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Abstract: This paper presents a case study of the use of a

repeated single-criterion card sort with an unusually large, diverse

participant group. The study, whose goal was to elicit novice

programmers’ knowledge of programming concepts, involved over

20 researchers from four continents and 276 participants drawn

from 20 different institutions. In this paper we present the design of

the study and the unexpected result that there were few discernible

systematic differences in the population. The study was one of the

activities of the National Science Foundation funded Boot-

strapping Research in Computer Science Education project

(2003).
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1. Introduction

This paper presents a case study of the use of a repeated

single-criterion card sort with an unusually large, diverse

participant group. The study was designed to explore

the nature and structure of students’ knowledge about

programming constructs. Educators know which concepts

they teach, but not what students internalize about those

concepts nor what conceptual structures students build

from them. To illustrate: we might ask if students have a

meaning for ‘tree’. Which concepts do they group with

‘tree’, and what name do they give the group? If they group

‘tree’ with ‘list’ and ‘array’ and call the group ‘data

structures’, what other groups of concepts do they associate

with ‘data structures’? We were interested in whether we

could detect discernible differences in these concept

constructs between defined populations, e.g. men and

women, students and educators, different languages of

programming instruction.

The researchers were all experienced, college-level,

computer science educators, from a wide range of

institutions that used a variety of pedagogic approaches

to teach programming. Researchers collected data from

their own institutions, following a standard protocol.

In the rest of the paper, we detail the case study. Section 2

discusses the study design, Section 3 some analysis

mechanisms we used and Section 4 the findings these

mechanisms yielded. In Section 5 we discuss the findings

and examine possible limitations of the study. Section 6

concludes the paper.

2. Study design

[Card-sorting] . . . can provide insight into users’ mental models,
illuminating the way that they often tacitly group, sort and label
tasks and content within their own heads (Rosenfeld&Morville,
2002)

The primary method used in this investigation was a

repeated single-criterion card sort (Rugg & McGeorge,

1997) designed to elicit participants’ construction of

programming concepts. We chose this method for several

reasons.

� Because of the quantity of participant institutions and

diversity of researcher and student populations, it was

important to choose a method that was not constrained

by any programming task or by the syntax of a

particular programming language.

� We could not rely on any one research partner having

the skills or background of any other, so we sought

a participant-focused rather than researcher-focused

technique. Card sorting allows a large, geographically

diverse group of researchers to each collect data at their

own institutions, following a standard protocol.

� Card sorting is not compromised by the different

backgrounds of the participants (with regard to

institution, first programming language, age, gender

etc.). The observations ofMartine (2000) that card sorts

(and associated co-occurrence matrix analysis) would

allow comparison of responses were compelling in this

respect.

� There is evidence to suggest that the way in which

participants organize concepts reflects their mental

representation of the way these concepts are related.

Elicitation of internal conceptual structures is proble-

matic because it requires plausible, observable inter-

mediate representation; card sorting may provide such

a representation.

� Similarly, the criteria identified in repeated single-

criterion card sortingmay reflect the participants’ meta-

knowledge.

� The concepts to be categorized – e.g. variable, method

and array – are not necessarily ordered along a scale,

making some other knowledge elicitation approaches

(such as repertory grids) inappropriate (Rugg &

McGeorge, 1997).

� There is a history of sorting techniques being used

to investigate programming concepts. Adelson (1981)

gave novice and expert programmers randomly ordered

lines of computer code and observed how they recalled

the code and in what proximity the lines were recalled.

The proximity of the lines’ recall was taken to represent

subjects’ imposition of structure on the unstructured

data. Davies et al. (1995) asked expert and novice

computer programmers to sort code fragments into

categories that had meaning for them, in order to

obtain knowledge about relationships the programmers

identified among program components.

� Finally, a recent resurgence of interest in the use of card

sorting for usability analysis of interfaces and informa-

tion architectures (particularly of Websites) meant that

there were a number of freely available tools for

conducting and analysing card sorts.

Whilst Adelson andDavies et al. had used pieces of code as

stimuli, we developed a deck of 26 cards each containing a

‘minimalist’ one-word prompt for a programming concept.

These prompts included function, scope, type, method,

list, loop, procedure, recursion, expression, dependency,

choice, tree, object, state, thread, decomposition, encapsu-

lation, iteration, abstraction, parameter, array, if-then-else,

variable, event, Boolean, constant. The prompts were

drawn from programming textbooks, from papers on

program categorizations and from lists solicited from

programming experts and programming educators. A pilot

study was conducted with seven participants from two

locations.
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Each participant was presented with the set of 26 cards.

