
It Seemed Like a Good Idea at the Time

(Special Session)

Jonas Boustedt
Univ. of Gävle, Sweden

jbt@hig.se

Robert McCartney
Univ. of Connecticut

robert@cse.uconn.edu

Josh Tenenberg
Univ. of Washington, Tacoma

jtenenbg@u.washington.edu

Titus Winters
Univ. of California, Riverside

titus@cs.ucr.edu

Stephen Edwards
Virginia Tech (VPI&SU)

edwards@cs.vt.edu

Briana B. Morrison
So. Polytechnic St. Univ.

bmorriso@spsu.edu

David R. Musicant
Carleton College

dmusican@carleton.edu

Ian Utting
Univ. of Kent, Canterbury UK

I.A.Utting@kent.ac.uk

Carol Zander
Univ. of Washington, Bothell

zander@u.washington.edu

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
self-assessment; K.4.2 [Social Issues]: employment

General Terms
Design, Experimentation, Human Factors, Measurement, Per-
formance, Verification

Keywords
fiasco, disaster, breakdown, failure, humiliation, termination

SUMMARY
We often learn of successful pedagogical experiments, but we
seldom hear of the the ones that failed. From an epistemo-
logical point of view, learning from failures can be at least as
effecitive as learning from good examples. This special ses-
sion has a structure similar to that of Parlante’s Nifty As-
signments, i.e. we solicited submissions from the SIGCSE
membership, selected the best from among these, and have
presentations at the session by the selected authors. Our
contributions describe pedagogical approaches that seemed to
be good ideas but turned out as failures. Contributors will
describe their pedagogical experiment, the rationale for the
experiment, evidence of failure, and lessons learned.

1. OVERVIEW
Learning in Computer Science courses sometimes appears

random and accidental, but is often the result of deliberate
acts taken by the instructor. An underlying assumption in
the SIGCSE literature is that every decision we make in our
class offerings is a small-scale local experiment to determine
which acts can best lead to learning. In our community,

Copyright is held by the author/owner(s).
SIGCSE’07,March 7–10, 2007, Covington, Kentucky, USA.
ACM 1-59593-361-1/07/0003.

as in most academic disciplines, there is an exclusive focus
on the success of these experiments. Rarely, if ever, do we
hear about the experiments that failed. Given that negative
results can be as valid as positive results in the scientific
endeavor, it seems natural that there should be a forum
for the discussion of especially negative experiences in CS
Education.

In the Comparative Method, Ragin [7] distinguishes be-
tween actual and artifactual causal determinants of phenom-
ena. It follows that the absence of effect on the dependent
variables is as important as its presence, especially for phe-
nomena as complex as human learning. In the pedagogy of
software development, there are precedents for learning from
failures, including Anti-Patterns [3], Project Retrospectives
[6], and Software Development Failures [4].

This Special Session, “It Seemed Like a Good Idea at the
Time”, is a forum for us to discuss the failures we have all
had, with the hope that others can avoid the paths that led
to these unanticipated results. This session is structured like
Parlante’s “Nifty Assignments” sessions: a set of presenters
competitively selected from submissions solicited by a gen-
eral CFP to the SIGCSE community. Our hope is that,
if successful, this session will become a staple at SIGCSE
Symposia for years to come.

2. WHAT MAKES A FAILURE GOOD?
Negative teaching experiences can span quite a range.

Much like Tolstoy’s description of happy families, successful
experiments are all similar but failed experiments all fail in
their own way. However, not all failures are interesting or
would make for a good discussion. We selected for those
teaching interventions adoptable by others for which there
was reasonable expectation of success, often as a result of
adopting previously published work within a local setting.
We also selected for reports that provided evidence of failure
– or at least significant deviations from expected outcomes,
reasons for the failure, and implications for practice for other
CS teachers.

346



By sharing these experiences, the authors provide cau-
tionary tales (or at least some entertainment) to other in-
structors. Further, we feel that this will help map the space
of design failures in CS Education. Comparing this space to
the space of successes we hear so much about should provide
valuable comparison for educators and researchers alike. By
providing a forum for the failed experiment, we hope to en-
courage risk taking in the classroom, and by focusing on
evidence we hope to foster a community with a greater eye
for documenting our classroom experiments.

