

The Dimensions of Variation in the Teaching of Data
Structures

Raymond Lister
University of Technology, Sydney
Faculty of Information Technology

Sydney, NSW, 2007, Australia
+61 2 9514 1850

raymond@it.uts.edu.au

Ilona Box
University of Western Sydney
School of Computing and IT

Penrith, NSW, 1797, Australia
+61 2 4736 0715

ilona@cit.uws.edu.au

Briana Morrison
Southern Polytechnic State University

School of Computing & Software
Engineering, Marietta, GA 30060

+770.528.4295

bmorriso@spsu.edu

Josh Tenenberg
University of Washington, Tacoma

Institute of Technology
1900 Commerce St., Tacoma, WA 98402-3100

+253.692.5800

jtenenbg@u.washington.edu

D. Suzanne Westbrook
University of Arizona

Department of Computer Science
Tucson, AZ 85721

+520.626.9196

sw@cs.arizona.edu

ABSTRACT
The current debate about the teaching of data structures is
hampered because, as a community, we usually debate specifics
about data structure implementations and libraries, when the real
level of disagreement remains implicit – the intent behind our
teaching. This paper presents a phenomenographic study of the
intent of CS educators for teaching data structures in CS2. Based
on interviews with Computer Science educators and analysis of
CS literature, we identified five categories of intent: developing
transferable thinking, improving students’ programming skills,
knowing “what’s under the hood”, knowledge of software
libraries, and component thinking. The CS community needs to
first debate at the level of these categories before moving to more
specific issues. This study also serves as an example of how
phenomenographic analysis can be used to inform debate on
syllabus design in general.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, curriculum.
E.1 [Data Structures].

General Terms
Algorithms, Management, Design, Standardization.

Keywords: Data structures, CS2, introductory programming,
phenomenography, STL, Java Collections Framework.

1. INTRODUCTION
In many computer science programs, students are now first taught
an object-oriented programming language, such as Java or C++.
Furthermore, these languages are now frequently being taught
“objects first”, which the ACM Computing Curricula 2001 [7]
describes as an approach emphasizing “the principles of object-
oriented programming and design from the very beginning. [The
strategy] begins immediately with the notions of objects and
inheritance…[and] then goes on to introduce more traditional
control structures, but always in the context of an overarching
focus on object-oriented design”.

If CS1 students are being introduced to programming in the above
way, what changes should now flow through to the rest of the
programming curriculum? Specifically, should the teaching of
data structures in CS2 change as a result of these changes in CS1?
This issue has recently generated some discussion and
disagreement. Tenenberg [10] has argued that the teaching of data
structures should change, as “the existence of robust,
standardized, generic frameworks of data structures and
algorithms libraries such as STL gives rise to a new set of virtual
machines”. Westbrook [5] argues strongly that CS2 should not
change, as “it is vitally important for students to see and
implement the guts of these black boxes to develop both their
programming skills … and their design analysis skills”.

How can there be such a difference of opinion on teaching
something as basic to computer science as data structures? What
influences the choices made about what to teach and how to teach
it? In this paper, we explore the question of what are the
variations in understanding that computer scientists have of the
purpose of teaching data structures. We use a phenomenographic
research approach to constitute the variation in perceptions. Our
results are categories describing what underlies some course
design choices. Based on interviews and text sources, we identify
five categories representing various purposes of teaching data
structures. The categories of description, the outcome space of the
research, contribute to the CS community by providing a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE ’04, June 28-30, 2004, Leeds, United Kingdom.
Copyright 2004 ACM 1-58113-836-9/04/0006...$5.00.

92

published taxonomy of purposes to inform debate about data
structure course design.