We asked the participants to sort the cards into their own

categories, using a single criterion. Participants were asked

to provide names for each category and for the overall

criterion by which the cards were sorted. For example, a

participant might sort all cards based on the criterion

‘memory storage’ with the categories ‘linear’ and ‘non-

linear’. Participants were asked to perform sorts repeatedly

until they were unable, or unwilling, to carry out additional

sorts.

The study design relied on the following key assump-

tions.

1. The way in which a participant organizes concepts in a

card sort reflects the participant’s mental representa-

tion of those concepts (following Adelson).

2. By putting a card into a meaningful category (i.e.

a named group rather than ‘don’t know’ or ‘not

applicable’) participants demonstrate that the concept

on the card has some meaning for them.

3. By putting a card into a category, participants indicate

what the category and the related criterion mean to

them.

Hence, by examining the ways in which students sorted

the cards, we hoped to gain insight into the conceptual

structure of their knowledge about programming con-

structs and program construction.

2.1. Participants

The combined corpus included 276 participants: computer

science students and faculty at 22 colleges and universities

in Australia, Barbados, Ireland, New Zealand, the UK

and the USA. Thirty-three were educators and 243 were

students. The student participants were ‘first competency

programmers’, i.e. they were at the point where they could

solve at least one problem in the test set devised by

McCracken et al. (2001) that involves writing a simulator

for an algebraic expression calculator. 185 were male and

58 were female. Their ages ranged from 16 to 59. Their

performance in computer programming courses varied

widely.

The 33 faculty participants were drawn from the same

institutions as the students, at least one from each

institution. Eighty-two per cent of the educators had

taught introductory programming, 36% had a PhD in

computer science, 42%had published research in computer

science and 82% had professional experience as program-

mers. All of them fell into at least one of these four

categories. Eight were female, and 25 were male. Their ages

ranged from 22 to 62. Although each educator was from

the same institution as some of the student participants, he

or she had not necessarily taught any of the students.

2.2. Data collection

Data collection followed a standard protocol.

1. Background data: Background information, including

age, gender and programming language familiarity,

were collected for each participant. For student

participants, grades in programming courses were also

recorded.

2. Task data: Criterion names and category names were

recorded verbatim. Each card was arbitrarily assigned

a number from 1 to 26, and for each category the

numbers corresponding to the cards placed in that

category were recorded.

3. Analysis

Analyzing card sort data is part science, part magic (Maurer &
Warfel, 2003)

A portion of the data for one participant is given in Table 1.

The leftmost column contains the criterion for each sort

(eight criteria for this participant), with the first criterion

being ‘tangible and abstract’. The next column lists the

categories in each sort. In the first sort there are two

categories, ‘tangible’ and ‘abstract’; to the right of that

column there are columns representing the cards. (In the

complete chart, there are 26 such columns, one column for

each card. In the example below, however, not all columns

are shown.) A symbol � in a column indicates that the card

in that column was placed into the category listed on that

row. For example, here the terms ‘function’ and ‘procedure’

were grouped in the same category (co-occurred) in all eight

sorts, and terms ‘state’ and ‘event’ were grouped in seven of

the eight sorts. The data were also combined into a single

spreadsheet, to enable easier comparison across participants.

We used a variety of analysis mechanisms and tools to

conduct three types of analysis: exploratory (to help us

form more focused questions about the data), character-

ization (to characterize individuals within the corpus) and

contextual (to identify and characterize subpopulations).

3.1. Exploratory mechanisms

We used three qualitative techniques:

1. verbatim analysis – seeking agreement on actual names

of criteria and categories (this was automated);

2. gist analysis on names – seeking agreement on the

meaning of criteria and categories, despite different

verbatim naming. (For example, we might consider a

sort criterion such as ‘object-oriented concepts’ to have

the same gist as a sort criterion called ‘related to object-

oriented’. Similarly, ‘loop’, ‘iterative’, ‘repetition’ and

‘looping flow’ might all be considered to have the same

gist.) This analysis was done by reading through the

categories and criteria, sometimes by a single person,
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sometimes by asking each researcher to scan their own

data.

3. We also identified the same or similar grouping of cards

(regardless of what the participant had named them)

for groups with exactly the same group of cards and for

groups with a one-card difference: one more card, one

less card or one different card. These similarities were

summarized in pairwise frequency tables which could

be generated within a subpopulation.

3.2. Characterization mechanisms

We used three tools to generate representations that

characterized an individual within the corpus.

1. We wrote an Excel application to generate co-

occurrence matrices: identifying the frequency with

which pairs of cards appeared together in the same

category for individuals.

