

Available online at www.sciencedirect.com



Organic Geochemistry

Organic Geochemistry 38 (2007) 582-608

www.elsevier.com/locate/orggeochem

### Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species

Zhaohui Zhang \*, Julian P. Sachs <sup>1</sup>

Department of Earth, Atmospheric and Planetary Sciences, Building E34-166, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Received 16 May 2006; received in revised form 19 November 2006; accepted 3 December 2006 Available online 21 December 2006

#### Abstract

Five species of freshwater green algae, including three strains of *Botryococcus braunii* (two A Race, one B Race), *Eudorina unicocca* and *Volvox aureus*, were cultured under controlled conditions in media containing different concentrations of deuterium. The hydrogen isotopic ratios of lipids in the algae, including alkadienes, botryococcenes, heptadecenes, fatty acids, and phytadiene, were measured by gas chromatography–isotope ratio-mass spectrometry (GC–IRMS) and found to closely track water  $\delta D$  values. While correlation coefficients ( $R^2$ ) in excess of 0.99 for all lipids in all species suggest that lipid  $\delta D$  values can be used to determine water  $\delta D$  values, hydrogen isotope fractionation was found to vary systematically between lipids and lipid homologues within a single alga, as well as for the same lipid between species of algae. Under similar growth conditions, two species of Chlorophyceae (*Eudorina unicocca* and *Volvox aureus*) and three species of Trebouxiophyceae (*Botryococcus braunii*) produced palmitic acid (C<sub>16</sub> fatty acid) that differed by 90–100‰ relative to water. Ubiquitous lipids such as palmitic acid, with a multitude of aquatic and terrestrial sources, are therefore not good targets for D/H-based paleohydrologic reconstructions. In addition to the use of source-specific biomarkers that derive unambiguously from a single family or species, paleohydrologic applications of lipid D/H ratios will need to consider the as yet unstudied potential influence that environmental parameters such as nutrients, light and temperature, etc., may have on D/H fractionation during lipid synthesis.

© 2006 Elsevier Ltd. All rights reserved.

### 1. Introduction

Hydrologic variations are difficult to reconstruct from the geologic record and are poorly reproduced

E-mail address: zhaohui@geo.umass.edu (Z. Zhang).

<sup>&</sup>lt;sup>\*</sup> Corresponding author. Present address: Department of Geosciences, University of Massachusetts, 611 North Pleasant Street, Amherst, MA 01003, USA. Tel.: +1 413 545 1755; fax: +1 413 545 1200.

<sup>&</sup>lt;sup>1</sup> Present address: University of Washington, School of Oceanography, Box 355351, Seattle, WA 98195, USA.

by climate models, yet they are essential for understanding the natural variation of climate, especially in the tropics. Hydrogen and oxygen isotope ratios of lake and ocean water reveal hydrologic variations caused by the higher vapor pressure of HHO and  $H_2^{16}$ O relative to HDO and  $H_2^{18}$ O. However, these ratios are often not preserved in the geologic record due to isotopic exchange or diagenesis or, as with mineral phases, are influenced by non-hydrologic processes. The 'holy grail' of paleohydrologic reconstructions is therefore a robust recorder of water

<sup>0146-6380/\$ -</sup> see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.orggeochem.2006.12.004

The hydrogen isotopic composition of algal lipid biomarkers in lake sediments holds great potential for water isotopic reconstruction. All hydrogen in algae derives from water and algae do not transpire, a process that overprints  $\delta D$  values in land plants. Whereas hydrogen atoms covalently bound to organic nitrogen, sulfur, and oxygen are labile and exchange quickly and reversibly with hydrogen atoms in water (Werstiuk and Ju, 1989), hydrogen atoms in lipids are bound to carbon (Estep and Hoering, 1980) and are nonexchangable (Epstein et al., 1976; Sauer et al., 2001). Compared to bulk organic matter, individual lipid biomarkers are not subject to isotopic changes caused by preferential degradation of less stable compounds.

Despite the strong potential of algal lipids in D/H reconstructions technical challenges in continuous flow-isotope ratio mass spectrometry have limited their application. With these technical problems all but overcome in recent years (cf. Burgoyne and Hayes, 1998; Hilkert et al., 1999; Sessions et al., 1999) the next step in developing compound-specific hydrogen isotopic reconstructions of water D/H ratios is demonstrating that lipid biomarker  $\delta D$ values closely track water  $\delta D$  values. Several recent studies have addressed this issue (Sessions et al., 1999; Sessions, 2006; Sauer et al., 2001; Huang et al., 2002, 2004; Sachse et al., 2004; Chikaraishi et al., 2004a,b,c, 2005; Chikaraishi, 2006; Englebrecht and Sachs, 2005; Schouten et al., 2006). However, this is the first to systematically evaluate the fidelity with which  $\delta D$  values in a variety of lipid biomarkers from cultured freshwater microalgae record water  $\delta D$  values.

Estep and Hoering (1980, 1981) pioneered hydrogen isotopic biogeochemistry by measuring the  $\delta D$ values of total organic matter in axenic algal cultures that were -90% to -110% relative to the water. They concluded that (1) photosynthesis was the primary process causing hydrogen isotopic fractionation in plants, (2) some additional fractionation occurred in the dark reactions during the synthesis of malic or pyruvic acids and lipids, and (3) little hydrogen isotope fractionation occurred during respiration.

Englebrecht and Sachs (2005) cultured the marine microalga *Emiliania huxleyi* and demonstrated that alkenones closely tracked water  $\delta D$  values ( $R^2 > 0.999$ ). Huang et al. (2004) showed that  $\delta D$  values of palmitic acid ( $C_{16:0}$  fatty acid) in core-top sediments from lakes in eastern North America were well-correlated with both water  $\delta D$  values of the lakes and air temperature ( $R^2 = 0.89$ ), and Sachse et al. (2004) showed that *n*-alkanes in core top sediments from lakes in a meridional transect through central Europe co-varied with  $\delta D$  values of precipitation.

To better constrain the extent to which algal lipids record water  $\delta D$  values and to address the species-dependence of hydrogen isotope fractionation in lipids we cultured five species of freshwater green algae - Eudorina unicocca, Volvox aureus (both belong to Chlorophyceae) and three strains of Botryococcus braunii (Trebouxiophyceae) - under controlled conditions in the laboratory, with each strain grown in five media containing different enrichments of deuterium. We measured  $\delta D$  values of several lipids from each culture, including alkadienes, botryococcenes, heptadecene, fatty acid methyl esters (FAMEs), phytadiene and free fatty acids. Reported here are the results of hydrogen isotopic fractionation in those lipids from the five freshwater algal species.

### 2. Methods

### 2.1. Algal cultures

### 2.1.1. Algal species

Five species of freshwater green algae were cultured: *Eudorina unicocca, Volvox aureus* and three strains of *Botryococcus braunii*. Relative to red and brown algae, green algae are closer in origin to land plants (Kirk, 1998).

*Botryococcus braunii* is a colonial member of Trebouxiophyceae (Senousy et al., 2004), characterized by high production of lipids and widely distributed in freshwater lakes and ponds. Interest in *Botryococcus braunii* arose in the 1960s when the algae were discovered to synthesize large amounts of hydrocarbons (cf. Maxwell et al., 1968; Douglas et al., 1969). Axenic inoculants of three strains of *Botryococcus braunii* were provided by Dr. Pierre Metzger of the Laboratoire de Chimie Bioorganique et Organique Physique in France. Two were from the A race, one from Morocco (a small pool in Oukaidem, Atlas) and the other from Lake Titicaca (Bolivia). The third was from the B race, from Martinique (French West Indies).

*Eudorina unicocca* and *Volvox aureus* both belong to Chlorophyta (green algae), chlorophyceae, volvocales and they are the most common single-celled green algae in natural water bodies. Each possesses biflagellate cells held together in a coenobium of defined shape, usually spherical (Kirk, 1998). The inoculants of *Eudorina unicocca* and *Volvox aureus* were supplied by the Culture Collection of Algae and Protozoa (CCAP) in Cumbria, United Kingdom (now located in Dunstaffnage Marine Laboratory, Oban, Scotland). The two cultured strains were *Eudorina unicocca* G.M. Smith 1930 (CCAP 24/1C, originated from freshwater near Bloomington, Indiana, USA) and *Volvox aureus* Ehrenberg 1838 (CCAP 88/6, originated from freshwater in Malham Tarn, Yorkshire, England).

We conducted the culture experiments in the laboratory of Dr. Daniel Repeta at the Woods Hole Oceanographic Institution from July to November, 2003.

### 2.1.2. Preparation of deuterium-enriched water and the determination of water $\delta D$ values

The reference standard for D/H ratios in this work is Vienna Standard Mean Ocean Water (VSMOW) with  $D/H = 155.76 \pm 0.05 \times 10^{-6}$ .  $\delta D$  is defined as

$$\delta D = \left[ (D/H)_{\text{sample}} - (D/H)_{\text{VSMOW}} \right] / (D/H)_{\text{VSMOW}} \times 1000\%$$

In order to investigate the relationship between lipid  $\delta D$  and water  $\delta D$  over a wide range of values, we set up five cultures for each species in waters with different deuterium concentrations. We mixed varying amounts of Aldrich deuterium oxide (99.9% D) with distilled water ( $\delta D = -65\%$ ) to produce medium with five different  $\delta D$  values, ranging from -65% to +450%.

Water  $\delta D$  values were measured on an H-device-Thermo Finnigan Delta<sup>plus</sup> XL mass spectrometer at Dartmouth College. The H-Device consists of a quartz reactor filled with chromium powder and a series of valves. The quartz reactor was sealed at one end by a septum and at the other end by a pneumatic valve. The reactor was held at 850 °C and the air evacuated by the vacuum system in the mass spectrometer. 1 µl of water was injected through the septum and flash evaporated. The water was reacted for one minute and the resulting gases admitted to the inlet system of the mass spectrometer. Precision of the water  $\delta D$  analyses was 0.5%.

#### 2.1.3. Culture media

The medium for the culture experiments was autoclaved before algal inoculants were introduced. Glassware was acid-leached overnight and rinsed with deionized water, then autoclaved. Algal transfers were conducted in a laminar flow bench with sterilized labware.

