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ABSTRACT 
This paper presents a vision of how the Internet of Things will 
impact the study of software engineering by 2025 and beyond. 
The following questions guide this inquiry. What will it mean to 
be able to deploy hundreds of sensors and data collectors running 
concurrently over months to gather very large and rich datasets of 
the physical, digital, and social aspects of software engineering 
organizations and the products and services those organizations 
create? How might such datasets change the types of research 
questions that can be addressed? What sort of tools will be needed 
to allow interdisciplinary communities of researchers to 
collaboratively analyse such datasets? How might such datasets 
help us understand the principles governing the interplay of 
physical, cyber, and social aspects of software engineering and its 
products, and automate aspects of such systems? 

Categories and Subject Descriptors 
D.2.0 [Software Engineering]: General.  

General Terms 
Design, Human Factors, Measurement, Theory. 

Keywords 
Wide-field ethnography, Empirical software engineering, Internet 
of Things, Sensors. 

1. INTRODUCTION 
This paper argues that the combination of increasingly rich 
sensing technologies, highly scalable computing, and advanced 
analytics presents radical new possibilities for observing, 
recording, analyzing, understanding, and improving complex 
physical-cyber-social systems (PCSSs) such as software 
engineering teams and organizations and their products and 

services. We can capture high-resolution, multi-perspective, large-
scale data of both physical phenomena (e.g., people’s speech and 
physical actions), and digital phenomena produced by human-
machine interactions (e.g., software commits to version-control 
repositories) enabling rich inquiry into individual and team work 
in PCSSs. Philosophers, psychologists, and social scientists have 
argued convincingly for the distributed, social, and embodied 
nature of cognition [2, 5, 10, 13, 17], highlighting how people 
make available to one another (in their speech, writing, gestures, 
gaze, body orientation, and actions) the resources necessary for 
sustaining the visible social order of their joint activity. In the 
very act of working in PCSSs to create PCSSs, software engineers 
make visible to one another the interplay of the physical, digital, 
and social aspects of the systems they inhabit and create. This 
affords social science researchers to use sophisticated research-
oriented PCSSs to capture this activity for later analysis. It also 
allows computer scientists to create and use automatic 
approaches, such as generation and analysis of transcripts from 
voice recordings with attribution of utterances to individuals in 
the subject community, complex event detection, and sentiment 
analysis, to provide additional dimensions of meta-data for 
analysis by investigators, or to automatically control aspects of the 
PCSSs being observed. These capacities could have far-reaching 
implications for how we study software engineering in particular, 
and the science of complex social systems in general.  

We use the term wide-field ethnography (WFE) to refer to this 
approach of gathering and collaboratively analyzing large, multi-
modal, multi-stream datasets of PCSSs in action. WFE uses a 
wide variety of sensors and data collectors and ethnographically 
informed observations to gather data from a wide set of data fields 
(space, time, modalities) across a wide expanse to enable 
collaborative analysis by a wide set of disciplinary fields. 

2. WFE DATASETS 
This section examines a few existing WFE-like datasets in order 
to ground the salient features of WFE presented in Section 3. 

In February 2014 Socha used nine GoPro cameras, six high-
quality Zoom H2n audio recorders, screen capture software, and a 
hand-held camera – all running concurrently or an 11-day period – 
to gather six terabytes of video (380 hours; 981 files), audio, full-
room time-lapse imagery (every 5 seconds), screen capture (292 
hours), photographs (thousands), and field notes of software 
developers collaborating in situ [14, 16] in a Seattle area software 
development organization that we refer to via the pseudonym 
BeamCoffer. At that point BeamCoffer was 10 years old and 
employed about 50 people working in a large open office (see 
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Figure 1. Images from the BeamCoffer dataset. 

Open office configuration (a) with pair programming 
stations in center. Equipment setup (b); pair programming 

stations are denoted by orange pairs of letters. 
Video frames showing: (c) interaction between stations A 

(camera 6) and C (camera 5), (d) full-room from time-lapse 
camera, (e) huddle, and (f) conference room. 