2. We used the EZSort tool1 to perform a cluster analysis

from the stimulus set for each individual’s sorts.We also

used the tool to generate a dendrogram (a visualization

of the cluster analysis) for each participant.

3. Because we were unable to determine either the

similarity metric or the clustering algorithm embedded

in this tool we wrote our own software to perform

clustering analysis. A hierarchical cluster analysis was

computed on a distance matrix for each participant.

We generated four distance matrices: usingManhattan

distance and Euclidean distance, and using Simple and

Jaccard’s similarity measures subtracted from one to

yield a distance measure. From each of these matrices,

we generated dendrograms using the simple (nearest

neighbour), complete (maximizing distance between

clusters) andWard’s (minimizing intra-cluster distance)

methods of clustering (Aldenderfer & Blashfield, 1985).

3.3. Contextual mechanisms

We performed simple identification of subpopulations by

external context, using background characteristics such as

age, gender, academic performance, and familiarity with

specific programming languages. We also identified sub-

populations from their internal context by within-corpus

characteristics, including the average number of criteria per

subject, average number of categories per criterion and the

top ten categories formed by the participants (defined by

the cards included in each category) both for the whole

corpus and for various externally identified subpopula-

tions.

Using these multiple mechanisms provided a wealth of

data. However, not all products of these analyses were

equally amenable to interpretation.

4. Findings

We investigated the complexity of our subjects’ categoriza-

tions by gender (men versus women) and expertise

(educators versus students). Examining the data from a

quantitative point of view, we computed the average

number of sorts per participant and the average number of

categories per sort for these subpopulations. For men and

Table 1: Sample data

Criteria name Category name Function Procedure State Event

Tangible and abstract Tangible � �
Abstract � �

Principles Principles
Not principles � � � �

Data Places to put data
Types of grouped data
Types of primitive data
Everything else � � � �

Programming structures Definitely programming structures � �
Might be programming structures � �
Not programming structures

Approaches My object-oriented (OO) world �
My structured world � �
Overlap �

OO programming Pure OO programming
Not OO programming � � � �

Control structures Control structures
Everything else � � � �

Modularization Modularization � �
Everything else � �

1EZSort was a freely available tool from IBM. It was archived 25 January
2005.
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women, we also computed the number of binary sorts

(sorts in which there are precisely two categories).

Our qualitative analysis identified three additional

groups of criteria, which we also explored to see if there

was a difference by gender:

� criteria that order the concepts along a scale from one

extreme to another, e.g. objects versus functions, abstract

versus concrete, design versus implementation etc.;

� creative analogies, i.e. criteria that make an analogy to

some field outside computer science;

� emotional or personal response, e.g. ‘words I hate’,

‘things that causeme grief’, ‘things I’m comfortablewith’,

‘comfortableness’, ‘how comfortable I am on the topic’,

‘overall likeness of what I do’ and ‘usefulness to me’.

Wewere surprised to find that these analyses indicated little

difference between men and women, or between students

and educators. A breakdown is given in Tables 2 and 3.

Men and women produced almost the same number of

binary sorts (40% of men (74=185) and 41.4% of women

(24=58)) and almost the same number of scalar criteria

(16.2% ofmen (30=185) and 17.2% of women (10=58)). An

equal number of men and women (two each) suggested

creative analogies. 2.7% of men (5=185) and 1.7% of

women (1=58) used criteria that suggested an emotional

response to the concepts.

Although educators on average produced more sorts

than students (5.2 versus 4.5), consistent with the sugges-

tion by Rugg and McGeorge (1997) that experts tend to

produce more criteria than novices, a two-tailed inde-

pendent groups t test revealed that this result was not

statistically significant (t(39)¼ � 1.57, p> 0.12). Among

the averages compared in the above tables, two-tailed

independent groups t tests indicated that only the number

of categories per sort between men and women differs

significantly (t(409)¼ 2.90, p< 0.01).

4.1. Category groups

Exploratory analysis allowed us to draw on additional

sections of the data. As part of the background infor-

mation, participants were asked to self-report a level

of familiarity with seven programming languages: Java,

Cþþ, C, Ada, Scheme, Pascal and Visual Basic. Partici-

pants were also allowed to report familiarity with other

languages.

We computed the frequencies with which each language

was mentioned. To determine whether knowledge of

particular languages has an effect on category formation,

we counted how often each category group was formed, in

other words, the number of sorts where that combination

of stimuli occurred as the entire contents of a category

group (see Table 4). Then for each of the six languages that

were most popular with our subjects, we counted the

number of times each category group appeared in the sorts

performed by students who reported some knowledge of

that language.