*B. braunii* was grown on a modified CHU 13 medium (composition in mg/l): KNO<sub>3</sub>, 200; K<sub>2</sub>HPO<sub>4</sub>·3 H<sub>2</sub>O, 54; MgSO<sub>4</sub> · 7H<sub>2</sub>O, 100; CaCl<sub>2</sub> · 2H<sub>2</sub>O, 52; FeNaEDTA, 10; plus 5 ml of a solution of micronutrients (mg/l): H<sub>3</sub>BO<sub>3</sub>, 286; MnSO<sub>4</sub> · H<sub>2</sub>O, 154; ZnSO<sub>4</sub> · 7H<sub>2</sub>O, 22; CuSO<sub>4</sub> · 5H<sub>2</sub>O, 8; Na<sub>2</sub>MoO<sub>4</sub> · 2H<sub>2</sub>O, 6; CoSO<sub>4</sub> · 7H<sub>2</sub>O, 9. The pH was approximately 7.4.

Cultures of *E. unicocca* and *V. aureus* were grown in Jaworski's Medium (JM). The stock composition in g/200 ml was: (1) Ca(NO<sub>3</sub>)<sub>2</sub> · 4H<sub>2</sub>O, 4.0; (2) K<sub>2</sub>HPO<sub>4</sub>, 2.48; (3) MgSO<sub>4</sub> · 7H<sub>2</sub>O, 10.0; (4) NaHCO<sub>3</sub>, 3.18; (5) FeNaEDTA, 0.45; Na<sub>2</sub>EDTA, 0.45; (6) H<sub>3</sub>BO<sub>3</sub>, 0.496; MnCl<sub>2</sub> · 4H<sub>2</sub>O, 0.278 g; (NH4)<sub>4</sub>Mo<sub>7</sub>O<sub>24</sub> · 4H<sub>2</sub>O, 0.20 g; (7) Cyanocobalamin, 0.008 g; Thiamine HCl, 0.008 g; Biotin, 0.008 g; (8) NaNO<sub>3</sub>, 16.0 g; (9) Na<sub>2</sub>HPO<sub>4</sub> · 12H<sub>2</sub>O, 7.2 g. Stock solutions 1–9 were diluted to 11 with deionized water.

#### 2.1.4. Light intensity and temperature control

Continuous light was provided by two banks of two 25 W cool-white fluorescent tubes. Light intensity was measured with a Biospherical Instruments QSL-100 probe equipped with a QSP-170 sensor. The center of the chamber was  $\sim 20 \times 10^{15}$  quanta/ scm<sup>2</sup>, or 320 µmol/m<sup>2</sup> s. Illumination was on a 12 h light:12 h dark photo cycle.

The 15 cultures of *B. braunii* (A1W1-5, A2W1-5 and BBW1-5; A1: A race, Morocco strain; A2, A race, Titicaca strain; BB: B race, Martinique strain) were grown at summer room temperature (July– September, 2003), which averaged 28 °C but varied from 26.5 °C to 30 °C.

*E. unicocca* and *V. aureus* were grown at 15 °C in a closed chamber built from foam insulation and cooled with an air-conditioner (Haier, 5000 BTU). The temperature inside the chamber varied between 14.5–16 °C during the course of the experiment (EUW1-5, VVW1-5; EU: *E. unicocca*; VV: *V. aureus*).

#### 2.1.5. Aeration

To expedite algal growth the culture medium was bubbled with 1% CO<sub>2</sub> in purified air that had been passed through two 0.2  $\mu$ m membrane filters. Metzger et al. (1985a) reported that hydrocarbon levels of *Botryococcus brauni* were greatly affected by culture conditions; air augmented with 1% CO<sub>2</sub> increased the hydrocarbon contents from 5% in unaerated cultures to 20-61% in aerated cultures, depending on the strain.

All plastic tubing and filters were autoclaved before use. Air was introduced into the medium near the bottom of the flask so that bubbling kept the algae in suspension. The flow rate was  $\sim$ 250 ml/min. 1% CO<sub>2</sub> air was made by mixing N<sub>2</sub> gas and gas from tanks of 95% O<sub>2</sub> and 5% CO<sub>2</sub> in a cell filled with glass beads.

Evaporation during the course of the experiments caused deuterium enrichment in the medium that we evaluated with a control experiment. A culture flask with 1.5 l water ( $\delta D = -67.7\%$ ) was aerated with the algal cultures and sampled every five days. After 45 days the water was enriched in deuterium by 45‰. Aliquots of medium were therefore collected from every culture flask throughout the course of the experiments for D/H analysis.  $\delta D_{water}$  values at the start and end of each culture experiment are shown in Tables 1–3.

### 2.1.6. Cell density monitoring and harvest

Cell density was monitored daily by measuring a small aliquot of each culture on a HP8452A Diode Array Spectrophotometer. Because the aliquots were not returned to the culture flasks (in order to prevent contamination) they typically constituted the largest source of water loss during the experiments. Growth curves for each strain of B. braunii, and for E. unicocca and V. aureus were obtained by measuring the absorption of light at 400, 500, 600, and 700 nm. Absorption curves at different wavelengths are nearly identical. Representative absorption curves for 600 nm light are shown in SFig. 1 (supplementary material). The continuous increase in light absorption (and by extension, cell density) with time was partly caused by evaporative loss of water resulting from aeration. B. braunii, and E. unicocca/V. aureus cultures were harvested after 45 days and 31 days, respectively, during the exponential-phase on the growth curves.

Cultures were harvested by helium-pressurized filtration through 293 mm diameter Whatman GF/ F filters (pore size 0.7  $\mu$ m), and subsequently kept at -20 °C until analysis. A small aliquot of filtrate was filtered through a 0.2  $\mu$ m membrane filter to obtain water for  $\delta D$  analysis.

#### 2.2. Lipid extraction and isolation

Harvested algae on GF/F filters were freeze-dried, cut into  $0.5 \times 0.5$  cm pieces, and extracted on a Dio-

nex ASE-200 pressurized fluid extractor with dichloromethane (DCM) and methanol (MeOH) (9:1) at 1500 psi and 150 °C. The total lipid extract was fractionated on an aminopropyl cartridge-style SPE column (Burdick & Jackson, size 500 mg/4 ml) with DCM/isopropyl alcohol (IPA) (3:1). Retained fatty acids were recovered with 4% acetic acid in diethyl ether, methylated with 10% BF3 in MeOH and purified by urea adduction. The DCM/IPA fraction was fractionated by column chromatography using 5% water-deactivated silica gel in a 29 cm  $\times$  1.2 cm glass column. Hydrocarbons were eluted with hexane, FAMEs and phytadienes with 10% ethyl acetate (EtOAc) in hexane, and alcohols (including phytol and sterols) with MeOH. FAMES and phytadienes were purified further by urea adduction.

Each fraction was analyzed by gas chromatography-mass spectrometry (GC–MS) to positively identify each lipid and determine its purity, then by gas chromatography with flame-ionization detection (GC-FID) to determine individual lipid concentrations. Agilent 6890 gas chromatographs were operated with programmable temperature vaporization (PTV) inlets, 60 m Varian Chrompac CP-Sil 5 capillary columns with 0.32 mm i.d. and 0.25  $\mu$ m film thickness, and helium carrier gas. Oven temperature programs differed for each lipid class.

Alkadienes in the Titicaca strain and botryococcenes in the Martinique strain in *B. braunii* cultures were hydrogenated with Raney Nickel in order to elucidate their exact structures.

#### 2.3. Determination of molecular D/H ratios

The hydrogen isotopic composition of each lipid fraction was measured by gas chromatography-isotope ratio-mass spectrometry (GC–IRMS) with a Finnigan Delta<sup>plus</sup> XP mass spectrometer, equipped with a Trace GC and a Combustion III interface.

The Trace GC was equipped with a PTV inlet operated in splitless mode, a 30 m DB-5 capillary column (J&W Scientific) with 0.25 mm i.d. and 0.25  $\mu$ m film, and was operated at a constant helium flow rate of 1 ml/min. The oven temperature program differed for each lipid class. For hydrocarbons, the starting temperature was 90 °C, rising to 230 °C at 13 °C/min, then to 325 °C at 5.5 °C/min, followed by 13 min at 325 °C. Effluent from the GC entered the GC-C III interface, a graphite-lined ceramic tube at 1400 °C, where quantitative pyrolysis to graphite, hydrogen gas and carbon monoxide occurred (Burgoyne and Hayes, 1998). The hydrogen gas stream

