiction. Figure 2 provides a more detailed view of error by quartile.

What the correlation and error statistics do indicate is that there is not in general a

double burden for the lowest performers. Though their calibration accuracy was less

than that of the highest performers, the bottom quartiles also improved the most in

going from prediction to postdiction, hence displaying the sort of metacognitive

estimate of performance that they could use to regulate their study. If there are

lessons here concerning metacognition, it might be that lower performers over-

estimate their general abilities (what prediction estimates are presumably based on),

but more accurately calibrate following direct experience. Interestingly, the estimates

of students performing in the top quartile remained virtually unchanged in going

from prediction to postdiction. In neither test did top quartile students on average

overestimate their scores and display the ‘‘illusion of knowing’’ that is often associated

with performances that subjects find relatively easy.

Figure 2. Raw score error by quartile
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5.2.3. Interest and difficulty. As for affective and subjective factors, neither student

interest in the data structures material nor ratings of subject difficulty showed any

effect on knowledge calibration. Pairwise correlations using Kendall’s t (due to the

ordinal nature of the data) on interest, difficulty, raw score prediction error, and raw

score postdiction error did not differ significantly from 0. Furthermore, as shown in

Figure 3, there was little difference in these ratings across performance groups.

5.2.4. Calibration on relative rankings. Over the entire population, subjects were

moderately calibrated in their estimates of percentile ranks relative to their classmates

as compared to their actual rankings based on quiz score. Pearson r coefficients of

prediction to actual rank and postdiction to actual rank were 0.38 and 0.44,

respectively, both significant at the 0.01 level (2-tailed). A closer look at the data,

however, revealed that the estimation errors in ranking were not uniformly distributed

across the population, with those in the lower two performance quartiles having

considerably higher estimation errors than those in the top half, as illustrated in

Figure 4. Pearson r coefficients of prediction error to actual rank and postdiction

error to actual rank were 70.65 and 70.43, respectively, both significant at the 0.01

level (2-tailed). That is, as actual scores decrease, estimation errors increase. The raw

data itself revealed that only 7 of 61 subjects predictively and 11 of 61 subjects

postdictively ranked themselves in the bottom two quartiles. Taken in total, these

results were consistent with the hypothesis that subjects will, in general, rank

themselves as better than average in social comparisons.

Figure 3. Mean ratings by quartile (1¼ low, 5¼ high interest/difficulty)
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6. INSTRUCTOR CALIBRATION

Prior to administering the exam, we had believed that students would, on average,

answer approximately 11 of the questions correctly, predicting that a large number

would obtain perfect scores. Yet only a single student had a perfect score of 14, with

no students scoring 13, four students scoring 12, and students scoring 8.39 on

average. The exam questions avoided the algorithmic arcana that sometimes

creep into data structures courses, asking instead about basic skills such as time-

complexity analysis on iterative programs, code tracing, tree traversals, and algorithm

identification. Perhaps we should not have been surprised with the student scores,

given recent large-scale studies in which students underperformed their instructors’

expectations (McCracken et al., 2001; Lister et al., 2004). Although poor student

calibration can lead to metacognitive failures of learning and strategic choice, poor

instructor calibration to student performance can lead to both instructor over-

emphasis on material that is already mastered, or systemic blindness to student

weaknesses that require remediation.

In order to determine if our colleagues were similarly miscalibrated to student

performance, we carried out the following brief follow-up. After obtaining IRB

approval, we presented instructors within our own departments with a copy of the

exam (usually by email) and asked them the following single question: ‘‘Assuming

that you are teaching a class that requires data structures as a prerequisite (e.g., AI,

Algorithms) how many of the quiz questions from the attached quiz would you

expect students to answer correctly on average? Please provide a real number between

0 and 14.’’ We asked this of all instructors within our departments teaching either the

Figure 4. Relative percentile estimates by quartile
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data structures course or one of the courses requiring data structures as a

prerequisite.

Eleven instructors provided the following responses: 12, 10, 9.85, 12, 5.75, 12, 14,

10.5, 10.75, 10, 8, with a mean prediction of 10.44. As can be seen, all but two

instructors overestimated the average student performance of 8.39. The average

student prediction of 9.69 and postdiction of 8.99 were each better than the

predictions of all instructors except one. In aggregate, student estimates were

considerably more accurate than either aggregate or individual instructor estimates.

We conjecture that, while instructor illusions about student performance sustain

hope, at the same time they hinder instructors from systematically determining the

causes of student underperformance so as to provide remedial instructional

interventions. But we leave it for subsequent studies to determine whether this is

the case.

7. CONCLUSION

This study set out to answer a number of specific research questions about student

knowledge and metaknowledge in computer science. We provide responses to each of

these questions in light of the empirical study carried out. Additionally, we highlight

the implications of this research for both the instructor and the Computer Science

Education (CS Ed) researcher. We caution, however, that because this is a single,

small-scale study, all conclusions must be viewed in the context of existing calibration

research and as contingent on validation by future studies.

Do students have systematic misconceptions or lack of retention concerning the data

structures material in subsequent courses? Test results revealed particular areas of

weakness, including sorting and searching algorithms, hash tables, and tracing and analyzing

recursive binary tree methods. However, it is unclear whether the weaknesses were due to

insufficient learning in the first place or lack of retention after the data structures course ended.

The fact that the students who had taken an algorithms course, which generally involves review

of data structures, performed as poorly as those taking only data structures suggests that the

issue is primarily one of recall; regardless, there is a considerable amount of data structures

information that students do not have readily accessible. We state these conclusions cautiously,

however, since students might perform differently over a larger, more comprehensive exam, in

a non-test setting, or when writing code in a computer laboratory. Because performance on

particular questions is likely influenced by the specifics of the instructional context, we would

not claim that these areas of weakness generalize beyond our respective institutions. But at the

risk of stating a truism, we observe that simply because a subject is ‘‘covered’’ in a course does

not mean that students can access this information in the future when called upon to do so.