1.1 Phenomenography
Phenomenography is a research approach that focuses on the
qualitatively different ways people experience, understand,
perceive, or conceptualize a phenomenon [8]. The underpinning
philosophy is that there are a limited number of qualitative ways
of experiencing phenomena. Phenomenographers usually collect
their data by recording and transcribing interviews with a small
number of interviewees. The transcripts are analyzed to identify
one or more dimensions of variation; a dimension of variation is a
set of categories somehow related, e.g. linearly or hierarchically,
with a small number of categories in the set. Since
phenomenographers wish to capture the variation in experiences,
and not quantify the popularity of each experience (though this
can be done in follow-up work), they can work with small
numbers of interviewees.
In computer science, Booth conducted the seminal
phenomenographic work [3]. She identified three different ways
that students understand recursion. Some students describe
recursion as a syntactic construct, a template to be filled in. Some
students describe recursion as a mechanism for implementing
repetition, and some see it as self-referencing. More recently,
Berglund [2] studied student understandings of network
protocols, and Cope [6] studied understandings of the concept of
an information system.
In his phenomenographical study, Trigwell [11] described several
different conceptions that teachers bring to their teaching. At one
extreme, teachers focus on the content of their course, seeing
teaching as the act of transmitting knowledge and concepts to the
student. At the other extreme, teachers focus upon the student,
seeing teaching as the act of helping students to develop or
change their own conceptions. Trigwell identified several
positions between these two extremes.
In this paper, we report upon our own phenomenographical study,
to investigate the qualitatively different intentions CS2 educators
bring to their teaching of data structures.

2. METHOD
Our data came from two different types of sources. One type was
text, from either papers concerning this issue [5, 10] or textbooks
[1, 4, 9, 12]. In the case of textbooks, we looked for an
articulation of a position in the preface or introductory material.

The other type of data source was interviews, via electronic mail.
We interviewed five people. We gave the interviewees the paper
for the SIGCSE 2003 panel session on this issue of data structures
[5]. We then asked them to describe how they teach CS2, and
their justification for doing so. All the interviewees are academics,
in three countries. Most currently teach CS2, while the remainder
have a strong interest in the skills of students emerging from CS2,
as those students then enter their own courses. Most but not all of
the interviewees have a PhD in computer science. The
interviewees were all colleagues of the authors but not necessarily
at the same institution, and were approached to offer an opinion
on this issue. One of those interviewees subsequently became a
co-author on this paper.

The data from these two types of sources was then analyzed in the
phenomenographic style. Our focus for analysis was on the
intentions CS2 educators bring to their teaching of data structures.
The analysis was an iterative process. We did not begin with the
categories; we formed the categories from what we found in the
data. Quotations from each source were placed into categories.
The categories were revised. The placing of quotes and revision of
categories was iterated until we reached a consensus of what were
the categories. We only added a category when we could identify
quotations in support of that category from at least two different
sources. The outcome space is the qualitative description of and
selected quotes supporting each category.

It is important to understand that a single interviewee (or other
data source) is not assigned to a single category. People naturally
have several intentions when teaching data structures, although
some intentions are more important to them than others.
Therefore, a data source may be quoted in more than one of the
following categories.

3. RESULTS
From the data, we identified five categories of instructor rationale
for the purpose of teaching data structures.

3.1 Developing Transferable Thinking
Here, data structures are a vehicle for developing thinking skills
that are important and transferable beyond their immediate
application to data structures:

• I see several deep concepts which are essential in a
tertiary education for an IT professional, and I think
that learning how fancy data structures are
implemented is an excellent way to grapple with these
concepts. ... analysis of algorithms ... a model of
memory and inter-memory references ... inheritance
and polymorphism ... (Interviewee03)

• ... awareness that the obvious or straightforward way to
do things is often markedly inferior to clever ways that
have been discovered by researchers. Data structure
implementations provides an ideal vehicle for this.
(Interviewee03)

• … they see that good data design can make algorithms
simpler and more understandable. They of course see
dangers also but that is what education is about -
evaluation, THINKING, choice followed by better
choice. (Interviewee04)

• The design of a data structure is like the solution to a
riddle: the process of developing the answer is as
important as the answer itself. [1]

3.2 Improving Students’ Programming Skills
Here, implementation of data structures is used for improving the
programming skills of students, especially their dexterity with
recursion and pointers:

• ... they were still required to implement a binary search
tree. This was done to reinforce their knowledge and
usage of recursion and pointers. (Interviewee01)

93

• The implementation had more to do with refining their
programming skills than learning data structures.
(Interviewee01)

• Other than programming in a functional language, I
know no better way to get recursion into a students
head than having them program operations on trees. ...
there is real psychological impact on the student who
has written three pages of incorrect non-recursive code,
and then sees their friend with a two line recursive
solution that works. (Interviewee03)

• ... it is vitally important for students to see and
implement the guts of these black boxes to develop both
their programming skills by working with dynamic data
structures and their design analysis skills by examining
tradeoffs in implementations [Westbrook in 5].

• It is up to us as teachers to provide our students with
chances to take things ... apart and just tinker with them
[Westbrook in 5].