| Cultures           |                                     |                                                                                                                                                                                                         |                           | $H_2O \delta D$               | Н <sub>2</sub> О <i>δD</i>                                 |                                   | $C_{27}$ alkadiene            |             |             |                       | C <sub>29</sub> alkadiene        | diene                     |               |                                              | J          | C29 alkatriene | ne                |                        |                                | C <sub>31</sub> alk | C <sub>31</sub> alkadiene |                                                 |                     |        |
|--------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------|------------------------------------------------------------|-----------------------------------|-------------------------------|-------------|-------------|-----------------------|----------------------------------|---------------------------|---------------|----------------------------------------------|------------|----------------|-------------------|------------------------|--------------------------------|---------------------|---------------------------|-------------------------------------------------|---------------------|--------|
|                    |                                     |                                                                                                                                                                                                         |                           | start                         | harvest                                                    | st ôD                             | σ                             | ×           |             | 3                     | δD                               | ь                         | ×             | 3                                            | - °        | δD             | ø                 | ×                      | 3                              | Qβ                  | ь                         | 0                                               | 8                   | 3      |
| Botryococci        | ts brauni, A.                       | Botryococcus brauni, A race, Morocco strain                                                                                                                                                             | 1 strain                  |                               |                                                            |                                   |                               |             |             |                       |                                  |                           |               |                                              |            |                |                   |                        |                                |                     |                           |                                                 |                     |        |
| AIWI               |                                     |                                                                                                                                                                                                         |                           | -64.5                         | -29.5                                                      | 5 -184.9                          | 9 3.7                         |             | 0.840       | -160.1                | -235.7                           | 1.0                       | 0.788         | -212.4                                       |            | -232.6         | 3.2               | 0.791                  | -209.2                         | -225.5              | 5 1.9                     | 0                                               | 0.798               | -201.9 |
| A1W2               |                                     |                                                                                                                                                                                                         |                           | 88.4                          | 117.1                                                      | -84.3                             |                               |             | 0.820       | -180.2                | -122.3                           | 1.4                       | 0.786         | -214.3                                       |            | -123.5         | 0.3               | 0.785                  | -215.4                         | -116.2              | 2.8                       | 0                                               | 0.791               | -208.9 |
| A1W3               |                                     |                                                                                                                                                                                                         |                           | 187.7                         | 220.8                                                      |                                   |                               |             | 0.790       | -210.2                | -58.1                            | 3.4                       | 0.772         | 1                                            | 3.5        | -64.1          | 3.1               | 0.767                  | -233.3                         | -51.5               |                           | 0                                               | 0.777               | -223.1 |
| A1W4               |                                     |                                                                                                                                                                                                         |                           | 285.6                         | 316.9                                                      | 32.6                              |                               |             | 0.784       | -215.9                | 18.6                             | 2.2                       | 0.773         | -226.5                                       | 5.5        | 10.2           | 2.9               | 0.767                  | -232.9                         | 23.4                |                           | 0                                               | 0.777               | -222.8 |
| AIW5               |                                     |                                                                                                                                                                                                         |                           | 472.2                         | 497.2                                                      | 2 168.6                           | .6 2.9                        |             | 0.780       | -219.5                | 162.5                            | 1.1                       | 0.776         | -223.5                                       | 3.5        | 151.9          | 1.9               | 0.769                  | -230.6                         | 169.4               | 1 3.2                     | Ŭ                                               | 0.781               | -219.0 |
| Average            |                                     |                                                                                                                                                                                                         |                           |                               |                                                            |                                   |                               | 0           | 0.803       | - 197.2               |                                  |                           | 0.779         | -221.0                                       | 0.1        |                |                   | 0.776                  | -224.3                         |                     |                           | U                                               | 0.785               | -215.1 |
| Standard daviation | aviation                            |                                                                                                                                                                                                         |                           |                               |                                                            |                                   |                               |             | 7 N N K     | 750                   |                                  |                           | 7 UU 1        |                                              | 7 3        |                |                   | 110.0                  | с II                           |                     |                           |                                                 | υ υυα               | 0.4    |
| Cultures           | Ĥ                                   | H2O <i>δD</i>                                                                                                                                                                                           | $H_2C$                    | H2O <i>δD</i>                 | C <sub>27</sub> alkadiene                                  | adiene                            |                               |             |             |                       |                                  | C <sub>29</sub> alkadiene | liene         |                                              |            |                |                   |                        | C <sub>31</sub> alkadiene      | e                   |                           |                                                 |                     | •      |
|                    | st                                  | start                                                                                                                                                                                                   | harvest                   | vest                          | δD                                                         |                                   | م                             | ø           |             | \$                    |                                  | δD                        | a             |                                              | ø          |                | 3                 |                        | Qŷ                             | a                   |                           | x                                               |                     | 3      |
| Botrvococci        | s brami, A                          | Botrvococcus brauni. A race. Titicaca strain                                                                                                                                                            | strain                    |                               |                                                            |                                   |                               |             |             |                       |                                  |                           |               |                                              |            |                |                   |                        |                                |                     |                           |                                                 |                     |        |
| A2W1               |                                     | -64.0                                                                                                                                                                                                   | -26.0                     | 0.5                           | -224.0                                                     |                                   | 1.4                           | 0.797       | ~           | -203.3                |                                  | - 244.9                   | 2             | 2.2                                          | 0.775      |                | -224.8            |                        | -243.7                         | 1.9                 |                           | 0.776                                           |                     | -223.5 |
| A2W2               |                                     | 87.6                                                                                                                                                                                                    | 128.6                     | 3.6                           | -122.9                                                     |                                   | 0.9                           | 0.777       | -           | -222.9                |                                  | -120.4                    | -             | 1.0                                          | 0.779      |                | -220.6            |                        | -122.6                         | 0.8                 |                           | 0.777                                           |                     | -222.6 |
| A2W3               | -                                   | 182.1                                                                                                                                                                                                   | 221.3                     | .3                            | -55.0                                                      |                                   | 2.2                           | 0.774       | -           | -226.2                |                                  | -57.6                     | 2             | 2.8                                          | 0.772      |                | -228.4            |                        | -56.2                          | 2.9                 |                           | 0.773                                           |                     | -227.2 |
| A2W4               | 17                                  | 280.7                                                                                                                                                                                                   | 321.1                     | Γ.                            | 20.4                                                       |                                   | 4.9                           | 0.772       | <i>c</i> .  | -227.6                |                                  | 7.0                       | ŝ             | 3.3                                          | 0.762      |                | -237.7            |                        | 7.3                            | 3.4                 |                           | 0.762                                           |                     | -237.5 |
| A2W5               | 4                                   | 458.0                                                                                                                                                                                                   | 499.7                     | 7.7                           | 135.7                                                      |                                   | 4.9                           | 0.757       | -           | -242.7                |                                  | 130.8                     | 5             | 2                                            | 0.754      |                | -246.0            |                        | 131.8                          | 6.8                 |                           | 0.755                                           |                     | -245.3 |
| Average            |                                     |                                                                                                                                                                                                         |                           |                               |                                                            |                                   |                               | 0.775       | 16          | -224.5                |                                  |                           |               |                                              | 0.769      |                | -231.5            |                        |                                |                     |                           | 0.769                                           |                     | -231.2 |
| Standard deviation | eviation                            |                                                                                                                                                                                                         |                           |                               |                                                            |                                   |                               | 0.014       | -           | 14.1                  |                                  |                           |               |                                              | 0.010      |                | 10.3              |                        |                                |                     |                           | 0.010                                           |                     | 9.8    |
| Cultures           | H <sub>2</sub> O <i>δD</i>          | $H_2O \delta D$                                                                                                                                                                                         | C <sub>30</sub> botr      | C <sub>30</sub> botryococcene |                                                            | C <sub>31</sub> bc                | C <sub>31</sub> botryococcene | ne          |             | C <sub>34</sub> botry | C <sub>34</sub> botryococcene(4) | 4)                        | 9             | $C_{34}$ botryococcene iso(5)+? <sup>a</sup> | ccene iso( | 5)+?a          | C <sub>32</sub> . | + C <sub>33</sub> boti | $C_{32}+C_{33}botryococcene^a$ |                     | C <sub>34</sub> bol       | C <sub>34</sub> botryococcene iso? <sup>b</sup> | e iso? <sup>b</sup> |        |
|                    | start                               | harvest                                                                                                                                                                                                 | $\delta D$                | σ α                           | 3                                                          | δD                                | a                             | ×           | 8           | δD                    | σ                                | 3 χ                       | ε 9           | $\delta D = \sigma$                          | π.         | 8              | δD                | α                      | æ                              | 8                   | $\delta D$                | a                                               | ø                   | 3      |
| Botryococci        | ts bramii, B                        | Botryococcus braunii, B race, Martinique                                                                                                                                                                | anb                       |                               |                                                            |                                   |                               |             |             |                       |                                  |                           |               |                                              |            |                |                   |                        |                                |                     |                           |                                                 |                     |        |
| BBW1               | -64.0                               | -18.9                                                                                                                                                                                                   | -288.7                    | 1.4 0.                        | 0.725 -275.0                                               | 5.0 -310.3                        | 3 3.9                         | 0.703       | -297.0      | -334.4                | 4.1                              | 0.678                     | -321.5 -      | -325.5 4.                                    | 4.6 0.687  |                | -312.5 -331.1     | 1.1 3.5                | 5 0.682                        | -318.2              | -373.4                    | 1.5                                             | 0.639               | -361.3 |
| BBW2               | 102.2                               | 161.1                                                                                                                                                                                                   | -172.9                    | 2.4 0.                        | 0.712 -287.6                                               | 7.6 -184.8                        | 8 1.2                         | 0.702       | -297.9      | -224.3                | 0.9                              | 0.668                     | -331.9 -      | -206.0 1.                                    | 1.1 0.684  |                | -316.2 -213.3     | 3.3 1.6                | 5 0.678                        | -322.4              | -258.7                    | 3.1                                             | 0.638               | -361.6 |
| BBW3               | 184.1                               | 230.2                                                                                                                                                                                                   | -102.1                    | 2.0 0.                        | 0.730 -270.1                                               | 0.1 -125.8                        | 8 2.1                         | 0.711       | -289.4      | -162.7                | 1.2                              | 0.681                     | -319.4 -      | -148.7 2.                                    | 2.8 0.692  |                | -308.0 -151.3     | 1.3 2.9                | 0.690                          | -310.1              | -205.8                    | 2.2                                             | 0.646               | -354.4 |
| BBW4               | 273.7                               | 327.6                                                                                                                                                                                                   | -16.3                     | 3.8 0.                        | 0.741 -259.0                                               | 9.0 -56.7                         | 7 5.7                         | 0.711       | -289.5      | -91.4                 | 3.2                              | 0.684                     | -315.6        | -81.4 6.                                     | 6.6 0.692  |                | -308.0 -8         | -85.9 3.7              | 0.689                          | -311.5              | -147.0                    | 4.1                                             | 0.643               | -357.4 |
| BBW5               | 455.1                               | 513.6                                                                                                                                                                                                   | 101.4                     | 2.8 0.                        | 0.728 -272.3                                               | 2.3 76.8                          | 8 6.1                         | 0.711       | -288.6      | 48.1                  | 1.7                              | 0.692                     | -307.5        | 58.4 2.                                      | 2.1 0.699  |                | -300.7 3          | 37.8 4.2               | 2 0.686                        | -314.3              | -29.6                     | 2.2                                             | 0.641               | -358.8 |
| Average            |                                     |                                                                                                                                                                                                         |                           | 0                             | 0.727 -272.8                                               | 2.8                               |                               | 0.708       | -292.5      |                       |                                  | 0.681                     | -319.2        |                                              | 0.691      |                | -309.1            |                        | 0.685                          | -315.3              |                           |                                                 | 0.641               | -358.7 |
| Standard deviation | eviation                            |                                                                                                                                                                                                         |                           | 0                             | 0.010 10                                                   | 10.3                              |                               | 0.005       | 4.6         |                       |                                  | 0.009                     | 8.9           |                                              | 0.006      | 90             | 5.8               |                        | 0.005                          | 5.1                 |                           |                                                 | 0.003               | 3.0    |
| Each strain        | was grown                           | Each strain was grown in five media containing different concentrations of deuterium. The $\delta D$ value of each lipid was measured in triplicate and the average and standard deviation are reported | containing                | different con                 | tentrations o                                              | f deuterium.                      | The $\delta D$ va             | lue of each | lipid was m | easured in ti         | riplicate a                      | ind the avei              | rage and star | ndard deviat                                 | ion are re | ported.        |                   |                        |                                |                     |                           |                                                 |                     |        |
| The $\delta D$ val | ue of the cui                       | The $\delta D$ value of the culture medium at the start and harvest are also shown.                                                                                                                     | at the start              | t and harvest                 | t are also sho                                             | wn.                               |                               |             |             |                       |                                  |                           |               |                                              |            |                |                   |                        |                                |                     |                           |                                                 |                     |        |
| iso, isomer.       | iso, isomer; σ, standard deviation. | deviation.                                                                                                                                                                                              |                           |                               |                                                            |                                   |                               |             |             |                       |                                  |                           |               |                                              |            |                |                   |                        |                                |                     |                           |                                                 |                     |        |
| Frationatio        | n factor, ¤, is de                  | Frationation factor, $\alpha$ , is defined as $(D/H)_{\text{lipid}}/(D/H)_{\text{water}} = (\delta D_{\text{lipid}} + 1000)/(\delta D)$                                                                 | D/H) <sub>lipid</sub> /(1 | D/H)water = (.                | $_{\text{ter}} = (\delta D_{\text{lipid}} + 1000)/(\delta$ | ))/ (δD <sub>water</sub> + 1000). | 1000).                        |             |             |                       |                                  |                           |               |                                              |            |                |                   |                        |                                |                     |                           |                                                 |                     |        |

Table 1 Hydrogen isotope ratios and D/H fractionation in hydrocarbons from three strains of *B. hunnii* - . . .