We discovered that this global pattern is maintained at

the local level. When these ten most frequently occurring

categories are extracted for each language, they maintain a

high correlation with the global pattern in terms of both

frequency and relative position.

Table 2: Breakdown of student sorts by gender

Men
students

Women
students

Total
students

Number of students 185 58 243
Number of sorts 831 258 1089
Number of categories 3284 1131 4415
Number of students who used
binary sorts

74 24 98

Number of students who used
scalar criteria

30 10 40

Number of oppositional criteria 43 14 57
Average sorts per participant 4.5 4.4 4.5
Average categories per sort 4.0 4.4 4.1
Percentage who used binary sorts 40 41.4 40.3
Percentage who used scalar criteria 16.2 17.2 16.5
Percentage whose criteria indicate
an emotional response

2.7 1.7 2.5

Partial sorts, sometimes with unnamed categories, are included in the

totals here.

Table 4: Most frequently occurring categories

Category group Number of times
category appears

List, Tree, Array 104
Thread 52
Recursion, Loop, Iteration 48
Function, Method, Procedure 38
If-then-else, Recursion, Loop, Iteration 33
Decomposition, Abstraction, Encapsulation 28
List, Array 28
Thread, Event 28
List, Tree 27
Object, List, Tree, Array 24

The number of sorts where this combination of cards occurred as the

entire contents of a category.

Table 3: Number of sorts, and number of categories per

sort, for students and educators

Students Educators

Number of subjects 243 33
Total number of sorts 1089 171
Total number of categories 4415 638
Average number of sorts per subject 4.5 5.2
Average number of categories per sort 4.0 3.7

Partial sorts, sometimes with unnamed categories, are included in the

totals here.
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5. Discussion

The lack of differentiation in the data set, and the similarity

of participants one to another, was unexpected. There are

several possible explanations for this.

5.1. Card sort data are too crude to identify the distinctions

we seek

As identified above, card sorting was an appropriate choice

of technique for this scale of study. The type of card sorting

that we chose was also appropriate given that we wished to

remain participant, rather than researcher, focused. How-

ever, some choices we made might have flattened the

responses of the participants. For example, our use of

‘impoverished’ stimuli might have been too decontextua-

lized for students to categorize reliably. It may be that the

task as presented required a greater dependence on

participants’ meta-knowledge than we had anticipated

andmay lead us to question the validity of the intervention.

5.2. Our analysis methods were not subtle enough to

determine distinctions within the data

The qualitative approaches we took, our rudimentary gist

analysis and examination of particular categories revealed

the most distinctions between individuals (see Petre et al.,

2003, for details). We did not pursue the more intensive

qualitative approaches and undertake gist analysis on the

full data set, as the cost (in researcher time) was too high

and benefit (an unwieldy set of results) of too ambiguous

utility. Neither did we undertake superordinate analysis on

the gisted categories; the benefit of this would probably

have been high and afforded useful insights, but because

of the scale of our study (and therefore the number of

participants and researchers terms we would have had to

reconcile) the process was too cognitively intensive. Co-

occurrence matrices and dendrograms also proved un-

wieldy and difficult to interpret: they represented no

significant analytic advantage over ‘just looking’ at the

raw data (such as in Table 1).These issues are discussed

more fully in Fincher and Tenenberg (2005) and the

problems this study encountered generated new tools

especially suitable for this type of analysis (Deibel et al.,

2005; Fossum & Haller, 2005).

5.3. Students – regardless of gender or initial programming

language – conceptualize some aspects of programming

in the same way

One of the unusual features of this study is that it involves

subjects from so many different institutions, who take

different approaches to teaching programming and in

particular use different languages in the introductory

sequence. Additional differences are introduced due to

the fact that introductory students may have studied

additional languages, either in secondary school or on their

own. Nevertheless, there is a striking similarity between the

top ten categories across all groups of students, regardless

of programming language familiarity. This suggests that at

least some aspects of participants’ conceptual structures

may be consistent across programming languages.

6. Summary

Through teaching style, textbooks and exercises, computer

science educators articulate what they believe to be the

appropriate conceptual structures of program construction

and of programming constructs for beginning program-

mers. It is harder to identify the actual conceptual structures

which students form. This study used a multiple, partici-

pant-defined, single-criterion card sort to elicit students’

conceptual structures. Traditional methods of analysing

card sort data revealed remarkably few differences over

externally defined subpopulations such as gender, degree

of expertise and programming language background. The

size of the data set stressed traditional methods, and the

challenges posed by such a large data set generated new

tools especially suitable for this type of analysis.
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