3. THE PERSONAL SOFTWARE PROCESS
IN CS1 (BRIANA MORRISON)

In the late 1990’s, the Personal Software Process (PSP)
was introduced as a mechanism to improve the time estima-
tion and quality of software, as well as improve programmer
productivity [5]. In an attempt to reap these rewards in an
academic setting, PSP was introduced to students in a CS1
course. It was hoped that students would learn to recognize
their common errors and improve their estimation on how
long it would take to complete an out-of-class assignment.
Neither of these occurred. Instead, students were unable
to accurately record data and no improvements were seen
in reducing procrastination and turning in late assignments.
Students were overwhelmed by trying to accomplish two new
tasks at one time (learning to program, and recording errors)
even when working as partners.

4. USING TABLET PCS IN A CS LAB CLASS
(STEPHEN EDWARDS)

Three years ago, we began experimenting with the use of
Tablet PCs to support active learning in our CS1 course. In
Fall 2003, approximately 200 students enrolled in our CS1
course were split: one half met in a traditional computer
lab, while the other half met in a non-traditional classroom
with movable furniture, wireless access, and Tablet PCs.
Along all of the performance dimensions we measured, there
were no statistically significant differences between the two
groups. In terms of the lab experience, while students liked
the reconfigurable furniture and wireless access, they gener-
ally did not like using the tablets. Students brought in their
own mice as pointing devices, at least one started bringing in
a full-size external keyboard, and many complained that the
small screen-size was inadequate for the pair-programming
assignments used as lab exercises.

5. HUMAN EXECUTION STACK
(CAROL ZANDER)

Learning methods that facilitate the active construction
of knowledge have been correlated with learning gains across
disciplines. One such active learning method, described in
[1], is the Human Tableau, where members of the class act
out a set of key ideas. This seemed a natural method for
the computer science classroom, where a group of students
can collectively simulate a computation. I had thought that
applying this idea to the teaching of recursion would lead
to an “ah ha” moment when the students acted out the
pushing and popping of data onto their human-activation
stack. But, as I found out, for students who don’t already
understand recursion, enacting out a non-trivial recursive

problem, “uh oh” is as likely a response, with students lit-
tle able to connect their simulation actions to the recursive
code.

6. FORGETTING THAT ANONYMITY CAN
BE ASYMMETRIC (IAN UTTING)

Facilities which allow students to ask question of staff
anonymously can help to lower the social barriers to partic-
ipation in learning among less confident students[2]. How-
ever, it must be remembered that the anonymity is not sym-
metric – although students make (proper) use of their own
anonymity, “anonymous” responses are readily attributed
to the member of staff making them, and the latitude in
attitude (e.g. the use of direct language) claimed by stu-
dents is not offered to staff in a way that it might be in less
archival settings. I will discuss our experience, where that
lack of diplomacy in answers led to a social breakdown be-
tween students and staff, resulting in formal complaints to
the dean and extreme failure rates in the class.

7. USING THE CAMPUS NETWORK FOR
CLASS PROJECTS (DAVID MUSICANT)

In my CS1 course, I did a term-long project involving the
creation of a very simple email client. Two years later, I con-
ducted a senior capstone project in creating a web search
engine. Both of these projects seemed like wonderful ex-
amples that would catch students’ interest. Both projects,
despite the best of intentions, ended up in an accidental de-
nial of service attack on campus email servers. How can
it be so easy to bring down robust production technology?
It’s easier than it sounds, and class projects that use critical
campus Internet services are considerably more dangerous
than I had previously thought.

8. REFERENCES
[1] T. Angelo and P. Cross. Classroom Assessment

Techniques, 2e. Jossey-Bass, San Francisco, 1993.

[2] D. J. Barnes. Public forum help seeking: the impact of
providing anonymity on student help seeking behavior.
In G. M. Chapman, editor, Computer Based Learning
in Science. Univ. of Ostrava, Czech Republic, 1999.

[3] W. J. Brown, R. C. Malveau, H. W. McCormick(III),
and T. J. Mowbray. Anti Patterns: Refactoring
Software, Architectures and Projects in Crisis. John
Wiley & Sons Inc, New York, 1998.

[4] K. Ewusi-Mensah. Software Development Failures:
Anatomy of Abandoned Projects. MIT Press,
Cambridge, Massachusetts, 2003.

[5] W. S. Humphrey. A discipline foe software engineering.
Addison-Wesley Longman, 1995.

[6] N. L. Kerth. Project Retrospectives: A Handbook for
Team Reviews. Dorset House Publishing, New York,
2001.

[7] C. Ragin. The Comparative Method: Moving Beyond
Qualitative and Quantitive Strategies. University of
California Press, Berkeley, 1989.

347


