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Abstract

A temporal logic is presented for reasoning about propositions whose
truth values might change as a function of time. The temporal propo-
sitions consist of formulae in a sorted first-order logic, with each atomic
predicate taking some set of temporal arguments as well as a set of non-
temporal arguments. The temporal arguments serve to specify the predi-
cate’s dependence on time. By partitioning the terms of the language into
two sorts, temporal and non-temporal, time is given a special syntactic
and semantic status without having to resort to reification. The benefits
of this logic are that it has a clear semantics and a well studied proof-
theory. Unlike the first-order logic presented by Shoham, propositions
can be expressed and interpreted with respect to any number of temporal
arguments, not just with respect to a pair of time points (an interval).
We demonstrate the advantages of this flexibility. In addition, nothing is
lost by this added flexibility and more standard and useable syntax. To
prove this assertion we show that the logic completely subsumes Shoham’s
temporal logic [1].
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1 Introduction

Many problems in artificial intelligence require reasoning about events or states
of the world that have temporal extent. Standard first-order logics have proven
useful for reasoning about static propositions and their consequences, but have
not been readily adaptable to the greater demands of temporal reasoning. For
instance, “block A is on block B” can be represented as on(a,b), but “block A
is on block B from 7pm to 12pm” is less obviously represented. One approach is
to add to the predicates additional arguments denoting the temporal elements
associated with the assertion: on(7, 12,a,b). This approach has received little
attention, being typically abandoned in favor of reified logics [2, 3] containing
truth predicates relating atemporal proposition terms (e.g., on(a,b)) to tempo-
ral points or intervals (e.g., HOLDS[7, 12,on(a,b)]). In contrast to the recent
trends, we demonstrate a logic obtained by including the additional temporal
arguments, showing that this preserves the first-order structure of the propo-
sitions, has a clear semantics, and a standard proof-theory.1 In addition, we
make no ontological commitment toward interpreting the temporal objects as
either points or intervals, leaving this choice instead to the axiom writer. These
advantages are obtained by keeping within a classical first-order framework. We
present first the syntax and semantics of our logic and discussing its salient fea-
tures. We then compare our system to another recent non-reified temporal logic,
developed by Shoham [1]. Shoham’s logic deals with preserving the first-order
structure of temporally scoped propositions, but uses a complex, non-standard
semantics for which no proof theory has been provided. We show that this logic
is subsumed by our approach, demonstrating that these non-standard features
are not required. Finally, we make some comparisons between the non-reified
approach that we use here and the reified logics that have been used previously.

2 A Non-Reified Temporal Logic

In the logic that we present, propositions are associated with time objects by
including temporal arguments to the functions and predicates. For example,
one can represent the assertion “the President of the USA in 1962 died in 1963”
as died(1963,president(1962,usa)). Temporal objects are distinguished from
non-temporal objects by partitioning both the universe of discourse and the
symbols of the language used to denote the universe. One can thus specify, for
each function and predicate symbol, some number, n, of temporal arguments
and some number, m, of non-temporal arguments, and for each function symbol,

1Our logic can be viewed as being in the same spirit as Green’s original work on logic
based planning [4]. Green used additional state arguments in his predicates, adding the states
as extra individuals to the object language. The reified logics on the other hand take the
approach of separating the language of states from the language which describes the domain.
To express the dependence of the domain statements on the current state, the formulae of the
domain language are reified, i.e., added as extra individuals in the state language. Viewing
the time arguments as being state arguments gives the parallel between Green’s approach and
ours.

2



whether it evaluates to a temporal or non-temporal object.
Representing temporal assertions by the “method of temporal arguments”

(a phrase due to Haugh [5]), has long been used in database applications (e.g.,
Ahn [6]), but has typically been ignored in AI. One notable exception is a logic
presented by Haugh [5]. Although many of the ideas first presented by Haugh
are echoed here, there are several points of departure. Syntactically, we allow
considerably more flexibility, by not limiting the number of temporal arguments
of functions or predicates as Haugh does. Further, we permit the presence of
functions that take a combination of temporal and non-temporal objects. How-
ever, the primary difference is Haugh’s position that a non-standard semantics is
required in order to sufficiently constrain the structure of the temporal domain.
As we demonstrate in Section 3, the model theory need not provide this struc-
ture. In this way, the axiom writer is free to choose the particular axiomatic
theory that represents the set of intended models, unconstrained by any a priori
choice of structure inherent in the logic itself. Further, as with Shoham, Haugh
does not provide a proof theory for his semantics.

2.1 Syntax

Our logic, which we will refer to as “BTK,” is a standard many-sorted logic
having two disjoint sorts, for temporal and non-temporal objects. It is therefore
an element of Wang’s 2-sorted logical system T2 [7]. We briefly review the syntax
of a two-sorted logic.

The variables, V, are of two different sorts, Vt, and Vu, and for every pair of
natural numbers n and m there is a set (possibly empty) of (n,m)-ary function
symbols, F(n,m), and a set (possibly empty) of (n,m)-ary predicate symbols,
P(n,m). For both function and predicate symbols the first n arguments are
temporal while the last m are non-temporal. We restrict the functions to range
over the temporal sub-domain, calling these temporal functions, or over the non-
temporal sub-domain, calling these non-temporal functions. Therefore the sort
of a function will be uniquely determined by its range. We take the constants,
C, to be 0-ary function symbols. Hence, the constants are sorted as well.

Terms and wffs are defined in the standard fashion, with the only restriction
being that arguments of the correct sort must be given for each function and
predicate. We will use “t” to denote temporal terms, and “c” to denote non-
temporal terms, sometimes with subscripts. The sort of a term is determined
by the sort of its outermost symbol. In addition, we will call predicates that
take only temporal arguments temporal predicates, and predicates that take only
non-temporal arguments non-temporal predicates.