Figure 1a). Figure 1b shows the data recorder layout. Figure 1c-f 
show the diversity and quality of imagery collected. The dataset 
now also includes interviews. The BeamCoffer dataset provides 
rich material about software engineers using agile practices and 
collaborating in naturalistic environments. 

In 2014, Blink, a user research firm in Seattle, began developing 
Feedback Panel, a web-based system for collaborative, real-time 
user-experience research. Feedback Panel automatically uploads 
data streams to the Amazon cloud from multiple cameras, audio 
recorders, and other data collectors used in user experience 
sessions. Cloud services translate the streams into multiple 
formats for replay on Blink customers’ devices, and automatically 
transcribe speech. Feedback Panel displays streams in real-time to 
distributed teams of researchers, who chat and annotate the 
streams in real time. This allows them to evolve their 
understanding in response to emergent insights, quickly index 
between annotations and streams, and significantly reduce the 
amount of “grunt” work. Researchers spend more time on value-
added analysis, do better work, have more fun, and produce 
higher profits.  

Similarly, Adams gathered and curated a dataset of videos of 
design critiques for the 2014 Design Thinking Research 
Symposium [1] in which an inter-disciplinary research community 
analyzed the shared data through a diverse set of theoretical 

lenses. Walter gathered hundreds of hours of videos of 
entrepreneurs presenting in a startup accelerator, which provided 
insights into flaws in the design and educational content of such 
accelerators. Roth has extensive expertise gathering and analyzing 
multi-modal datasets (e.g., video, audio, observation, interview, 
photographic images, physical and textual artifacts) to uncover 
insights across diverse domains.  

These examples hint at the type of large complex datasets enabled 
by sensor technology and the Internet of Things. By 2025 a 
research group might deploy hundreds or thousands of sensors 
and data collectors over time periods from days to weeks to 
months, gathering thousands of streams of PCSS data. Current 
technology affords analyzing voice parameters such as speech 
intensity, pitch, or speech rate, all of which have psychological 
correlates with the speaker’s affective state. In the future, sensors 
might enable researchers to track other physical and physiological 
states of agents, thereby increasing the streams of objective data 
that can be correlated with individual and collective human 
behavior, e.g., different physiological and speech parameters in 
situations of conflict or solidarity [12].  

Such WFE datasets will contain petabytes of data, including 
virtual reality and augmented reality streams that allow WFE 
researchers to immerse themselves in the PCSS under study.  
Researchers will need a substantial ecosystem of software tools to 
leverage the opportunities latent in such large and complex 
datasets, such as building “virtual libraries” that allow access to 
any data source almost instantly wherever it may be stored [11].  
Before discussing the tools, however, we consider how WFE 
datasets might change the nature of software engineering research. 

3. WFE FOR SOFTWARE ENGINEERING 
WFE datasets have salient characteristics that afford new ways of 
researching the PCSSs inhabited by software engineers and the 
PCSSs software engineers produce.  

WFE datasets are large, multi-modal, and multi-stream. The 
BeamCoffer dataset, for instance, is large by today’s standards 
(six terabytes; 112K files). It is multi-modal, including video, 
audio, screen capture, time-lapse photography, photos from a 
hand-held camera, field notes, and interviews. It is multi-stream, 
containing parallel recordings (e.g., audio, video) streamed into 
thousands of files. These datasets are at the core of WFE, and 
their characteristics lead to a number of opportunities. 

Physical-cyber-social systems (PCSSs) are the engines and 
products of work. WFE is designed to make visible three key 
aspects: the physical world in which we live and through which 
all of our interactions flow; the cyber systems that are increasingly 
foundational to much of today’s work and are changing the nature 
of work and what it means to be human; and the social systems in 
and through which our work is done, that define and create our 
norms and values, and that give meaning to our lives. 