586

Fractionation,  $\alpha_i$  is defined as  $(x-1)_{a|1000} = [(ab)_{mat} + 1000)/(ab)_{mat} + 10$ 

| Cultures                      | H2O <i>bD</i>              | H <sub>2</sub> Ο δ <i>D</i>                     | C <sub>16</sub> fatty acid | v acid      |                |                 | C <sub>18:1</sub> fatty acid | ty acid     |                 |               | C <sub>20:1</sub> fatty acid | ty acid     |                |               | C <sub>26:1</sub> fatt | y acid     |                |                | C <sub>28:1</sub> fatty | ity acid |                |                | C <sub>30:1</sub> fat | C <sub>30:1</sub> fatty acid |                |                 |
|-------------------------------|----------------------------|-------------------------------------------------|----------------------------|-------------|----------------|-----------------|------------------------------|-------------|-----------------|---------------|------------------------------|-------------|----------------|---------------|------------------------|------------|----------------|----------------|-------------------------|----------|----------------|----------------|-----------------------|------------------------------|----------------|-----------------|
|                               | at start                   | at harvest                                      | $\delta D$                 | Stdev       | α              | 3               | $\delta D$                   | Stdev       | x               | 3             | $\delta D$                   | Stdev       | ø              | 3             | δD Stde                | Stdev      | α              | 8              | δD                      | Stdev    | α              | 3              | $\delta D$            | Stdev                        | α              | 3               |
| ryococcus l                   | braunii, B rac             | Botryococcus braunii, B race, Martinique strain | strain                     |             |                |                 |                              |             |                 |               |                              |             |                |               |                        |            |                |                |                         |          |                |                |                       |                              |                |                 |
| BBW1                          | -64.0                      | -18.9                                           | -192.1                     | 3.4         | 0.823          | -176.6          | -191.6                       | 3.1         | 0.824           | -176.0        | -177.9                       | 0.3         | 0.838          | -162.1        | -187.9                 | 1.7        | 0.828          | -172.3         | -189.4                  |          | 0.826          | -173.8         | -191.0                | 6.0                          | 0.825          | -175.4          |
| BBW2                          | 102.2                      | 161.1                                           | -37.8                      | 0.5         | 0.829          | -171.3          | -31.1                        | 0.2         | 0.835           | -165.5        | -11.0                        | 4.0         | 0.852          | -148.2        | -33.0                  | 4.0        | 0.833          | -167.1         | - 30.9                  | 1.5      | 0.835          | -165.4         | -27.1                 | 2.4                          | 0.838          | -162            |
| BBW3                          | 184.1                      | 230.2                                           | 15.9                       | 2.0         | 0.826          | -174.2          | 19.4                         | 3.5         | 0.829           | -171.3        | 33.2                         | 5.8         | 0.840          | -160.2        | 12.6                   | 6.3        | 0.823          | -176.9         | 20.4                    |          | 0.829          | -170.5         | QN                    | QN                           | QN             | Q               |
| BBW4                          | 273.7                      | 327.6                                           | 95.4                       | 3.6         | 0.825          | -174.9          | 86.8                         | 4.9         | 0.819           | -181.3        | 115.3                        | 1.3         | 0.840          | -159.9        | Q                      | Q          | Q              | QN             | 96.8                    |          | 0.826          | -173.8         | QN                    | Q                            | Q              | Q               |
| BBW5                          | 455.1                      | 513.6                                           | 228.8                      | 0.7         | 0.812          | -188.1          | 233.7                        | 3.5         | 0.815           | -184.9        | 256.2                        | 1.1         | 0.830          | -170.0        | QN                     | ŊŊ         | QN             | ŊŊ             | 242.7                   |          | 0.821          | -179.0         | ŊŊ                    | QN                           | QN             | Q               |
| Average<br>Standard deviation | ation                      |                                                 |                            |             | 0.823<br>0.007 | -177.0<br>6.5   |                              |             | 0.824<br>0.008  | -175.8<br>7.8 |                              |             | 0.840<br>0.008 | -160.1<br>7.8 |                        |            | 0.828<br>0.005 | -172.1<br>4.9  |                         |          | 0.828<br>0.005 | -172.5<br>5.0  |                       |                              | 0.831<br>0.009 | -168.3          |
|                               |                            |                                                 |                            |             |                |                 |                              |             |                 |               |                              |             |                |               |                        |            |                |                |                         |          |                |                |                       |                              |                |                 |
| vococcus i                    | braunii, A ra.             | Botryococcus brannii, A race, Titicaca strain   | ain                        |             |                |                 |                              |             |                 |               |                              |             |                |               |                        |            |                |                |                         |          |                |                |                       |                              |                |                 |
| A2W1                          | -64.0                      | -26.0                                           | -206.5                     | -<br>13     | 0.815          | -185.4          | -205.6                       | 61          | 0.816           | -184.4        | -175.9                       | 4.<br>4.    | 0.846          | -153.9        | -167.2                 | 5.8        | 0.855          | -145.0         | -184.2                  | 4.9      | 0.838          | - 162.4        | -175.6                |                              | 0.846          | -153.6          |
| A2W2                          | 87.6                       | 128.6                                           | -85.1                      | c.0         | 0.811          | -189.4          | -79.2                        | 0.1         | 0.819           | -181.4        | -61.9                        | 2.0         | 0.831          | -168.8        | -57.3                  | 4.5<br>5.0 | 0.835          | -164.8         | -62.7                   | ::       | 0.831          | - 169.5        | - 59.1                |                              | 0.834          | 100             |
| A2W5                          | 182.1                      | 221.3                                           | -25.3                      | 0           | 0.02           | -201.9          | 0.0                          | C 7         | 0.813           | -180.0        | UN OL                        | n :         | UN .           | UN ND         | - 10.2                 | 0.0        | 0.810          | -189.6         | 7.2-                    |          | / 18.0         | - 183.0        | 0.0                   |                              | 0.824          | 53              |
| A2W4                          | 185.0                      | 321.1                                           | 8.08                       | 4. v        | 0.703          | -1/8.4<br>206.0 | 6.27<br>9.90C                | 1.2         | 0.805           | -188.1        | 1 967                        | 0.0         | 0.831          | 0.091         |                        |            |                |                | 7.06                    | 17       | 0.89           | -1/0.0         | 1.601                 | 0.0                          | 0.840          | - 10            |
| 2                             | 10.004                     | 1.00+                                           | 1.001                      | ,<br>C      | <i>CC</i> 1.0  | C:007-          | 20002                        | <i>C</i> .C | 0.00.0          |               | 1.077                        | 0.0         | 610.0          | C'001_        |                        |            |                |                | 710.7                   | 9.<br>†  | C 10.0         |                | 0.677                 | 0.7                          | 070.0          |                 |
| Average<br>Standard deviation | ation                      |                                                 |                            |             | 0.808          | -192.4<br>11.8  |                              |             | 0.813           | -187.2<br>5.2 |                              |             | 0.832          | -168.1        |                        |            | 0.834          | -166.4<br>22.3 |                         |          | 0.825          | -174.6<br>10.3 |                       |                              | 0.833          | - 167.4<br>11.1 |
| Norocaus I                    | brannii A rac              | Batrvococcus braunii – 4 race – Morocco strain  | uju.                       |             |                |                 |                              |             |                 |               |                              |             |                |               |                        |            |                |                |                         |          |                |                |                       |                              |                |                 |
| A1W1                          | -64.5                      | - 20 5                                          | - 219.0                    | 1           | 0.804          | - 106.2         | -210.0                       | 3.4         | 0.814           | -185.0        | -185.5                       |             | 0.830          | - 160.7       | -107 5                 | 50         | 0 877          | -173.0         | -100.8                  | 14       | 0.875          | - 175.4        | -206.4                |                              | 0.818          | 18,             |
| 1.4.1.4                       | C + 00                     | 1.711                                           | 0.017-                     | 71          | 0.000          | 7061-           | 0.012                        | t o<br>n c  | 0.014           | 6 701-        | 0.001-                       |             | 200.0          | 1.001-        | 3 22                   | 7.0        | 120.0          | 0.011          | 0.771-                  |          | 10.01          | 5921           | t.007-                |                              | 0.010          |                 |
| A1W2                          | 187.7                      | 3.066                                           | -214                       |             | 0.802          | -108.4          | 9.16                         | 0.4         | 0.812           | -187.0        | 10.4                         |             | 0.870          | -170.8        | 18.1                   | 7.4        | 0.804          | -105.0         | 1.5                     |          | 0.874          | - 176.5        | 7.0                   | 14                           | 0.810          | 1 1             |