A set of inference rules is provided by Wang in [7]. For our present purposes
we need not include them here. A BTK language along with the inference rules
and proper axioms is a BTK system.
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2.2 Semantics

A model is defined to be the tuple M = 〈〈T,U〉, σ〉. T and U are non-empty
universes, and σ is an interpretation function that maps each (n,m)-ary tem-
poral function to an (n,m)-ary function from Tn × Um to T , each (n,m)-ary
non-temporal function to an (n,m)-ary function from Tn ×Um to U , and each
(n,m)-ary predicate to an (n,m)-ary predicate on Tn×Um. Meaning is assigned
to the formulae by standard first-order rules for interpreting the atomic formu-
las, truth-functional connectives, and quantifiers, except that each quantified
variable ranges only over the appropriate universe. We denote the interpreta-
tion of ψ under σ by ψσ.

3 Relativization and Proof Theory

Rather than using a 2-sorted logic for BTK, we could instead have used a
standard (one-sorted) logic. Thus, for every BTK system we could have a
corresponding BTK′ system, where there is only a single universe, and thus
only a single sort for the variables and functions. In addition, the one-place
predicates Temporal and Non-Temporal are part of every BTK′ language. The
BTK′ system is then defined analogously to that of BTK, with the addition of
the following theorems:

1. ∃x, y. Temporal (x) ∧Non-Temporal (y)

2. ∀x. Temporal (x)⊕Non-Temporal (x),

where ⊕ is exclusive-or. A statement φ in BTK can be “relativized” to a state-
ment φ′ in BTK′, by substituting simultaneously in φ, for each expression of
the form ∀x.α, where x is a temporal variable, an expression of the form

∀x. Temporal (x) → α,

and for each expression of the form ∀z.α, where z is a non-temporal variable,
an expression of the form

∀z.Non-Temporal (z) → α2.

We then get the following result trivially from Wang, (attributed to Herbrand
[8]):

A statement of any system BTK is provable in BTK if and only
if its relativization in the corresponding system BTK′ is provable in
BTK′.

BTK′ is a standard first-order system and as such its proof theory, and auto-
mated use of this proof theory, has been well studied. The theorem implies that

2We are taking existentially quantified variables as defined from universally quantified
variables
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any first-order proof theory can be trivially used as a proof theory for BTK: one
only has to relativize every statement of a given BTK system and do deduction
in the first order BTK′. In addition, by relativizing a BTK system in this fash-
ion, one can automate deduction by using standard automated theorem proving
techniques.

It should be noted, however, that one need not relativize the logic in order
to obtain either a proof theory or an automated theorem prover for a sorted
logic. This is because sorted proof theories and their automation have been well
studied. For example, Walther [9] has developed an automated theorem prover
for a sorted clause form logic, based upon resolution and paramodulation. In
fact, he gives some strong arguments to indicate that reasoning directly with the
sorted logic would be far more efficient. It is a trivial exercise to cast BTK as a
variant of Walther’s clause form sorted logic and to use his automated reasoner.

The major difficulty involved in reasoning in a BTK system lies in reasoning
with the temporal terms. Halpern and Shoham [10] have demonstrated that for
modal temporal logics the complexity of reasoning is highly dependent on the
nature of the temporal domain. A similar situation holds for BTK.

Many different complete proof theories exist for first-order logic (e.g., the
ones given by Barwise in [11]). These proof theories give mechanical proce-
dures for generating all valid first-order formulae. As long as we can completely
axiomatize the special properties of the defined relations, we can use one of
these complete proof theories to generate all formulas valid for these relations.
First-order domains, however, have no special structure, they consist simply of
a collection of relations defined over an unstructured domain of discourse. The
temporal sub-domain, on the other hand, does possess special structure, and
it may not be possible to provide a complete axiomatization of this structure.
For example, if one requires that the temporal domain T be the set of integers,
then it is well known that there is no complete axiomatization of the integers
in languages which include multiplication and addition.3 In other words, if one
places no restrictions on the set of legal BTK models, in particular, if one places
no requirements on the structure of the temporal domain, then complete proof
theories can be provided for BTK, by the above relativization result and the ex-
istence of complete proof theories for first-order logic, or by the use of complete
proof theories for sorted first-order logic, like Walther’s. On the other hand
if one restricts the set of legal BTK models to be models where the temporal
domain T has some special structure one cannot necessarily guarantee a proof
theory complete for these models: even the relativized first-order BTK′ will not
have a complete proof theory.

Although temporal structures like the integers cannot be characterized by
a set of first-order axioms, there are many other temporal structures that can
be. These include temporal domains that are linearly ordered, models of Peano
arithmetic, and totally ordered fields. This last is particularly useful. The reals
are an instance of a totally ordered field. Hence, if we choose such a temporal
structure we will be able to axiomatize its behavior and be assured that all

3This follows directly from Gödel’s incompleteness result, see, e.g., Barwise [11].
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deductions carried out with this axiomatization will be sound with respect to
the reals. Furthermore, it is well known that every totally ordered field has a
subfield which is isomorphic to the rationals. This means that we can include
in our language temporal constants representing any rational time point. When
one considers the fact that our computers can only represent rationals (and
only a finite set of rationals at that), it should be clear that one can capture
a great deal of useful reasoning about real time points by restricting oneself to
the rationals.