These three dimensions are essential to almost all systems that 
humans relate to and inhabit: the teams and organizations we live 
and work in; the products and services that we create and use; and 
the communities of users, influencers, and purchasers of the 
products and services we create. A team of software engineers is a 
PCSS; and so is a team of healthcare workers caring for infants in 
a neonatal intensive care unit, or a community of researchers 
collectively analyzing a WFE dataset. To study software 
engineering is to study PCSSs. 
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Gathering widely across modalities, systems, space, and time 
with multiple data recorders running concurrently helps 
researchers embrace emergence:  

• It allows researchers to follow work over space and time. We 
followed a single design discussion as it moved around the 
office space from the “huddle” area to couches to a 
conference room, even as it changed participants [16].  

• It enables researchers to pursue a wide range of research 
questions using a variety of units of analysis, such as an 
individual, task, type of work (e.g., triage), location in the 
room, time of day, topic (e.g., power structures), or practice 
(e.g., standup meetings).  

• It supports inter-disciplinary analysis by communities of 
researchers using a diversity of theoretical and analytical 
frameworks.  

• It allows researchers to widen the observational field beyond 
what in situ human observation affords. For example, 
multiple cameras covering the BeamCoffer developer 
stations allowed us (a) to describe and quantify the nature 
and amount of interactions between one pair of programmers 
and other people around them which then allowed us (b) to 
question the frequent focus on the “pair” as the analytic unit 
for pair programming research [15]. 

• It helps mitigate against researchers’ preconceptions of what 
type of data to collect.  For BeamCoffer, we assumed design 
would occur primarily in “design” meetings, but having so 
many cameras in so many places allowed us to see how 
design was happening everywhere [16].   

• It supports longitudinal analysis. Having 21 days of data 
over the full 17-month case study allowed us to see the 
diversity of the ways in which the developers use different 
sections of the whiteboard wall near the huddle area to 
mediate their work [14].  

• It helps reduce the set of hypotheses that can be evidenced by 
providing sufficient data to disprove hypotheses [11].  

WFE enables collaborative and interdisciplinary analysis. 
Having such large amounts of data covering so many different 
types of material supports collaborative analysis by communities 
of researchers who employ a wide range of diverse perspectives 
[7], analytical tools, and theoretical stances to produce a richer 
understanding of the system under study. Highly complex and 
multi-faceted systems like software engineering go beyond the 
capacity of single researchers or even a group of researchers 
operating under a single paradigm or research agenda.  

Real-time analysis of WFE datasets provides high value for 
product development and collaborative analysis. The real-time 
analysis provided by BlinkUX’s Feedback Panel allowed 
researchers and product teams to change the product on the fly, 
making the best use of the time and resources available. It created 
an exciting environment and increased collaboration.  

Off-line analysis affords research using analytical techniques that 
require substantial off-line efforts, such as interaction analysis [6] 
and data mining. WFE datasets could be used for shared analysis 
by researcher workshops, such as was done in the NSF-sponsored 
Studying Professional Software Design workshop [9].  

Multi-modal analysis. Datasets of qualitatively rich unstructured 
data (e.g., video) support a type of analysis called multimodality: 
“in contrast to frameworks that analytically sequester 
communicative modes like speech and gesture both from each 
other and from the material world, the multimodal approach 

instead assumes semiotic complexity as the prerequisite, 
irreducible condition for communicative social action” [8, p. 
1966]. Most research analyzes only one or a few modes, and it is 
common to focus on speech when only audio recordings are 
available. Increasingly, researchers are showing interest in 
studying speech along with the accompanying gesture, perceptual 
structures (such as gaze and body orientation), body movements, 
and different parameters associated with the physical production 
of speech such as speech intensity, pitch and pitch contour, speech 
rate, and higher order frequencies all of which have psychological 
and sociological correlates (e.g., [4]). By 2025, we can expect 
datasets with many more modes of data from many more types of 
sensors. 