| A1W4                          | 285.6                      | 316.9                                           | 6 9 2                      |             | 0.812          | -1881           | 81.0                         | 44          | 0.871           | -1791         | GZ                           |             | Ę              | Ē             | GN                     | GZ         | G              | CIN            | 813                     |          | 0.871          | - 178.9        | GN                    |                              | Ę              | Ę               |
| AIW5                          | 472.2                      | 497.2                                           | 198.0                      | 4<br>9<br>9 | 0.800          | -199.9          | 205.7                        | 3.8         | 0.805           | -194.7        | 240.2                        | 7.3         | 0.828          | -171.7        | 229.9                  | 1.8        | 0.821          | -178.5         | 220.3                   | 3.2      | 0.815          | - 185.0        | QZ                    | đ                            | g              | Q               |
| Average                       |                            |                                                 |                            |             | 0.804          | - 195 9         |                              |             | 0.813           | -186.8        |                              |             | 0.833          | -167.0        |                        |            | 0.820          | -180.4         |                         |          | 0.873          | - 177 5        |                       |                              | 0.821          | - 178 0         |
| Standard deviation            | ation                      |                                                 |                            |             | 0.005          | 4.6             |                              |             | 0.006           | 5.6           |                              |             | 0.005          | 5.2           |                        |            | 0.011          | 10.6           |                         |          | 0.005          | 4.9            |                       |                              | 0.004          |                 |
| Cultures                      | H <sub>5</sub> O <i>ôD</i> | H <sub>2</sub> O <i>§D</i>                      | Phytadlene                 | ine         |                |                 | Naturally                    | v occurin   | occuring FAME ? | D)            |                              |             |                |               |                        |            |                |                |                         |          |                |                |                       |                              |                |                 |
|                               | at start                   | at harvest                                      | άŝ                         | Stdev       | ×              | 4               | Č,                           | Stdev       | ž               | ų             | Ciert                        | Stdev       | N              | ų             | Cont                   | Stdev      | 8              | 4              | C.e.                    | Stdev    | ×              | c,             | C.o.1                 | Stdev                        | ĸ              | 4               |
|                               |                            |                                                 | <i>a n</i>                 | 10000       | *              |                 | 012                          | 10000       | \$              | 2             | C18:1                        | 10000       | 5              | -             | 1:07~                  | 10000      | *              |                | 1:97~                   | 10000    | *              | 2              | 1:06~                 | 10000                        | ,              | 2               |
| vococcus i                    | brannii, B rac             | Botryococcus braunii, B race, Martinique strain | strain                     |             |                |                 |                              |             |                 |               |                              |             |                |               |                        |            |                |                |                         |          |                |                |                       |                              |                |                 |
| BBW1                          | -64.0                      | - 18.9                                          | -291.2                     |             | 0.722          | -277.6          | -175.5                       | 1.6         | 0.840           | -159.6        | -182.3                       | 0.1         | 0.833          | -166.6        | -162.4                 | 5.7        | 0.854          | -1469.3        | -179.7                  | 3.5      | 0.836          | - 163.9        | -182.8                | 32                           | 0.833          | - 167.0         |
| BBW 2                         | 102.2                      | 1.101                                           | C.191-                     |             | 169.0          | 0.806-          | 1.64-                        | 0.1         | 0.819           | -181.0        | -40.1                        | ۍ.د<br>۲. و | 778.0          | -1/8.4        | C.22 -                 | 9.5<br>1   | 0.842          | 1.861-         | 7.04-                   |          | 779.0          | -1///-         | - 49.4                |                              | 0.819          | <u>8</u>        |
| BBW3                          | 184.1                      | 230.2                                           | -150.1                     | 4           | 0.691          | -309.2          | 0.7                          | 2.7         | 0.819           | -181.5        | 1.3<br>1.3                   | 2.7         | 0.814          | -186.0        | 25.0                   | 4.5        | 0.833          | -166.8         | 4.7                     |          | 0.817          | - 183.3        | Q į                   | Q į                          | Q (            | Q (             |
| BBW4                          | 1.5.1                      | 0.125                                           |                            |             |                |                 | 07.00                        | 0.0         | CU0.U           | 0.1941-       | 7.61                         | 1.0         | 0.700          | -10/-         | 7.001                  | 4<br>0.4   | 0.05U          | -100./         | 0.0/                    | 0.7      | C 10.0         | - 10/.4        |                       |                              |                | 2 9             |
| CMAR                          | 1.064                      | 0.616                                           | <b>N</b>                   | nn          | n              | n n             | 8.002                        | C.8         | 161.0           | e.eu2-        | 208.0                        | C.0         | 0. /99         | C107-         | nn                     | n          | nn             | nn             | 71/7                    |          | 0.804          | C.CVI –        | nn                    | ΠN                           | n              | n               |
| Average                       |                            |                                                 |                            |             | 0.702          | -298.5          |                              |             | 0.816           | -184.0        |                              |             | 0.816          | -183.9        |                        |            | 0.841          | -159.5         |                         |          | 0.818          | - 181.6        |                       |                              | 0.826          | - 174.          |
| stanuaru devlation            | Iduoii                     |                                                 |                            |             | 010.0          | 1.01            |                              |             | / 10:0          | 10.0          |                              |             | c10.0          | 12.0          |                        |            | /00/0          | 1.6            |                         |          | 710.0          | 0.11           |                       |                              | 010.0          | 1               |
| yococcus l                    | braunii, A ra              | Botryococcus braunii, A race, Titicaca strain   | ain                        |             |                |                 |                              |             |                 |               |                              |             |                |               |                        |            |                |                |                         |          |                |                |                       |                              |                |                 |
| A2W1                          | -64.0                      | -26.0                                           | Q I                        | Q I         | Q I            | Ð !             | -202.1                       | 4.2         | 0.819           | -180.8        | -214.3                       | 1.2         | 0.807          | -193.3        | -192.7                 | 1.9        | 0.829          | -171.1         | -208.0                  | 3.3      | 0.813          | - 186.8        | -204.7                | 5.5                          | 0.817          | - 183.4         |
| A2W2                          | 87.6                       | 128.6                                           | QN                         | QN          | QN             | QN              | -78.9                        | 6.0         | 0.816           | -183.8        | -83.8                        | 2.3         | 0.812          | -188.2        | -69.1                  | 5.0        | 0.825          | -175.1         | - 72.7                  | 3.4      | 0.822          | -178.3         | QN                    | QN                           | QN             | QN              |
| A2W3                          | 182.1                      | 221.3                                           | QN                         | QN          | QN             | Ð               | 8.5                          | 4.6         | 0.826           | -174.3        | -0.5                         | 0.9         | 0.818          | -181.6        | 27.8                   | 4.7        | 0.842          | -158.5         | 1.8                     | 2.8      | 0.820          | -179.7         | QN                    | QN                           | QN             | QN              |
| A2W4                          | 280.7                      | 321.1                                           | QN                         | Q           | Q              | Ð               | 6.69                         | 1.5         | 0.810           | -190.1        | 72.7                         | 1.6         | 0.812          | -188.0        | N.D                    | N.D        | Q              | QN             | 82.3                    | 7.2      | 0.819          | - 180.8        | QN                    | Q                            | Q              | g               |
| A2W5                          | 485.0                      | 499.7                                           | Ŋ                          | QN          | ŊŊ             | Q               | 208.0                        | 2.1         | 0.805           | -194.5        | 206.2                        | 1.0         | 0.804          | -195.7        | 245.2                  | 0.1        | 0.830          | -169.7         | QN                      | QN       | ŊŊ             | ŊŊ             | ŊŊ                    | QN                           | QN             | Q               |
| Average                       |                            |                                                 |                            |             |                |                 |                              |             | 0.815           | -184.7        |                              |             | 0.811          | -189.4        |                        |            | 0.831          | -168.6         |                         |          | 0.819          | -181.4         |                       |                              | 0.817          | -183.           |
| Standard deviation            | ation                      |                                                 |                            |             |                |                 |                              |             | 0.008           | 7.9           |                              |             | 0.005          | 5.5           |                        |            | 0.007          | 7.2            |                         |          | 0.004          | 3.7            |                       |                              | ΩN             | Q               |