Another interesting type of temporal domain which has a complete axioma-
tization occurs when the primitive temporal objects are intervals. For example,
Ladkin [12] demonstrates that the axiomatic theory of the Interval Calculus
provided by Allen and Hayes [13] precisely characterizes the unbounded linear
orders.

If the temporal domain of BTK, T , is defined to be any one of these temporal
structures, or any other structure which we can characterize by a set of axioms, a
complete proof theory can be easily generated. One just adds the axiomatization
of the temporal domain to the axiomatization of first-order logic. The first-order
rules of inference will provide a complete proof theory when they operate on the
union of the temporal and first-order axioms. This can be done in either the
sorted context or, via relativization of the temporal axioms, in the unsorted
context.

To make this more precise we make the following definitions.4

Definition 1 A class of temporal structure T is said to be characterized by an
axiomatization AX (i.e., a recursive set of axioms) if we have that T |= AX iff
T ∈ T . That is, the models of AX are exactly the class of temporal structures.

Clearly, the class of linearly ordered temporal structures is characterized by the
first-order axioms of a linear order, i.e., the axioms (1) ∀x.x≤x, (2) ∀xy.x≤y ∧
y≤x → y=x, (3) ∀xyz.x≤y ∧ y≤z → x≤z, and (4) ∀xy.x≤y ∨ y≤x. Similarly,
the class of temporal structures that are totally ordered fields are characterized
by the first-order axioms of a totally ordered field (see, e.g., Shoenfield [15]).
However, there does not exist any axiomatization that characterizes the integer
or the real temporal structures.

4We need to be precise as it is not necessarily the case that we can combine two complete
axiomatizations and retain completeness. Completeness is closely tied to the expressiveness
of the language. For example, although the reals cannot be characterized in first-order logic
(i.e., we cannot write a set of first-order axioms that has only the reals as a model), Tarski
[14] has shown that the first-order theory of real closed fields (RCF) is complete for the reals.
That is, a formula written in the language of RCF is valid if and only if it is true of the reals.
This result rests on the limited expressiveness of the language of RCF. RCF is capable of
expressing only a limited set of assertions about the reals, and a complete proof theory exists
for this limited set, but not for larger sets. When we combine our temporal and atemporal
languages into a BTK system we are increasing the expressiveness of our temporal language,
through the mixed functions and predicates. Hence, we may have an axiomatization that,
for our original temporal language, is complete with respect to a particular temporal domain,
but when we combine that temporal language with an atemporal language, to form a BTK
system, we may lose completeness. We have now increased the expressiveness of our temporal
language and may have exceeded the capabilities of the original axiomatization.
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Let BTKT be a BTK system in which any member of T is admissible as the
temporal domain T , and let AXT be an axiomatization which characterizes T .
Let AXFO be any complete axiomatization of first-order logic. Then we have:

Theorem 2 The axiom system consisting of AXT ∪ AXFO is a complete ax-
iomatization of BTKT .
Proof: The axiom system is simply a collection of first-order axioms; hence,
for any satisfiable formula α we can construct a Henkin model. This model will
satisfy α and all of the axioms. In particular, it will satisfy AXT . Since AXT
characterizes T , the temporal domain will be a member of T , and therefore a
legitimate model for BTKT . Thus, a model exists for every satisfiable formula,
and as a standard consequence the axiom system is complete.

An argument made by Shoham [1] is that a logic based on the method of
temporal arguments, such as BTK, is insufficient for the demands of temporal
reasoning:

This option is not acceptable from our standpoint, although there
is nothing technically wrong with it. The problem is that if time is
represented as an argument (or several arguments) to predicates,
there is nothing general you can say about the temporal aspect of
assertions. For example, you cannot say that “effects cannot precede
their causes”; at most you can say that about specific causes and
effects. Indeed, this first option accords no special status to time—
neither conceptual nor notational—which goes against the very spirit
of our enterprise.

Haugh [5] has given some counter arguments to this claim, but with BTK
we can give a more precise refutation. We will show that BTK subsumes the
logic developed by Shoham (to be referred to as “STL”). Given this result, it
is the case that STL can represent the sentence “effects cannot precede their
causes” only if BTK can: STL is no more expressive than a logic obtained
by adding additional time arguments to the predicates.5 In addition, time is
given a special status in BTK by using a sorted logic that distinguishes temporal
objects from all other objects, both semantically (conceptual), and syntactically
(notational).

4 Shoham’s Logic

In this section we briefly describe STL and discuss the main differences between
it and our temporal logic. Shoham’s logic is presented in [1].

STL is sorted in much the same way as BTK. There are a set of temporal con-
stants and variables as well as non-temporal constants and variables. However
the treatment of function and relation symbols is different. STL has temporal

5Later we will return to the question of whether or not a non-reified logic like BTK, or
STL, can in fact express this sentence.
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functions, but these functions can only take temporal arguments—they are a
special case of BTK temporal functions, i.e., temporal functions with m = 0.
Furthermore, STL allows no user defined temporal relations, just the prede-
fined ones ‘≤’ and ‘=’. Non-temporal functions and relations are also treated
differently. Syntactically they do not take any temporal arguments, although
semantically they are always evaluated with respect to a pair of time points (an
interval).

The atomic formulae of STL are of two types—formulae formed from the
two temporal relations = and ≤, e.g., t1 = t2 or t1 ≤ t2, where t1, t2 are
both temporal terms,6 and formulae formed via the TRUE construct. Using
Shoham’s definition,

If ta and tb are temporal terms, c1, . . . , cm are non-temporal terms,
and R is a m-ary relation symbol, then

TRUE(ta, tb, R(c1, . . . , cm))

is an atomic formula.