• ... reading and using the code without having written
something similar is like watching Olympic ping pong
on TV. It sure looks easy, even somewhat repetitious;
however, the level of precision is only experienced by
trying to do the same. (Interviewee05)

3.3 Knowing “What’s Under the Hood”
This category acknowledges a place for teaching the libraries.
However, this category is reductionist. The assumption is that
students must understand the parts from which the libraries are
constructed if they are to use those libraries effectively:

• Several of the ADTs introduced in this book are directly
supported by the Java 2 collection classes.
Programmers will naturally prefer to use these
collection classes rather than design and implement
their own. Nevertheless, choosing the right collection
classes for each application requires an understanding
of the properties of different ADTs and their alternative
implementations. This book aims to give readers the
necessary understanding. [12]

• A graduate should be convinced that fancy technology
is understandable, and adjustable; they should feel that
they can be masters of the magic that the Wizard hides
behind the curtain. ... There are many powerful tools
that IT students use; at least one should be dissected
and reduced to parts that the student can imagine
producing for themselves. Of the many choices for a
technology whose internals can be uncovered, the
collection class library is much more accessible than
the compiler, operating system, DBMS, or graphics
package. (Interviewee03)

• ... they were still required to implement a binary search
tree. This was done to... gain an appreciation for the
STL implementations of red-black trees for sets and
maps... Students began to consider the multiple options
available and how to make choices between
implementations. (Interviewee01)

• I believe your students will have questions about the
STL. ... For example, what is a template? What's in a

container? ... How does the list 'thing' work?
(Interviewee04)

• Carpenters don't start their apprenticeship on a roof,
they begin by learning about joints, weight bearing,
angles and forming structure. Similarly, we don't start
our students building compilers and editors (i.e. their
tools) we start them on iteration, functions and
parameter passing. (Interviewee04)

3.4 Knowledge of Software Libraries
This category gives a central role to teaching data structure
libraries. Of all the views, it is the most utilitarian, seeing data
structures as a set of tools used for solving problems:

• ... many career paths will never lead the graduate to
read or write code which implements the operations of
a binary search tree, B-tree, hash table, heap-
structured priority queue, etc. So for these structures,
it's enough to know how to read and write code that
uses them, based on their presence in good collection
libraries... (Interviewee03)

• ... because we used the STL, I was able to cover many
more data structures than I normally would have.
(Interviewee01)

• We have such wonderful resources at hand, we need to
build upon the work that has already been done and
allow our students to solve more difficult applications
using the tools we have provided them. Electrical
engineering students are not asked to design or
implement existing capacitors; nor are construction
students asked to design and implement hammers.
(Interviewee01)

3.5 Component Thinking
This category emphasizes the importance of students learning
component engineering principles, such as black-box interaction,
and code reuse.

• Software Engineering is moving away from emphasis
on the creation of code, toward emphasis on
components and code reuse. [Lister in 5]

• …the advent of object-oriented methods and the
emergence of object-oriented design patterns has lead
to a profound change in the pedagogy of data
structures and algorithms… the proper use of object-
oriented techniques requires a fundamental change in
the way the programs are designed and
implemented…The primary goal of this book is to
promote object-oriented design using Java and to
illustrate the use of the emerging object-oriented design
patterns… In particular,… singleton, container,
enumeration, adapter and visitor.[9]

• By using the STL, the students could see how they didn’t
have to implement a class to gain the behavior of a data
structure; they could use existing data structures with a
collection of algorithms and gain the same behavior
without additional work. (Interviewee01)

94

• ... Software engineering teaches abstraction, reuse, and
information hiding. (Interviewee05)

• Since novice student designs often have leaky
interfaces, with I/O details and other assumptions about
the particular domain of application creeping into what
should be generic algorithms and data structures, the
use of the framework thus encourages better design by
enforcing a cleaner separation of responsibilities. [10]

• Students of the next generation will be programming
virtual machines at much higher levels of abstraction ...
The full use and extension of standardized data
structures frameworks ... places a stronger emphasis on
abstraction and design. [10]

4. DISCUSSION - PHENOMENOGRAPHY
Before identifying the two dimensions of variation we see in our
categories, we first need to discuss some issues relating to the
methodology of phenomenography and the categories themselves.