Table 2

| $i D$ State $z$ $i D$ State $z$ $i D$ State $z$ $u u n i coccat$ $-3.2$ $1.3$ $-13.5$ $1.3$ $-13.5$ $1.9$ $-90.3$ $-19.3$ $2.19$ $0.00$ $3.6$ $3.7$ $-3.25$ $1.10.4$ $0.4$ $0.90$ $-90.4$ $1.67$ $2.4$ $0.90$ $3.90.7$ $3.40.7$ $3.40.5$ $2.01.2$ $5.0$ $0.89^{2}$ $-10.41$ $2.74$ $0.90$ $3.40.7$ $3.40.7$ $2.21.5$ $ND$ $ND$ $ND$ $ND$ $2.74$ $0.90$ $3.40.7$ $2.20.7$ $1.10.4$ $0.4$ $0.90$ $-10.3$ $3.7$ $0.90$ $3.40.7$ $2.20.7$ $1.10.4$ $ND$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stdev<br>1.9<br>2.1 |            |                             |                  | 1         |                                  |         |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|-----------------------------|------------------|-----------|----------------------------------|---------|----------------------------|
| interconstruction        0.3        10.3        10.4         -0.3        10.4         1.0         3.3         2.1         3.3         2.1         3.3         2.1         3.3         2.1         3.3         2.1         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9<br>2.1          | 3          | δD Stdev                    | ø                | 9         | δD                               | Stdev a | ω.                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1                 |            |                             |                  | e<br>     |                                  |         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1                 |            | -97.3 1.6                   | 0.951            | -49.3     | -116.5                           | 4.8     | 0.931 -69.5                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |            |                             | 0.961            | -39.3     | 9.4                              |         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                 |            |                             | 0.952            | -47.8     | 153.7                            |         | 0.945 -54.9                |
| 458.8 $463.7$ $298.5$ $3.8$ $0.887$ $-112.8$ $36.0$ $3.7$ deviation         - $e2.5$ $-51.2$ ND         ND         ND         ND $23.2$ $42.3$ $33.3$ $336.0$ $37.2$ $33.3$ $33.6$ $33.3$ $33.6$ $33.3$ $33.6$ $33.3$ $33.6$ $33.3$ $33.6$ $33.3$ $33.2$ $42.1$ $42.1$ $45.2$ $ND$ ND         ND         ND $23.2$ $42.2$ $33.3$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ $33.2$ <td>0.2</td> <td></td> <td></td> <td>QN</td> <td>QN</td> <td>QN</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2                 |            |                             | QN               | QN        | QN                               |         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.7                 |            |                             | 0.965            | -35.5     | 379.5                            |         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.950               | -49.8      |                             | 0.957            | -42.9     |                                  | 0.      | 0.937 -62.7                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005               | 5.3        |                             | 0.007            | 6.7       |                                  | 0       | 0.008                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 0          | d lsear b                   |                  |           |                                  |         |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 3                 | - 36       |                             | 0.073            | C LC-     | 0.00                             |         |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.5<br>7 4          |            |                             | 0.940            | -1.12-    | CIN CIN                          |         |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                  |            |                             | 0.940            | -60.1     | 1614                             |         |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1                 |            |                             |                  |           |                                  |         |                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.2                 |            | 397.2 4.0                   | 0.962            | -38.3     | 405.4                            | 2.8 0.5 | 0.967 - 32.7               |
| Ideviation           H <sub>2</sub> O $\delta D$ at start         H <sub>2</sub> O $\delta D$ at harvest         Phytadiene         Heptadecene           H <sub>2</sub> O $\delta D$ at start         H <sub>2</sub> O $\delta D$ at harvest         Phytadiene $\delta D$ stdev $z$ $\delta D$ stdev $z$ $z$ $\delta D$ stdev $z$ $z$ $\delta D$ stdev $z$ $z$ $-62.4$ $-90.5$ ND         ND         ND         ND $-143.5$ $2.3$ $0.902$ $-98.0$ $-78.1$ $84.1$ ND         ND         ND         ND $-22.1$ $0.8$ $-131.7$ $218.6$ $220.7$ ND         ND         ND         ND $-22.1$ $0.8$ $-131.7$ $340.7$ $340.8$ ND         ND         ND $109.8$ $-131.7$ $463.7$ ND         ND         ND         ND $109.8$ $-111.6$ $463.7$ ND         ND         ND         ND $109.8$ $-110.3$ $463.7$ ND         ND         ND         ND $109.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |            |                             | 0.064            | 46.4      |                                  |         |                            |
| H <sub>3</sub> O δD at start         H <sub>3</sub> O δD at start         H <sub>3</sub> O δD at start         H <sub>4</sub> Phadecene           1microcca         δD         stdev         z         δD         stdev         z         s           2.2.4         -80.5         ND         ND         ND         ND         -143.5         2.3         0.902         -98.0           78.1         84.1         ND         ND         ND         ND         -22.1         0.88         -131.7           78.1         84.1         ND         ND         ND         ND         6.0         2.2         0.902         -98.0           218.6         220.7         ND         ND         ND         ND         6.0         2.2         0.902         -98.0           458.8         463.7         ND         ND         ND         ND         90.7         2.90.0         2.90.0         10.3           458.8         463.7         ND         ND         ND         30.2         2.3         0.888         -111.6           458.8         -463.7         ND         ND         ND         30.2         2.3         0.888         -110.3           458.8         -110.3         -463.7         -3.85.1         6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7100                | 1.00-      |                             | 210.0            | 1.01      |                                  | 6       | 0.07- 0.000<br>0.010 0.000 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.014               | 14.1       |                             | 010'0            | 10.4      |                                  | 50      |                            |
| bD         stdev         z         bD         stdev         z         c           -50.5         ND         ND         ND         ND         -143.5         2.3         0.902         -98.0           94.1         ND         ND         ND         ND         ND         -22.1         0.802         -98.0           94.1         ND         ND         ND         ND         ND         -22.1         0.868         -131.7           34.3         ND         ND         ND         ND         ND         179.8         1.7         0.869         -120.0           346.7         ND         ND         ND         ND         ND         179.8         1.7         0.889         -110.3           465.7         ND         ND         ND         ND         ND         1.7         0.889         -110.3           465.1         ND         ND         ND         ND         1.95         0.915         14.6           -51.2         -285.1         6.5         0.753         -246.6         -132.8         2.1         0.914         -86.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Naturally occurrir  | ıg FAME δD |                             |                  |           |                                  |         |                            |
| -50.5     ND     ND     ND     ND     ND     -143.5     2.3     0.902     -98.0     -110.3       84.1     ND     ND     ND     ND     ND     ND     -22.1     0.89     -131.7     121.7       220.7     ND     ND     ND     ND     ND     ND     22     0.89     -131.7     121.7       340.7     ND     ND     ND     ND     ND     179.8     1.3     0.83     -131.7     121.7       346.7     ND     ND     ND     ND     ND     179.8     1.16.3     34.9       465.7     ND     ND     ND     ND     ND     302.2     2.3     0.890     -110.3     34.9       465.1     ND     ND     ND     ND     ND     302.2     2.3     0.890     -110.3     34.9       465.1     ND     ND     ND     ND     ND     179.8     -111.6       -51.2     -285.1     6.5     0.753     -246.6     -132.8     2.1     0.914     -86.1     -106.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | 3 x        | C18 unsat <sup>c</sup>      | e stdev          | з х       | C <sub>18</sub> sat <sup>d</sup> | stdev   | 3 2                        |
| -9.0 ND ND ND ND -143. 2.3 0.902 -8.0 -10.3 2.20.7 ND ND ND ND -121. 0.8 0.902 -8.0 -10.3 2.20.7 ND ND ND ND -17.1 0.8 0.902 -8.0 -10.3 2.47.3 3.40.8 ND ND ND ND 179.8 1.7 0.890 -1.03 3.41.9 4.63.7 ND ND ND ND ND 30.22 2.3 0.890 -110.3 3.41.9 0.015 14.6 -51.2 -285.1 6.3 0.753 -246.6 -132.8 2.1 0.914 -66.1 -106.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |            |                             | !                |           |                                  |         |                            |
| 84.1 ND ND ND ND -22.1 0.8 0.902 -98.0 22.7<br>220.7 ND ND ND ND 79.8 1.7 0.80 -13.7 12.1.7<br>340.3 ND ND ND 709 79.8 1.7 0.80 -110.3 354.9<br>465.7 ND ND ND ND 709.8 1.7 0.80 -110.3 354.9<br>0.015 14.6<br>-51.2 -285.1 6.5 0.753 -246.6 -132.8 2.1 0.914 -86.1 -106.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -110.3              |            | 1                           | 1.7              |           | 1                                | 2.4     |                            |
| 220.7 ND ND ND ND 000 22 086 -131.7 121.7<br>346.7 ND ND ND ND 198 17 0890 -1200 343.7<br>463.7 ND ND ND ND 3022 2.3 0890 -110.3 34.9<br>0.015 14.6<br>-51.2 -285.1 6.5 0.753 -246.6 -132.8 2.1 0.914 -86.1 -106.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.7                |            |                             | 4.2              |           |                                  |         | ~                          |
| -51.2 -285.1 6.5 0.753 -246.6 -132.8 1.7 0.880 -10.0 245.7 0.81 -10.0 245.7 0.81 -10.0 245.7 0.81 -10.0 345.9 0.91 -10.0 345.9 0.91 -10.0 -10.3 359.9 0.91 -10.0 -10.3 -34.9 0.91 -10.0 -10.5 14.6 -51.2 -285.1 6.5 0.753 -246.6 -132.8 2.1 0.914 -86.1 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 -106.0 | 121.7               |            | -81.1 135.5                 | 7.4              |           | -69.8 ND                         | QN      |                            |
| 465/ ND ND ND ND 9022 2.3 0.890 -110.3 534.9<br>0.888 -111.6<br>0.015 14.6<br>-51.2 -285.1 6.5 0.753 -246.6 -132.8 2.1 0.914 -86.1 -106.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 243.7               |            |                             | 0.2              |           |                                  | Q ;     |                            |
| 0.001 - 1.850<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 354.9               |            |                             | 3.3              |           |                                  | QN      |                            |
| 0.015 14.6<br>-51.2 -285.1 6.5 0.753 -246.6 -132.8 2.1 0.914 -86.1 -106.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -111.6              |            | -69.5                       |                  |           | -64.5                            |         | 0.922 -78.3                |
| aureus<br>-62.5 -51.2 -285.1 6.5 0.753 -246.6 -132.8 2.1 0.914 -86.1 -106.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.6                | 0.010      | 9.7                         |                  | 0.008     | 7.5                              |         |                            |
| -62.5 $-51.2$ $-285.1$ $6.5$ $0.753$ $-246.6$ $-132.8$ $2.1$ $0.914$ $-86.1$ $-106.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |            | C <sub>18:3/1</sub> ° Stdev | tdev             |           | C <sub>18</sub> °Stdev           | ev.     |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -106.0              | 0.942      |                             | 2.1              |           |                                  |         |                            |
| -257.2 -11.5 2.9 0.893 -106.6 22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -106.6 22.9 0.7     | 0.924 -    | -75.6 26.9                  | 0.9              | 0.928 -7  | -71.9 24.3                       |         | 0.926 -74.3                |
| ND ND ND 76.7 N/A <sup>h</sup> 0.874 –126.4 90.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | 0.885 -    |                             | N/A <sup>r</sup> | 0.896 -10 | -104.5 ND                        | ND      |                            |
| ND ND ND ND ND ND ND 224.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 224.0               | 0.915 -    | -85.5 245.2                 | 2.7              | 0.930 -6  | -69.7 259.1                      | 7.2     | 0.941 -59.2                |
| ND ND ND ND ND ND ND ND 317.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 317.2               | - 700.0    | -93.4 333.6                 | 3.5              | 0.918 -8  | -82.1 358.8                      |         | 0.935 -64.7                |
| Average 0.748 -251.9 0.894 -106.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -106.4              | 0.922      | -78.1                       |                  |           | -63.9                            |         | 0.938 -62.0                |
| deviation 0.008 7.5 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.2                |            | 15.3                        |                  | 0.022 2   | 21.9                             |         |                            |

<sup>b</sup> All fatty acids with C<sub>18</sub> skeleton are merged into two peaks only, unsaturated and saturated. Unsaturated is predominated by C<sub>18.3</sub>, followed by C<sub>18.1</sub> and, to a much less extent, C<sub>18.2</sub>. In VVWS, unsaturated is one hump.

\* For EUW1, 2 and 3, all fatty acids with C<sub>18</sub> skeleton are merged into two peaks only, unsaturated and saturated. Unsaturated are mainly C<sub>181</sub>, and C<sub>183</sub>, but includes small peak of C<sub>183</sub>. In EUW4 and 5, unsaturated is one hump.

 $^{\rm d}\,$  For EUW3, 4 and 5, saturated FAME does not have sufficient amount for  $\delta D$  measurement.

<sup>o</sup> All FAMEs with C<sub>18</sub> steleton are merged into two peaks only, unstruated and saturated. Unstruated is predominated by C<sub>18,1</sub> followed by C<sub>18,1</sub> and, to a much less extent, C<sub>18,2</sub>. In VWW4 and 5, unstarrated is one hump.

f VVW3 natural FAME and heptadeene fraction has only one measurement due to limited amount after processing and not included in average calculation.

was introduced to the mass spectrometer via an open split, where a flow of helium carried the  $H_2$  gas into the mass spectrometer.

Sensitivity of the instrument was monitored with six pulses of commercial H<sub>2</sub> gas (ultra high purity grade) via a second open split, four at the beginning and two at the end of each run (SFig. 2). Interference from H<sub>3</sub><sup>+</sup>, which is formed in the ion source via ion-molecule reactions between H<sub>2</sub><sup>+</sup> and neutral H<sub>2</sub>, impedes the accurate determination of HD<sup>+</sup> (Sessions et al., 1999). A calibration curve, or an "H<sub>3</sub><sup>+</sup> factor", was determined daily to correct for the H<sub>3</sub><sup>+</sup> interference. H<sub>3</sub><sup>+</sup> was determined by measuring the (m/z 3)/(m/z 2) response of 10 injections of H<sub>2</sub> reference gas. A low and stable value of less than seven was typically achieved.