For example, the sentence “block A is on block B between 7 and 12” would be
expressed in STL as

TRUE(7, 12,on(a,b)).

TRUE is not a relation in STL, nor is it a modal operator; rather, it is a
reifying context. It asserts that the proposition R(c1, . . . , cm) is true over the
interval specified by ta and tb. The time points ta and tb do not appear as direct
arguments to the relation symbol R, nor to any functions which may appear in
the ci’s, but they affect the semantic interpretation of these symbols.

The rest of the formulae of STL are built up in the standard manner, by
closing off under negation, conjunction and universal quantification. As in BTK,
quantification can occur over the time points or over the ordinary individuals,
dependent on the sort of variable used.

Semantically STL has, like BTK, a universe of temporal objects and a uni-
verse of individuals. Unlike BTK, STL requires that the temporal objects be
time points, and requires that all of the atomic formulae include exactly two
temporal arguments (denoting the starting and ending points of the temporal
interval over which the proposition holds). The interpretation function maps the
temporal function symbols to functions over the universe of time points. The
mapping of the non-temporal function and relation symbols is, however, deter-
mined not only by the symbol itself but also by the two time points which occur
in the TRUE construct.7 In particular, there is a mapping from non-temporal
function symbols and a pair of time points to functions over the universe of
individuals. Similarly, there is a mapping from non-temporal relation symbols
and a pair of time points to relations over the individuals. Each non-temporal

6Terms in STL are formed in the standard manner, i.e., constants and variables, or func-
tions applied to the proper number of terms. Note, however, that in STL there are no mixed
functions, i.e., functions of temporal and non-temporal terms.

7This is the only place that a non-temporal relation or function can appear.
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function symbol denotes many different functions over the non-temporal indi-
viduals. The particular function that it denotes is determined by the time points
in its TRUE context, and likewise for non-temporal relation symbols.8 Once the
particular non-temporal function or relation is identified by the time points the
rest of the interpretation proceeds in a standard manner. A fuller description
of Shoham’s logic is provided in the Appendix.

Given the use of what resembles a truth predicate, STL bears a syntactic
similarity to reified logics, and in fact, Shoham argues that it is “a new reified
temporal logic” [1, p. 103]. However, since formulae are not treated as object
denoting terms, and TRUE, despite its resemblance, is not formally a predicate,
we view STL as being closer to the spirit of an intensional logic. The semantics
that Shoham provides bears a striking resemblance to Dowty’s temporal models
for his tensed logic [17, p. 113], the primary difference being that in STL, the
time objects are represented explicitly in the formulae, while Dowty provides
them implicitly in the model.

4.1 Comparison of Shoham’s Temporal Logic to BTK

There are several implications of Shoham’s approach. One is that every non-
temporal function and relation is always dependent on exactly two time points.
Thus, for example, it is clumsy to specifying that a function is dependent on
only one time point, location(space-shuttle, t1), or that a relation is “eter-
nal,” i.e., not dependent on time, block(A). Since the time dependency is
specified semantically the syntax is completely rigid on this matter. In BTK,
there is neither a syntactic commitment to the number of temporal objects that
any function or predicate may depend on, nor is there any commitment to in-
terpreting the temporal objects as either intervals or points. It is our position
that these choices should not be constrained by the logic, but should be left to
the axiom writer to decide.

An major problem with STL is that there is no simple way of referring to one
temporally referenced object within the context of another temporal interval,
such as the example “the President of 1962 died in 1963.” This is because
Shoham requires all non-temporal terms to be evaluated with respect to the
same temporal terms, i.e., those specified in the TRUE context. To express
such a statement in Shoham’s logic one has to resort to the more cumbersome
use of equality and quantification:

∀x[TRUE(1962, 1963,president(usa) = x) → TRUE(1963, 1964,died(x))]

This can be compared with the expression of this statement in BTK given in
section 2. We will have more to say about reasoning with Shoham’s logic below.

A further problem is that Shoham does not allow for temporal predicates,
except for the predefined ones ≤ and =.9 Thus one would have to extend his

8In this sense, the non-temporal functions can be viewed as fluents [16].
9What we mean here is that the semantic model Shoham defines does not allow for “user

defined” temporal relations. He does allow an arbitrary set of temporal functions.
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formalism to, for instance, embed the meets predicate and axioms of [18] within
STL.

A major difficulty with Shoham’s approach is that, since he has chosen to
move away from standard (or sorted) first order syntax, first order proof theory,
which is purely syntactic, no longer applies. Hence, Shoham’s logic requires
a new proof theory. This means that one cannot justify the use of Shoham’s
logic for reasoning about temporal propositions. There is no reasoning procedure
specified that provides any formal guarantees of soundness or completeness.

It may not be very difficult to provide a proof theory for Shoham’s logic,
but this in itself would not suffice to provide a useful tool for reasoning. One
would also have to develop some understanding of the properties of such a
proof theory, especially if one wishes to construct automated theorem provers
based on it. This may not be an easy task since, as indicated above, there are
some examples which force the use of equality which is known add complexity,
especially for automation. The fact that our temporal logic has a standard
syntax means that we can take advantage of 20 years of research in automated
reasoning, and many more years of theoretical work on understanding first-order
proof theory.

Our temporal logic is a simple sorted first order logic. It is simple because
the sorts do not intersect. Proof theories for sorted first order logics already
exist, and are applicable as is to our logic. In addition, considerable work has
been done on automating such proof theories, [9]. Furthermore, if one chooses
to interpret our logic as non-sorted, then standard FOL proof theory applies,
as do automated theorem provers for first order logic.