4. WFE TOOLS 
WFE datasets are too large and complex for a single researcher to 
easily understand, navigate, browse, filter, annotate, and analyze 
without tool support. What principles, practices, and digital tools 
are needed to afford a community of researchers to collaboratively 
analyze a WFE dataset and iteratively benefit from each other’s 
work during the process of analysis? How can tools allow a 
researcher who coded gestures in some videos to upload those 
coded sections so that they are available for other researchers to 
use in their analyses? How might such a system provide a 
multiplicative benefit to a community of researchers?  

We conjecture that these tools will be organized around the 
concept of collaborating streams (see Figure 2). A stream is a 
time-based sequence of data from one particular data source, such 
as an audio recorder or a code repository. A stream’s data is 
organized into a sequence of events (moments in time) and 
segments (contiguous portions of time). An audio stream, for 
instance, contains at least one segment beginning when the audio 
recorder started recording and ending when the recorder stopped. 
The stream for a still-photo camera is a set of events (photos). A 
stream may contain a set of streams, such as a video camera 
stream recording video footage, audio, and GPS streams. 
Researchers can create subsets of existing streams.  

The stream abstraction is a continuous sequence of data; it hides 
the implementation details of files storing data. Streams from 
different data collectors are loosely coupled, making it easier to 
handle multiple streams and add new types of streams, such as 
biometric streams, or virtual-reality streams. 

Each stream is tagged with meta-data related to its source, such as 
data quality (e.g., sensor noise and calibration), and provenance 
information (e.g., tool-chains and methods used to produce the 
data). Streams can represent original data, such as video data, or 
derived data, such as transcripts or annotations.  

Streams collaborate when events or segments map to the same 

 
Figure 2. A set of collaborating streams (e.g., video, audio, 
screen capture, photo, biometric, documents, annotations). 

Vertical lines represent segments. Dots represent events.  
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time, or to the same concept. A concept corresponds to a tag (e.g., 
person, location, task, type of activity, topic), and can be 
associated with a stream, event, or segment. Tagging can be done 
manually or via data mining algorithms. In this way, streams can 
collaborate along an arbitrary set of dimensions. 

Figure 3 shows a possible high-level design of this tool system. 
Multiple sensors gather information about the PCSS under study. 
Raw data files (e.g., video files) are uploaded to and stored in a 
cloud-based file system, which automatically extracts stream 
metadata from raw files, and automatically transforms or 
analysing aspects of the raw files. Metadata and tags are stored in 
a “collaborating stream” database, providing a multi-dimensional 
relational structure for streams to help researchers navigate and 
explore the space, time, and modality of PCSS collaboration. 

This design supports both researchers using manually intensive 
analysis techniques like interaction analysis and researchers doing 
data mining research. Interaction analysis’ slow reading of 
unstructured qualitative data such as videos from ethnographically 
informed studies is particularly good for generating insights about 
PCSSs. Techniques like machine learning from streams of 
structured quantitative data are particularly good for learning 
PCSSs whose cyber aspects automatically process the WFE data 
to provide feedback on and control aspects of PCSSs [3]. Insights 
generated by slow reading inform automation, and automating 
mundane aspects of slow reading and results from data mining 
give more time and material for slow reading analysis. Supporting 
both communities provides opportunities for integrating insights 
gained by these different analytic approaches. 

5. WFE AND SE IN 2025 
WFE datasets are coming. By 2025 they will be huge and provide 
unprecedented levels of visibility into the multi-modal nature of 
collaboration and cognition in software engineering organizations. 
The software engineering research community is uniquely situated 
to enable the creation and use of WFE datasets by reflexively 
using the very topic we study, software engineering, to create the 
necessary tools. Creating wide-field ethnography tools will 
require attending to a range of technical, methodological, and 
privacy issues, but the resultant tools and approach promise to not 

only help us better understand and automate important aspects of 
software engineering organizations and the PCSSs they create, but 
also will benefit a wide spectrum of researchers in other 
disciplines who study PCSSs.  
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Figure 3. Possible high-level system design showing three 

PCSSs: original PCSS under study (top), PCSS of 
researchers analyzing data from PCSS under study (left), 

and PCSS of data mining researchers creating data 
mining algorithms that analyze the dataset (right). 
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