To every sample was added a set of co-injection standards with known  $\delta D$  values that were chosen to bracket the peaks of interest in the chromatograms. All isotopic standards were obtained from Dr. Arndt Schimmelmann at the Biogeochemical Laboratory, Indiana University. For hydrocarbons, a mixture of C<sub>14</sub> *n*-alkane, C<sub>16</sub> *n*-alkane, 5 $\alpha$ -androstane, and C<sub>40</sub> *n*-alkane was used. C<sub>14</sub> and C<sub>16</sub> *n*-alkanes were used as "throw-away" peaks to avoid any possible hydrogen isotope memory effect, while 5 $\alpha$ androstane and C<sub>40</sub> *n*-alkane were used as isotopic standards for the computation of lipid  $\delta D$  values with IsoDat 2.0 software (Thermo Finnigan) (SFig. 2). A different mixture of standards was prepared for each lipid fraction.

Each sample was run in triplicate and the standard deviation was usually less than 5% (Tables 1–3), similar to values reported by Sessions et al. (1999) and Englebrecht and Sachs (2005). A set of 15 *n*-alkanes with known  $\delta D$  values (Mixture A or B) acquired from Indiana University were injected every 6–9 runs to ensure the accuracy of our data.  $\delta D$  values are reported with reference to the VSMOW standard.

### 2.4. Correction of $\delta D$ contribution from $-CH_3$ added during methylation

Fatty acid  $\delta D$  values were measured on methyl ester derivatives. The  $\delta D$  value of the three H atoms added during the methylation reaction with BF<sub>3</sub> in MeOH was determined by experimentation with phthalic acid (Dr. Arndt Schimmelmann, Indiana University) having a known  $\delta D$  value. Three experiments performed over the course of this study, each measured in triplicate, indicated a  $\delta D$  value for the three derivative H atoms of  $-115.7 \pm 0.5\%$ . This value was used to correct the measured  $\delta D$  values of fatty acid methyl esters for the added hydrogen atoms by mass balance.

### 3. Results

### 3.1. Algal growth

Growth curves for all cultures indicated exponential growth and, by extension, healthy cultures (SFig. 1). With a relatively small (but uncertain) contribution to light absorption caused by evaporation, most of the progressive increase in light absorption can be attributed to an increasing biomass. Growth rates were determined using the endpoints of the exponential portion of the growth curves (by curve fitting, SFig. 1) as k (divisions/d) =  $\log_2(N_1/N_0)/$  $(T_1 - T_0)$ , where  $N_1$  and  $N_0$  are the absorption values at the end and beginning, respectively, and  $T_1$  and  $T_0$ are the time (days) at the end and beginning, respectively, of the exponential growth period (Adolf et al., 2003). Calculated growth rates for the Morocco, Titi-caca and Martinique strains of B. braunii were 0.128-0.138, 0.120-0.133 and 0.124-0.135 divisions/day, respectively. E. unicocca and V. aureus had growth rates of 0.156-0.166 and 0.159-0.170 divisions/day, respectively.

### 3.2. Hydrocarbon distributions within B. braunii, E. unicocca and V. aureus

### 3.2.1. B. braunii, A race (Titicaca and Morocco)

A race cultures contained substantial quantities of odd carbon-numbered hydrocarbons in the range of  $C_{23}$ - $C_{33}$ , each with a terminal double bond (Metzger et al., 1985a, 1986; Metzger and Largeau, 1999). Hydrocarbons in the Titicaca strain consisted almost exclusively of  $C_{25}$ - $C_{31}$  odd *n*-alkadienes:  $C_{27}H_{52}$  (1, 18; E/Z),  $C_{29}H_{56}$  (1, 20; E/Z),  $C_{31}H_{60}$ (1, 22; E/Z) (SFig. 3a) (structure 1 in Appendix A), in accord with previous reports (Metzger et al., 1986). Minor alkenes included  $C_{23}H_{44}$  (1, 14; E/Z), and  $C_{25}H_{48}$  (1, 16; E/Z), and  $C_{29}$  alkatrienes (SFig. 3a). On GC-IRMS, the Z/E isomers coeluted, resulting in a single isotopic value.

Hydrocarbons in the Morocco strain differed from those in the Titicaca strain in that only one isomer of each odd  $C_{25}$ - $C_{31}$  *n*-alkadiene was observed and an appreciable concentration of the  $C_{29}H_{54}$  alkatriene eluted between the  $C_{29}$  and  $C_{31}$ alkadienes (SFig. 4a), as previously reported by Metzger et al. (1986).

#### 3.2.2. B. braunii, B race (Martinique)

3.2.2.1. Botryococcenes. Polymethylated triterpenes of the generalized formula  $C_nH_{2n-10}$ , where 30  $\leq n \leq 37$ , termed botryococcenes, are produced by the B race (Metzger et al., 1985a,b, 1988; Metzger and Largeau, 1999). Botryococcene mixtures exhibit a large range of molecular mass and isomerism related to genetic and physicochemical factors (Metzger et al., 1985b). Seven botryococcenes were identified by mass spectrometry and coinjection with authentic standards provided by Dr. Pierre Metzger (SFig. 5a and Appendix A), the most abundant of which were two isomers of the C<sub>34</sub> botryococcene (structures **4** and **5** in Appendix A), with lesser quantities of C<sub>30</sub>, C<sub>31</sub>, C<sub>32</sub> and C<sub>33</sub> botryococcenes (structures **2**, **3**, **6** and **7** in Appendix A).

Positive identification of all botryococcenes during GC–IRMS was usually not possible due to inadequate peak separation caused by the large injections required for  $\delta D$  determinations. For example, in GC–IRMS chromatograms, compounds 5–7, which were baseline-separated on the GC-FID (SFig. 5a), were not well-resolved, co-eluting in as few as two peaks. The last peak in GC– IRMS chromatograms may be another isomer of the C<sub>34</sub> botryococcene or it may be a different homologue altogether. In either case, pending positive structural identification by GC–MS, we refer to that compound as C<sub>34</sub> iso in Table 1 and SFig. 5a.

The  $C_{30}$  botryococcene is the precursor for the  $C_{31}$ – $C_{34}$  botryococcenes which are synthesized by methylation on positions 3, 7, 16 and/or 20 of the  $C_{30}$  backbone (Metzger et al., 1987; Okada et al., 2004). The relative abundance of  $C_{30}$  botryococcene in a population results from a balance between its production and its loss via methylation to form  $C_{31}$ – $C_{34}$  botryococcenes (Okada et al., 2004). As a culture ages and botryococcenes accumulate, the synthesis of botryococcenes is shifted toward the longer homologues, resulting in minor amounts of  $C_{30}$  botryococcenes late in a culture cycle (Okada et al., 2004). Growing for 45 days,  $C_{34}$  botryococcenes were most abundant in our cultures and  $C_{30}$  abundances were low (SFig. 5a).

3.2.2.2. Phytadiene. Quantities of phytadiene sufficient for D/H analysis existed in only three cultures owing to their loss during urea adduction of FAMEs (the two co-eluted during column chromatography). Four isomers were observed, each with a parent ion at m/z 278. Structure determination was based on the comparison of our electron impact mass spectra and gas chromatographic retention times with published data (Fukushima et al., 1992).

Phytadienes are degradation products of phytol, the ester-linked side-chain of chlorophyll-a. They can be produced (i) at elevated temperatures from chlorins, (ii) during GC analysis of underivatized phytol, and (iii) by acidic dehydration of phytol (Grossi et al., 1996). However, a controlled experiment in which we injected underivatized phytol (Sigma-Aldrich) onto the GC demonstrated that less than 1% was converted to phytadienes, and those produced had a different distribution of isomers. Furthermore, chlorophyll (Pfaltz & Bauer) subjected to identical ASE extraction conditions resulted in no production of phytadienes. We therefore conclude that phytadienes occurred naturally in the B Race of *B. braunii*, probably by dehydration of phytol (Volkman and Maxwell, 1986; Fukushima et al., 1992; Grossi et al., 1996). Here we report only the  $\delta D$  values of the most abundant isomer, neophytadiene (structure 8 in the Appendix A) (Table 2). Phytols were likely still present, along with sterols, in the alcohol fractions which were not analyzed.

### 3.2.3. Hydrocarbon distributions in Eudorina unicocca and Volvox aureus

Both *E. unicocca* and *V. aureus* had similar hydrocarbon distributions characterized almost exclusively by 8-heptadecene (C<sub>17:1</sub>) (structure **9** in the Appendix A) with minor amounts of heptadecane (C<sub>17</sub>) and 10nonadecene (C<sub>19:1</sub>) (SFig. 6a). This distribution of hydrocarbons differs from the short-to-mid chain length alkane distributions found in many algae (Gelpi et al., 1970). Because the hydrocarbon fraction contained a single abundant compound it was combined with the FAME fraction for  $\delta D$  analysis (SFigs. 6c and 7b). Though no published reports of lipid distributions in *E. unicocca* or *V. aureus* exist, and few reports of 8-heptadecene are in the literature, it is likely derived from glycerol monoolein in the cell membrane (Peterson, 1980).

Phytadienes occurred in *E. unicocca* and *V. aureus* (SFigs. 6c and 7b), but losses during sample workup prevented D/H analysis of all but the most abundant isomer (compound **8** in the Appendix A) in two cultures of *V. aureus* (Table 3).

#### 3.3. Fatty acid distributions

The B race (Martinique) contained even numbered monocarboxylic acids ranging from  $n-C_{14}$  to  $n-C_{30}$ , with  $C_{16}$ ,  $C_{18:1}$  and  $C_{28:1}$  predominating (SFig. 5b). Except for the C<sub>16</sub> fatty acid (palmitic), all other fatty acids were unsaturated. Linoleic acid (C<sub>18:2</sub> $\omega$ 6) and linolenic acid (C<sub>18:3</sub> $\omega$ 3) eluted closely with monounsaturated C<sub>18:1</sub>. Of the longer homologues, C<sub>28:1</sub> was most abundant, followed by substantial quantities of C<sub>20:1</sub>, C<sub>26:1</sub> and C<sub>30:1</sub>, and trace amounts of C<sub>22:1</sub> and C<sub>24:1</sub>. Such distributions are in agreement with previous reports (Douglas et al., 1969).

Unlike the hydrocarbons, fatty acid distributions were similar between A and B races. A race fatty acids were primarily even numbered, varying in length from  $C_{16}$  to  $C_{32}$ , with  $C_{16}$ ,  $C_{18:1}$  and  $C_{28:1}$  predominating (SFig. 3b). The only major differences between the A and B race fatty acids were a higher abundance of  $C_{16}$  relative to  $C_{18:1}$  and a more pronounced even-over-odd predominance in the A race.