One would hope that there are compensations in using STL in exchange for
abandoning standard proof theory. This is, however, not the case. The next
section will show that nothing is lost in moving from Shoham’s temporal logic
to the logic proposed in this paper. It shows that STL is subsumed by our
logic in the precise sense that any STL model can be transformed to a BTK
model in such a way that there is a one to one correspondence between the
sentences satisfied by the STL model and the sentences satisfied by the BTK
model. These results also show that there is one way of doing reasoning in STL:
translate it into BTK.

5 Subsumption of Shoham’s Logic

We show that Shoham’s logic (STL) is subsumed by the logic proposed in this
paper (BTK) by defining two transformations, a syntactic transformation, πsyn,
and a semantic transformation, πsem.10 πsyn maps sentences of STL to sentences
of BTK, while πsem maps models of STL to models of BTK. Using these two
transformations we will show that any STL model can be transformed into a

10Ladkin [19] uses a similar approach to map Allen’s interval calculus [20] to the language of
rational numbers. In doing this he is able to give decision procedures for the interval calculus.
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BTK model in such a way that the set of sentences satisfied by the BTK model11

includes the transformed set of STL sentences satisfied by the STL model. In
other words, any set of STL sentences can be rewritten as a set of BTK sentences
without eliminating any models which satisfy those sentences.

The syntactic transformation is based on a simple idea. In Shoham’s logic
all predicate symbols and non-temporal function symbols are interpreted with
respect to the two time terms which appear as the first two arguments of the
“TRUE” construct. In transforming STL to BTK we take these two time terms
and add them as explicit temporal arguments to the predicate symbol, and simi-
larly we add them as extra arguments to the non-temporal functions. Temporal
functions are unaffected by the transformation, and none of the symbols are
altered—they are just rearranged.

The only technical point is that non-temporal terms can be built up from
nested application of non-temporal functions. In this case it is necessary to
propagate the two temporal arguments recursively to all embedded function
terms. For example, the non-temporal term f(g(h(c))) in STL, where f , g,
and h are non-temporal functions and c is a non-temporal constant, must be
converted to a term of the form f(t1, t2, g(t1, t2, h(t1, t2, c))), where t1 and t2
are the propagated temporal terms. Here each of the functions f , g, and h has
been converted to functions with two extra temporal arguments.

The following examples should give a good idea of the nature of the syntactic
transformation. The STL expressions

1. TRUE(t1, t2,colour(house17,red)).

2. TRUE(t3, t4,gender(president(usa),male)).

3. TRUE[t1, ft(t1), P (h(g(B)))].

will be transformed to the BTK expressions:

1. colour(t1, t2,house17,red).

2. gender(t3, t4,president(t3, t4,usa),male).

3. P [t1, ft(t1), h(t1, ft(t1), g(t1, f1(t1), B))].

The semantic transformation is similar. In STL each non-temporal function or
relation symbol actually denotes a set of different functions or relations over the
non-temporal individuals. The time points in the “TRUE” context determine
which element of the set is picked out for this particular instance. In converting
from an STL model to a BTK model we gather up all of the different functions
associated with each function symbol and construct a single function which has
two extra temporal arguments. The new BTK function has the property that
when it is evaluated at a fixed pair of time points it is the same function as
the function denoted by the STL symbol when that symbol is interpreted with

11A model, M, satisfies a sentence, α, written M |= α, if ασ = >, i.e., if α is true under
the interpretation of the model, σ.
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respect to those time points. The non-temporal relations are transformed in a
similar manner.

These transforms are defined formally in the appendix, where we prove the
following theorem.

Theorem 3 Given an STL sentence α and an STL model M then

M |= α iff πsem(M) |= πsyn(α).

Proof The proof is straight forward, but requires the development of a fair
amount of notation. See the appendix for details.

This theorem is a formal specification of the manner in which STL is sub-
sumed by BTK, and it has an interesting corollary regarding proof theories.

Corollary 4 A sound proof theory in BTK can be used to produce sound infer-
ences in STL.

Proof Let α and β be sentences of STL. We claim that if πsyn(α) ` πsyn(β) is
a sound deduction in BTK, then α |= β in STL. That is, if the syntactic trans-
formation of α can be used to deduce (soundly) the syntactic transformation of
β then α entails β in STL.12

If πsyn(α) ` πsyn(β) then, by the assumption of soundness, for all BTK
models, M′, we have that M′ |= πsyn(α) implies that M′ |= πsyn(β). Thus,
this also holds for all models which have the special form πsem(MS) for all
STL models MS . Hence, by theorem 3 we have that for all STL models MS ,
MS |= α implies MS |= β. In other words α |= β in STL.

It is natural to ask a similar question about completeness. That is, can a
complete proof theory in BTK produce a complete set of inferences in STL. Here,
however, the answer is more difficult to determine. If we have that α |= β in
STL, then we know from theorem 3 that πsyn(α) entails πsyn(β) in every BTK
model which is of the form πsem(MS), for some STL model, MS . However
these are not the only BTK models, and it is quite possible that in some BTK
model which is not a transformed STL model πsyn(α) is true while πsyn(β) is
false. Hence in BTK πsyn(α) ` πsyn(β) would not be sound, even though α |= β
in STL. Although it is clear that these extra BTK models exist, it might still be
possible to “factor” out their effect, extending the result to yield completeness.
This remains an open question.

6 Translating Shoham’s Ontology to BTK

One of the benefits of Shoham’s logic is that it does not require the axiom
writer to use a fixed ontology of temporally scoped propositions, as, for example,

12α |= β if any model which satisfies α (i.e., assigns truth to α) also satisfies β. A proof
theory is said to be sound if α ` β implies α |= β. It is said to be complete if α |= β implies
α ` β.
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Allen does [2] with his introduction of properties, events, and processes. Rather,
Shoham’s logic allows the axiom writer to build her own ontology axiomatically .