4.1 Phenomenography
In considering the above results, we need to keep in mind two
mistakes that can arise from a misunderstanding of
phenomenography. First, phenomenography is a qualitative
method of research, not quantitative. Hence we draw no
conclusions about the broad popularity of any of the above
categories within the computer science community. To make such
conclusions would require significantly more data and a different
research approach. The aim of phenomenographic research is to
capture diversity. Second, the categories do not represent a single
position adopted by one or more individuals. Typically, if an
individual is shown the categories generated from
phenomenographic research, they will identify with more than one
position. There may be some positions to which they identify very
strongly, and some positions to which they do not identify at all,
but it is rare for a person to identify with only one category.

Together, the papers, textbooks, and interviewees provided eleven
separate sources of data, which is a relatively low number of
sources for a phenomenographic study, but not unusually low.
Phenomenographers often continue to collect data until they
believe they have reached “saturation”. That is, they collect data
and analyze it concurrently, ceasing to collect data when they
have several consecutive interviews that do not lead to the
identification of new categories. From our eleven sources, we do
not claim to have reached saturation.

Interviewing more subjects may add more categories, but is
unlikely to invalidate the categories we have identified in this
paper. Suppose we interviewed another subject who articulated
the following position: in high school, I was taught Euclidean
geometry, which I loved, and I think the implementation of data
structures, particularly recursive data structures, has some of that
same simple beauty. An appreciation of such beauty is an
essential part of a liberal arts education. Such an interview might
lead us to add a category, “Aesthetic Appreciation”, but it does
not invalidate the existing categories. (One of our interviewees
did describe the low level data structures conventionally taught as
being “cute”, which may be evidence for such an extra category.)

Phenomenographers do not necessarily identify a unique set of
categories from the same data. For example, if Trigwell [11]

examined our sources, he may find evidence for the same
categories he identified in his study of approaches to teaching,
which we discussed in the introduction of this paper. The
categories identified in any study are to some extent dependent on
the intent of the phenomenographer. Our intent was to illuminate
the debate on the teaching of data structures, and we chose our
categories accordingly.
If phenomenographers do not necessarily identify a unique set of
categories from the same data, is phenomenographic work
therefore not repeatable? (And therefore not science?)
Phenomenographic work is repeatable in the following sense. If
two people were given some categories, and some quotes from
data, those people would usually place the quotes into the same
categories. The readers can determine for themselves whether they
would place most of the above quotes into the same categories as
those into which the authors have placed them.

4.2 Data Structure Categories
In choosing our categories, we wanted to focus on the teaching of
data structures as teachers conceived it should be done in an ideal
world. One of our interviewees raised the issue of legacy code.
That is, he justified his very traditional approach to teaching data
structures by the argument that there is already a great deal of
code “out there” which does directly implement linked lists, trees,
etc. Programmers will be required to maintain such code for many
years to come. We don’t disagree with that argument, but we
regard it as separate to our concern. By focusing on how data
structures should be taught in an ideal world, we sought to
identify any possible long-term trends in the teaching of data
structures. If the way data structures is taught is ripe for change,
then the existence of legacy code will complicate and slow the
change, but legacy code will not stop such a change.
For some of the authors, the most unexpected insight to emerge
from this study was the separation of “Knowledge of Software
Libraries” from “Component Thinking”. Until this study, some of
the authors had not made this distinction. We believe that this is a
common error in the general debate. People opposed to the early
teaching of these software libraries may see such teaching as
merely being unprincipled instruction for an application program
interface, and thus almost an exercise in rote learning. The
“Component Thinking” category is a much more principled
position. Its proponents see these software libraries as requiring a
different way of thinking about program design.
Because the distinction is not usually made between “Knowledge
of Software Libraries” and “Component Thinking”, the difference
between proponents of “Component Thinking” and “Transferable
Thinking Skills” is exaggerated during debate. Both of these
positions focus on the cultivation of student thinking. The
positions merely differ on whether component based thinking
needs its own design methodology or whether the design issues of
lower level data structures transfer to this higher level of
abstraction. A greater focus on that issue might lead to a more
constructive debate within our community.

4.3 The Dimensions of Variation
From four of our five categories, we identify two dimensions of
variation, as shown in Table 1.