Not only did the poor student performance on the exam (M¼ 8.39 out of 14) surprise us, it

also surprised our colleagues who teach the data structures courses and the courses that depend

upon it, with a mean instructor estimate of 10.44. Although a student’s miscalibration affects

only that student’s metacognitive choices, the costs of an instructors’ miscalibration are

magnified across all students attending a course. The implications for both educators and

researchers (even those doing informal research within their classrooms), are that researcher

and instructor intuitions of student learning in the absence of substantiating empirical data can

be significantly misleading.
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Do student self-estimates correlate with performance, or do students systematically

under- or over-estimate performance? Is calibration accuracy related to domain

expertise? As a whole, students were quite well calibrated, with a correlation of 0.643 between

postdicted and actual score, among the highest reported in the calibration literature we

surveyed. Average postdiction error was also relatively low at 1.65 on an exam with 14

problems. Comparing these calibration results to those reported in the research literature, it is

likely that the relatively high levels are due to a number of factors:

Domain expertise. The students sampled in these courses were students already achieving

success in the major, and already possessing a large body of domain knowledge. Also, because

the informed consent process occurred late in the academic term in all classes, some weaker

students had already dropped the course.

Content of the exam. The contents of the introductory data structures course, at least in the

United States, have been somewhat constant for a number of years (Tenenberg, 2003). This

increases the likelihood that, regardless of instructor, students would have been exposed to

similar material and asked to exercise similar skills in their data structures course. This might

account for why even the prediction accuracy was quite high (r¼ 0:42, estimation error¼ 2.3),

since students could develop a coherent predictive model of the material that they anticipated

would be on the test. Even more importantly, much of the material is formal in nature, with

precise criteria and processes for establishing right and wrong answers. That is, in reasoning

about computer science knowledge in general, and data structures material in particular,

students must have a complete chain of inference linking the given problem, their stored

knowledge, and their conclusions. Thus, they might have a firmer grasp on when they are right

and wrong than students working in disciplines (or on problems) where there are not such clear

cut answers to problems. As Hans Bethe stated ‘‘In science, you know you know’’ (Associated

Press, 2005).

Exam setting. In making predictions, students had the expectation that their self-assessment

would be validated through an actual performance, one of the factors that Mabe and West

(1982) found to be strongly correlated with calibration accuracy.
What this means for the instructor is that high levels of accurate self-knowledge cannot always

be expected of students, since the above conditions are not always satisfied. Students working in

unfamiliar knowledge domains (e.g. when learning domain knowledge specific to a software

application), or domains that are less formal (e.g. Computer Ethics, Requirements Elicitation)

might be less able to predict their performance. Open-ended and evaluative investigations might

also diminish a student’s calibration ability. And calibration accuracy might decrease in settings

where students do not expect their knowledge claims to be validated. In these cases, it becomes

much more important for students to have direct empirical validation of their performance so as

to help uncover those areas where their intuitions about their abilities might mislead them. Lin

and Zabrucky (1998) point out, however, that ‘‘self-generated feedback has a more positive

impact on calibration than does other-provided feedback’’ (p. 384), suggesting that instructors

should provide students with systematic practice with metacognitive techniques so that students

will learn to regularly self-monitor their own learning.

Do students with higher scores have the illusion of knowing? Do those with lower

scores suffer the dual burden of incompetence? Students in the top fifty percentile were

well calibrated both before and after taking the test. It is possible that these students have

deservedly high confidence in their general abilities, and so the specific questions that appeared

on the exam mattered little for their self-estimates. Although students in the bottom fifty

percentile had poorer predictive accuracy, their postdictive accuracy approached that of the

higher performers. Not only did these lower performers not appear to suffer the dual burden of

incompetence, they also demonstrated the capacity to calibrate from experience. For these
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poorer performing students, prediction error might be more a result of having a faulty model of

what comprises the materials in a data structures course rather than a failure to assess their own

level of understanding.

Do most students rate themselves above average relative to their peers? Student

estimates of performance relative to their peers were moderately calibrated. However, the lower

two performance quartiles had considerably higher estimation errors than those in the top half,

consistent with the well-known better-than-average effect. We conjecture a few reasons for this.

First, in many courses, instructors do not report the distribution of grades across all students.

Thus, self-beliefs about relative performance might be highly conjectural and unreliable. And

second, students might reason that they are above average given their attainment thus far in the

degree program, especially considering attrition out of the major that they have observed

among many of their peers.
Perhaps most importantly, the better-than-average effect might have little influence on

tactical metacognitive decision making, influencing instead larger strategical considerations,

such as whether to continue in the current degree studies in Computer Science. It may be that

for those students performing most poorly, both persistence in the major and preservation of

self-image requires some amount of denial of relative ranking.

Does self-assessment of subject difficulty or interest correlate with either perfor-

mance or accuracy? Neither student interest in the data structures material nor ratings of

subject difficulty bore any relationship to either performance or knowledge calibration. This

might be as a result of selection bias in the sample: students progressing this far in the major

will likely be those who in general like the subject and do not find it overly difficult. The fact

that students like a lesson, method, or course does not mean that they attained mastery, or that

dislike means that they failed to do so. It suggests that neither instructors nor researchers

should treat student reports about liking a teaching intervention or the difficulty of learning as a

proxy (or dependent variable) for the amount of learning that actually occurred. Learning is

much better assessed through direct evaluation of performance.
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