We argue that Shoham’s ontology extends naturally to our logic by virtue
of the demonstrated translation, and that, in fact, our ontology is richer, since
our logic allows intervals to be the primitive temporal objects rather than being
defined by the two endpoints, as in STL. An example showing the translation
of the ontology axioms should suffice to demonstrate our claim.

Shoham defines a proposition type x (where proposition types are simply
relation symbols with the requisite arguments) to be downward hereditary “if
whenever it holds over an interval it holds over all of its subintervals.” Shoham’s
axiom schema for this is

∀t1, t2, t3, t4.[t1 ≤ t3 ≤ t4 ≤ t2∧t1 6= t4∧t3 6= t2∧TRUE(t1, t2, x)] → TRUE(t3, t4, x).

for all x’s of the appropriate type. This translates in BTK to the following
schema, for each (2,m)-ary predicate of the appropriate type:

∀t1, t2, t3, t4, y1, . . . , ym.

[t1 ≤ t3 ≤ t4 ≤ t2 ∧ t1 6= t4 ∧ t3 6= t2 ∧ p(t1, t2, y1, . . . , ym)] → p(t3, t4, y1, . . . , ym).

In addition, the predicate “≤” must be defined axiomatically in BTK, since it
is not implicitly defined as it is in STL.13 In BTK, however, one is not forced
to use time points so one might alternatively define downward hereditary for a
system in which intervals are taken as the interpretation of time objects, as in:

∀i1, i2, y1, . . . , ym.During (i2, i1) ∧ p(i1, y1, . . . , ym) → p(i2, y1, . . . , ym),

where it is assumed that During has been defined axiomatically.
This same style of translation, then, can be used for any of the other el-

ements of Shoham’s ontology: upward-hereditary, point-downward-hereditary,
liquid, gestalt, etc.

7 Comparing Reified and Non-Reified Logics

In BTK, propositions are related to times by adding time-denoting argument
terms to each of the predicates. Semantically, a relation’s time dependence is
modeled by adding a set of temporal objects to each tuple in the relation. For
example, if on is a binary predicate dependent on a single temporal argument
(say an interval), then in BTK it will denote a set of triples in the semantics,
each triple consisting of the pair of objects that are in the on relation and the
interval during which they are in this relation. So, for example, on(I, A,B) will
be interpreted as asserting that the triple denoted by I, A, and B is a member
of the set of triples denoted by on.

13This is because an ordering relation on the entire domain does not make sense for certain
temporal structures, e.g., intervals.
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By contrast, in first-order reified logics such as those of [2, 3], propositions
are treated as object denoting terms and related to times through a “truth”
predicate, as in HOLDS(I,on(A,B)). In this case on(A,B) is a term, instead
of a formula. That is, it denotes an object in the domain, a special “formula”
object. The temporal terms, like I, continue to denote temporal objects. The
relation defined on the domain is a binary relation that relates formula objects
to temporal objects. The symbol on, that in BTK was treated as a predicate
symbol, is now treated as a function symbol. The object denoting terms remain
unchanged (in this example, A and B). Hence, with reified logics there is a
change in the denotation of the atemporal predicate symbols, and we have an
expanded domain of discourse which includes formula objects.

One does need to make these changes carefully, however. Since on(A,B) is
now a term and on is a function, we could, if we used the standard unsorted term
formation rules of first-order logic, generate new terms like on(on(A,B), B).
Clearly, such terms do not correspond to legal first-order formulas. To avoid such
difficulties we must add a precise sort structure to the language, to distinguish
those terms which denote the “real” objects of the domain, from those which
denote the formula objects. Under such a sortal structure we are prohibited from
applying a “real” object function, like on, to a formula object, like on(A,B).
Lifschitz [3] provides an example of such a carefully constructed sorted, reified
logic.

Things can get very complicated if we allow the reification of non-atomic
formulae, e.g., terms like AND(on(A,B),on(C,D)) as does Allen [2]. It is
fairly straightforward to extend the sortal structure to insure that, e.g, the
logical function ‘∧’ only takes formula objects as arguments. But we also
need axioms which specify the equality of certain obviously equal formulas,
e.g., axioms like ∀x, y.AND(x, y) ≡ AND(y, x), and this is what becomes com-
plex, and probably needlessly so. Most applications do not require the reifi-
cation of more than the atomic propositions: the logical connectives can be
applied outside of the HOLDS predicate. For example, instead of writing
HOLDS(I,AND(on(A,B),on(C,D)) we can write HOLDS(I,on(A,B))∧HOLDS(I,on(C,D)).

One advantage that is possessed by reified logics is that they allow quantifi-
cation over propositions. For example, one can express the assertion “effects
cannot precede their causes” in a reified logic. We could have a predicate
causes(x, y) that takes two formula terms as arguments and asserts that x
causes y. With this predicate our assertion could be expressed with the follow-
ing formula:

∀y, t2.(∃x.causes(x, y))∧HOLDS(t2, y) → (∃z, t1.causes(z, y)∧HOLDS(t1, z)∧t1 < t2),

where x, y and z are formula variables; t1 and t2 are temporal variables; and
quantification occurs only over the correct subset of the domain. That is, if y
has some cause, x, (i.e., it is not spontaneous) and it holds during t2 there must
be some previous time point t1 where one of its causes, z, (not necessarily the
same as x) occurred.