95

Table 1. The dimensions of variation
 Computer Science vs. Object Engineering

Developing Transferable
Thinking

Component Thinking Abstract
 vs.
Concrete Improving Students’

Programming Skills
Knowledge of
Software Libraries

In one of the dimensions, the variation is in the degree of
abstraction. The categories “Improving Students’ Programming
Skills” and “Knowledge of Software Libraries” both emphasize
implementation skills, whereas the categories “Developing
Transferable Thinking” and “Component Thinking” both
emphasize the design process.
The other dimension of variation is “Computer Science” versus
“Object Engineering”. The category “Developing Transferable
Thinking” relates to the Turing Machine as a universal
computational device, while the category “Improving Students’
Programming Skills” relates to the realization of the Turing
Machine in the von Neumann architecture. On the other hand,
“Object Engineering” is not about building universal
computational devices, but instead devices that are well suited to
specific purposes.
The fifth category “Knowing What’s Under the Hood” transcends
the Computer Science vs. Object Engineering dialectic, but it is a
position more concrete than abstract.

5. CONCLUSION
The categories we have identified can be used to inform debate
about course design. We believe that current debate about the
teaching of data structures is hampered because, as a community,
we usually debate whether a particular data structure should be
taught, when the real level of disagreement remains implicit – the
intent behind the teaching of that data structure, as revealed in the
above categories. Our hope is that educators will use the
categories we have identified to make explicit the real differences
of opinion.
Beyond data structures, this paper demonstrates how
phenomenography can be used as a tool for syllabus design in
general. It can be used to define various positions, before debating
the pros and cons of the positions. People who may not normally
join a debate on syllabus design can be encouraged to articulate
their position in a non-confrontational environment. We found the
effort of analyzing our data led to a suspension of judgment. The
effort of finding a category for each quote leads to a concentration
on understanding what the author of the quote means, not on a
judgment of the validity of author’s argument. Because judgment
was suspended, we were more susceptible to persuasion. By the
time we finished the analysis, we saw merit in all the categories,
not just the categories to which we had subscribed beforehand.
Indeed, we found categories of which we were not even aware
prior to this study. Beginning with a phenomenographic study

may therefore lead to a more inclusive and comprehensive
approach to syllabus design in general.

6. ACKNOWLEDGMENTS
The authors thank the interviewees for donating their time. They
also thank Shirley Booth for her advice in the early stages of this
project, and Anders Berglund for a very helpful discussion on the
dimensions of variation. The authors first met and began
discussing this topic during the Bootstrapping Project which was
funded by the National Science Foundation (No. DUE-0122560).
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation

7. REFERENCES
[1] Bailey, D. Java Structures. McGraw-Hill, 2003 (2nd ed.)
[2] Berglund, A. (2002) “On the Understanding of Computer

Network Protocols” http://user.it.uu.se/~andersb/lic/
[3] Booth, S. (1997) “On Phenomenography, Learning and

Teaching” Higher Education Research & Development, Vol.
16, No. 2, pp. 135-158. The entire issue is devoted to
phenomenography.

[4] Budd, T. Data Structures in C++ using the Standard Template
Library. Addison Wesley, 1998.

[5] Collins, W, Lister, R, Tenenberg, J, Westbrook, S. The Role of
Framework Libraries in CS2 SIGCSE’03, February 19-23,
2003, Reno, Nevada, 403-404.

[6] Cope, C. (2002) “Seeking Meaning: The Educationally
Critical Aspect of Learning About Information Systems”,
Proceedings of the Informing Science + IT Education
Conference, Cork, Ireland. http://proceedings.elicohen.net/

[7] Joint Task Force on Computing Curricula. Computing
Curricula 2001 Computer Science. Journal of Educational
Resources in Computing (JERIC), 1 (3es), Fall 2001.

[8] Marton, F. Phenomenography-a research approach to
investigating different understandings of reality, Journal of
Thought, vol. 21, pp. 28-49, 1986.

[9] Preiss, B. Data Structures and Algorithms with Object-
Oriented Design Patterns in Java. Wiley, 1999.
http://www.brpreiss.com/books/opus5/public/front.pdf

[10] Tenenberg, A Framework Approach to Teaching Data
Structures SIGCSE’03, February 19-23, 2003, Reno, Nevada,
210-214.

[11] Trigwell, K. “Phenomenography: Discernment and
Variation”
http://www.learning.ox.ac.uk/iaul/Phenom_ISL_paper.pdf

[12] Watt, D, Brown, D. Java Collections: An Introduction to
Abstract Data Types, Data Structures, and Algorithms. Wiley,
2001. http://www.dcs.gla.ac.uk/~daw/books/JC/preface.html

96