Such a statement cannot be expressed in a non-reified logic like BTK (nor,
by our results, in Shoham’s logic). In BTK we can only use axiom schema like

14



those we used to define different temporal ontologies. For example, we could
write the above as an axiom schema, where the propositional variables x, y and
z are no longer quantified. Instead they would have to be treated as meta-
variables. Each instantiation of the schema would give the proper assertion for
a particular triple of propositions. But this does not quite duplicate the above
assertion. In particular, the above assertion holds for all propositions, even if
we don’t currently have them in our language.

In summary, reified logics have the disadvantage of being more complex, and
on a practical side we have less experience with automated reasoning in such
logics. But they have the corresponding advantage of being more expressive [21].
The relative merits of reified vs. non-reified logics will depend on the particular
application. BTK is a very standard and easily understood formalism that is
capable of a wide range of temporal reasoning, and it is likely to be sufficient
in any practical temporal reasoning system. If one needs quantification over
propositions that cannot be reduced to a collection of instances, however, one
must resort to reified logics, or, perhaps, to some combination of the two (e.g.,
Allen et al. [22]).

8 Conclusion

A temporal logic has been presented for reasoning about propositions whose
truth values might change as a function of time. The temporal propositions
consist of formulae in a sorted first-order logic with each atomic predicate tak-
ing some set of temporal arguments which denote time objects, as well as a
set of non-temporal arguments. The temporal arguments serve to specify the
proposition’s dependence on time. By partitioning the terms of the language
into two sorts, temporal and non-temporal, time is given a special syntactic
and semantic status in the logic without having to resort to reification or non-
standard syntax and semantics. The benefits of this logic are that it has a clear
semantics and a well understood proof-theory for which considerable experience
in constructing automated reasoners already exists. Unlike the first-order logic
presented by Shoham, propositions can be expressed and interpreted with re-
spect to any number of temporal arguments, not just with respect to a pair of
time objects (an interval). In addition, the axiom writer is free to consider the
time objects as either points or intervals. By proving that the logic completely
subsumes Shoham’s, we have demonstrated that nothing is lost by this added
flexibility and more standard and useable syntax.
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A Transformation of STL to BTK

Definition 5 The syntactic transform, πsyn, which maps STL sentences to
BTK sentences, is defined recursively as follows. It depends on a syntactic
transformation of the non-temporal terms which is defined next.

1. πsyn(ta≤tb) 7→ ta≤tb, and πsyn(ta=tb) 7→ ta=tb (i.e., temporal terms and
formulae are left intact).

2. πsyn

(
TRUE(ta, tb, p(c1, . . . , cn))

)
7→ p(ta, tb, π

[ta,tb]
syn (c1), . . . , π

[ta,tb]
syn (cn))

3. πsyn(¬α) 7→ ¬πsyn(α)

4. πsyn(α ∧ β) 7→ πsyn(α) ∧ πsyn(β)

5. πsyn(∀x(α)) 7→ ∀x(πsyn(α)), where x can be a variable of either sort.

Definition 6 The syntactic transform, π[ti,tj ]
syn , which maps non-temporal terms

of STL to terms of BTK is defined as follows.

1. If c is a non-temporal constant or variable of STL then
π

[ti,tj ]
syn (c) 7→ c.

2. π[ti,tj ]
syn (f(c1, . . . , cn)) 7→ f(ti, tj , π

[ti,tj ]
syn (c1), . . . , π

[ti,tj ]
syn (cn))

The symbols of the corresponding BTK and STL languages are identical, but as
is seen from the definition of πsyn, non-temporal functions and predicates have
two extra temporal arguments.

Next we define the semantic transformation πsem, but in order to do this we
first need to provide more detail about the models of STL.

A model of STL is defined to be the tuple

M =
〈
TW,�,W, TFN,FN,RL,M

〉
Where:

1. TW is a universe of time points,

2. � is an ordering relation on TW ,

3. W is a universe of individuals,

4. TFN is a set of temporal functions, TWn 7→ TW ,

5. FN is a set of non-temporal functions, Wn 7→W ,

6. RL is a set of non-temporal relations in Wn,

7. M is the tuple of interpretation functions
〈M1,M2,M3,M4,M5〉, where:
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(a) M1 is a mapping from the time constants to TW ,

(b) M2 is a mapping from the non-temporal constants to W ,

(c) M3 is a mapping from the temporal functions to TFN ,

(d) M4 is a mapping from TW × TW × f 7→ FN , where f is the set of
non-temporal function symbols,

(e) M5 is a mapping from TW × TW × r 7→ RL, where r is the set of
non-temporal relation symbols.

In the following we denote temporal terms by ti (for various subscripts i) and
non-temporal terms by ci (note, terms are syntactic entities). We use hatted
t̂ (usually with subscripts) to denote time points. These are semantic entities
which are members of TW , the universe of time points. In addition, we use
hatted ĉ or â (again usually with subscripts) to denote individuals from the
semantic domain W .

The meaning of an expression ψ, M(ψ), is defined as follows:

1. If ψ is a temporal variable, then M(ψ) = VAt(ψ) where VAt is a variable
assignment function over TW .

2. If ψ is a temporal constant, then M(ψ) = M1(ψ).

3. If ψ is a temporal term of the form f(t1, . . . , tn), then

M(ψ) = M3(f)(M(t1), . . . ,M(tn)).

4. If ψ is a non-temporal term, then meaning is assigned to ψ with respect
to two time points as follows:

(a) If ψ is a non-temporal constant, then for all time points t̂1, t̂2,

M(t̂1, t̂2, ψ) = M2(ψ).

(b) If ψ is a non-temporal variable, then for all time points t̂1, t̂2,

M(t̂1, t̂2, ψ) = VAw(ψ),

where VAw is a variable assignment function over W .

(c) If ψ is a non-temporal function term of the form f(c1, . . . , cn), then
for all time points t̂1,t̂2,

M(t̂1, t̂2, ψ) = M4(t̂1, t̂2, f)[M(t̂1, t̂2, c1), . . . ,M(t̂1, t̂2, cn)].

And finally, a wff φ is satisfied under interpretation M and variable assignment
VA, (written M |=VA φ) as follows:

1. M |=VA t1 = t2 iff M(t1) = M(t2).

2. M |=VA t1 ≤ t2 iff M(t1) �M(t2).
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3. M |=VA TRUE(t1, t2, p(c1, . . . , cn)) iff

〈M [M(t1),M(t2), c1], . . . ,M [M(t1),M(t2), cn]〉 ∈M5[M(t1),M(t2), p].

Truth is assigned to non-atomic formulae in the standard fashion. Note that
predicates are interpreted with respect to two time points, just as were the
non-temporal functions.

We now define the semantic transformation of an STL model.

Definition 7 The semantic transformation of M,
πsem(M), is a BTK model constructed as follows.

1. T = TW , the universe of time points is the same.

2. U = W , the universe of individuals is the same.

3. If f is a temporal function symbol of STL, then fσ = M3(f).

4. If f is an n-ary non-temporal function symbol of STL, then the following
set of n+ 3 ordered tuples is the interpretation of f under πsem(M):

fσ = {〈t̂1, t̂2, ĉ1, . . . , ĉn, â〉| t̂1, t̂2 ∈ TW and (M4(t̂1, t̂2, f))(ĉ1, . . . , ĉn) = â}.

Note that this set does in fact define a function. Given any tuple 〈t̂1, t̂2, ĉ1, . . . , ĉn〉,
M4 maps f , t̂1, and t̂2 to a unique function over Wn (= Un). Hence, the
ĉi’s will then map to a unique element â of W (= U).

5. If P is a predicate symbol of STL, then

a) if P is ≤, then Pσ =�, i.e., the semantic ordering relation on TW ;

b) if P is =, then Pσ = {〈t̂, t̂〉|t̂ ∈ T};
c) if P is an n-ary non-temporal predicate symbol of STL then the

following set of n + 2-ary tuples is the interpretation of P under
πsem(M):

Pσ = {〈t̂1, t̂2, ĉ1, . . . , ĉn〉| t̂1, t̂2 ∈ TW and 〈ĉ1, . . . , ĉn〉 ∈M5(t̂1, t̂2, P ).}

6. To complete the definition of σ, we choose an arbitrary mapping of the
temporal variables to T and an arbitrary mapping of the non-temporal
variables to U . Finally, we maintain the STK denotations of all constants,
i.e., tσ = M1(t) for all time constant symbols t, and cσ = M2(c) for all
non-temporal constant symbols c.

Now we can prove the main technical result.

Theorem 3 Given an STL sentence α and an STL model M then

M |= α iff πsem(M) |= πsyn(α).
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Proof The cases where α is of the form t1 = t2 or t1 ≤ t2 are trivial. The
non-trivial case is α of the form

TRUE(t1, t2, p(c1, . . . , cn)).

We need only consider this case where all of the terms are ground, i.e., variable
free, since the formulae of STL and BTK are built up in an identical manner
and the universes over which the quantified variables can range are identical.
(α is a sentence so all variables are quantified.) πsyn(α) is of the form

p(t1, t2, π[t1,t2]
syn (c1), . . . , π[t1,t2]

syn (cn)).

πsem(M) will be a model for this sentence iff

〈tσ1 , tσ2 , π[t1,t2]
syn (c1)σ, . . . , π[t1,t2]

syn (cn)σ〉 ∈ pσ,

where σ is the interpretation function of πsem(M). By definition, M is a model
of α iff

〈M [M(t1),M(t2), c1], . . . ,M [M(t1),M(t2), cn]〉 ∈M5[M(t1),M(t2), p].

Clearly from the construction of πsem(M) all temporal terms are given the same
denotation in BTK as in STL, i.e., tσ = M(t) for all temporal terms t. We also
claim that all non-temporal terms, in a given TRUE context, are given the same
denotation in BTK as in STL. If the term is a constant this follows directly from
the definition of πsem, i.e., cσ = M2(c). If the term is of the form f(c1, . . . , cn)
and is within the temporal context determined by temporal terms t1 and t2,
then if we take (ci)σ = M(M(t1),M(t2), ci) for all i by induction, then

πsyn[f(c1, . . . , cn)]σ

= [f(t1, t2, π[t1,t2]
syn (c1), . . . , π[t1,t2]

syn (cn))]σ

= fσ((t1)σ, (t2)σ, π[t1,t2]
syn (c1)σ, . . . , π[t1,t2]

syn (cn)σ)
= [M4(M(t1),M(t2), f)][M(M(t1),M(t2), c1), . . . ,

M(M(t1),M(t2), cn)]
= M(f(c1, . . . , cn)).

Hence all of the terms are given an identical denotation. But using the definition
of pσ we have that

〈tσ1 , tσ2 , π
[t1,t2]
syn (c1)σ, . . . , π

[t1,t2]
syn (cn)σ〉 ∈ pσ iff

〈M(t1),M(t2),M [M(t1),M(t2), c1], . . . ,M [M(t1),M(t2), cn]〉 ∈ pσ iff
〈M [M(t1),M(t2), c1], . . . ,M [M(t1), (t2), cn]〉 ∈M5[M(t1),M(t2), p]

Q.E.D.
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