Compared to fatty acids in *B. braunii*, *E. unicocca* and *V. aureus* produced fatty acids with substantially shorter chain lengths (SFig. 6b). The most abundant fatty acid in both species was palmitic acid,  $C_{16:0}$ . Other saturated fatty acids included  $C_{18}$ ,  $C_{14}$ , and trace amounts of  $C_{17}$  (SFig. 6b). The primary unsaturated fatty acids in the two species were  $C_{18:2}$ ,  $C_{18:3}$  and  $C_{18:1}$ , with lesser amounts of  $C_{20:1}$  (SFig. 7a). Differences between the fatty acid distributions in the two species included relatively larger amounts of  $C_{20:1}$  in *V. aureus*, and relatively larger quantities of  $C_{20:1}$  in *E. unicocca*.

### 3.4. Naturally occurring fatty acid methyl esters (FAMES)

Though not previously reported, our cultured *B. braunii* contained large quantities of naturally occurring FAMEs. Both A (Titicaca) and B (Martinique) races had FAME distributions that closely followed their fatty acid (FA) distributions, with  $C_{16}$ ,  $C_{18:1}$  and  $C_{28:1}$  predominating and a pronounced even-over-odd predominance (SFigs. 3c and 5c).

A control experiment was conducted to ensure that our lipid extraction procedure (DCM/MeOH (9:1 v/v), 150 °C, 1,500 psi) did not cause methylation of fatty acids.  $C_{16}$  and  $C_{18}$  fatty acids (Sigma-Aldrich) were subjected to ASE extraction using three solvent systems: 100% DCM, 10% MeOH in DCM (1:9 v/v) and 50% MeOH in DCM (1:1 v/v). Extractions with DCM and 10% MeOH in DCM produced no measurable fatty acid methyl esters. Extraction with 50% MeOH in DCM converted less than 0.1% of both  $C_{16}$  and  $C_{18}$  FAs to FAMEs, substantially less than observed in our cultures. While we recognize that the control experiments with pure fatty acids lacked the potential catalytic and matrix effects other compounds and components of cultured algae (on a filter) may provide, we have no evidence to indicate that the FAMEs in the cultures were produced during sample workup. Furthermore, when the Martinique and Titicaca cultures were extracted at room temperature by ultrasonication in 100% DCM, a gentle extraction procedure, significant quantities of FAMEs were presented.

Fatty acid methyl/ethyl esters have been reported in the extracts of algae (Weete, 1976), fungus (Laseter et al., 1968; Laseter and Weete, 1971), mammalian tissues (Saladin and Napier, 1967), pollen (Fathipour et al., 1967), and protozoans (Chu et al., 1972). Hydroxy fatty acid methyl esters were found in marine algae (Sinninghe Damsté et al., 2003).

Though we cannot exclude the possibility that a small fraction of the FAMEs in our *B. braunii* were produced during sample preparation, the bulk of them are likely natural, begging the question why they have not previously been reported in algal cultures. We hypothesize that the common procedure of methylation of fatty acids or hydrolysis of total lipid extracts before column chromatography and GC–MS analysis destroyed or masked any natural FAMEs. The biosynthesis of FAMEs was investigated in the bacterium *Mycobacterium phlei*: *S*-adenosylmethionine as the most effective methyl donor and fatty acids as acyl acceptors (Akamatsu and Law, 1970).

*E. unicocca* and *V. aureus* also produced appreciable amounts of FAMEs. As with *B. braunii*, FAMEs in both species had very similar distributions to the free fatty acids, with  $C_{16}$  FAME most abundant, followed  $C_{18}$  and  $C_{18:1/3/2}$  FAMEs, and a pronounced even-over-odd predominance (SFigs. 6c and 7b).

### 3.5. Hydrogen isotope fractionation in hydrocarbons

In quantifying D/H fractionation during lipid synthesis we adopt the traditional definition of "fractionation factor" for reactions under thermodynamic equilibrium, i.e.,  $\alpha_{\text{lipid-water}} = (D/H)_{\text{lipid}}$  $/(D/H)_{\text{water}} = (\delta D_{\text{lipid}} + 1000)/(\delta D_{\text{water}} + 1000)$ . Because the natural variability of  $\alpha$  is small an approximation of "fractionation," termed an "enrichment factor", is often reported, with geochemists tending to use  $\varepsilon_{A-B} \approx 10^3 \times \ln \alpha_{A-B}$  (Hoefs, 2004), and ecologists,  $\varepsilon = (\alpha_{A-B} - 1) \times 1000$  (Lajtha and Marshall, 1994). Both quantities were calculated for each lipid in each culture and in the ensuing discussion we use the "ecologist's" definition,  $\varepsilon_{\text{lipid-water}} = (\alpha_{\text{lipid-water}} - 1) \times 1000 = [(\delta D_{\text{lipid}} + 1000)/(\delta D_{\text{water}} + 1000) - 1] \times 1000$  (primarily because the  $\varepsilon$  values in five cultures calculated this way are more consistent). Because lipids are depleted in deuterium relative to water the value of fractionation is always negative. A "larger" isotope fractionation means the absolute value of  $\varepsilon$  is larger.

For continuity with recent literature we report the linear regression equations for five cultures of each species,  $y = \text{slope} \times \delta D_{\text{water}} + \text{intercept}$ . The observation that the intercept  $\neq$  (slope - 1) × 1000, a point discussed by Sessions and Hayes (2005), will be discussed in detail in a subsequent paper. For now we simply note that the *y*-intercept of the linear regression of  $\delta D_{\text{lipid}}$  versus  $\delta D_{\text{water}}$  is the D/H fractionation when  $\delta D_{\text{water}} = 0$ .

 $\delta D$  values of C<sub>27</sub>, C<sub>29</sub> and C<sub>31</sub> *n*-alkadienes in *B. braunii*, A Race (Titicaca and Morocco) closely tracked water  $\delta D$  values, with  $R^2 > 0.99$  (Table 1; Fig. 1a and d). In spite of the large water  $\delta D$  range,  $\alpha$  for C<sub>29</sub> *n*-alkadiene in the Titicaca strain was nearly constant in five cultures, varying from 0.754 to 0.779, and averaging 0.769 with a standard deviation ( $\sigma$ ) of 0.01. Similarly,  $\alpha$  for the C<sub>29</sub> *n*-alkadiene in the Morocco strain averaged 0.779  $\pm$  0.007. Therefore, a simple approximation of  $\alpha = (D/H)_{lipid}/(D/H)_{water} = (\delta D_{lipid} + 1000)/(\delta D_{water} + 1000)$  is suitable for the experiments reported here.

The  $\varepsilon$  values for the C<sub>29</sub> *n*-alkadienes varied from -220.6% to -246.0% in the Titicaca strain, averaging  $-231.5 \pm 10.3\%$ , and varied between -212.4% to -228.5%, averaging  $-221.0 \pm 7.3\%$  in the Morocco strain (Table 1). Average  $\alpha$  values were 0.769 and 0.779, respectively. The  $\delta D$  values of C<sub>27</sub> alkadienes in two of the Morocco strain cultures (A1W1 and A1W2) differed substantially from the C<sub>29</sub> alkadiene  $\delta D$  values (Table 1), an observation for which we have no explanation.

 $\delta D$  values of C<sub>30</sub>-C<sub>34</sub> botryococcenes in the B race, Martinique strain, of *B. braunii* closely tracked water  $\delta D$  values, with  $R^2 > 0.99$  (Fig. 2a). The  $\varepsilon$  values of C<sub>30</sub>, C<sub>31</sub> and C<sub>34</sub> averaged -273%, -293%, and -310% to -359%, respectively (Table 1).

The  $\delta D$  values of 8-heptadecene in *E. unicocca* and *V. aureus* closely tracked water  $\delta D$  values, with  $R^2 > 0.99$  (Fig. 3b and d). The  $\varepsilon$  values averaged  $-111.6_{00}^{\circ}$  and  $-106.4_{00}^{\circ}$ , respectively (Table 3).

#### 3.6. Hydrogen isotope fractionation in free fatty acids

#### 3.6.1. Fatty acid $\delta D$ values in B. braunii

Fatty acid  $\delta D$  values in all three A and B race B. braunii strains closely tracked water  $\delta D$  values, with  $R^2 > 0.99$  (Figs. 1b, e and 2b). In the A race Titicaca strain,  $\varepsilon$  values of C<sub>16</sub>, C<sub>18:1</sub> and C<sub>28:1</sub> fatty acids averaged -192.4%, -187.2% and -174.6%, respectively, while  $\varepsilon$  values of C<sub>20:1</sub> fatty acids averaged -168.1% (Table 2). In the A race Morocco strain,  $\varepsilon$  values of C<sub>16</sub> and C<sub>18:1</sub> fatty acids averaged -195.9% and -186.8%, respectively (Table 2), while  $\varepsilon$  values of C<sub>20:1</sub> and C<sub>28:1</sub> fatty acids averaged -167.0% and -177.5%, respectively. In the B race (Martinique),  $\varepsilon$  values of C<sub>16</sub>, C<sub>18:1</sub> and C<sub>28:1</sub> fatty acids averaged -177.0%, -175.8% and -172.5%, respectively, compared to -160.1% for the C<sub>20:1</sub> fatty acid. Taken together, the  $C_{16}$ ,  $C_{18:1}$  and  $C_{28:1}$ fatty acids of A and B race B. braunii had & values of -174% to -196%, while the C<sub>20:1</sub> fatty acid was consistently enriched in deuterium by  $\sim 15\%$ .

### 3.6.2. Fatty acid $\delta D$ values in E. unicocca and V. aureus

Fatty acid  $\delta D$  values in both *E. unicocca* and *V. aureus* closely tracked water  $\delta D$  values, with  $R^2 > 0.99$  (Fig. 3a and c). The  $\varepsilon$  values of the C<sub>16</sub> fatty acid were -49.8% in *E. unicocca* and -58.1% in *V. aureus*, significantly less than in *B. braunii* and, for *E. unicocca*, about 50\% enriched in deuterium relative to the C<sub>14</sub> fatty acid (Table 3).

Some uncertainty in the absolute  $\delta D$  values of C<sub>18</sub> fatty acids exists as a result of partial co-elution of C<sub>18:2</sub>, C<sub>18:3</sub>, C<sub>18:1</sub>, etc. (see notes in Table 3), at times requiring the integration of all unsaturated C<sub>18</sub> acids as a single peak. Nevertheless, excellent linear relationships between C<sub>18</sub> fatty acid (saturated and unsaturated) and water  $\delta D$  values, and similar  $\varepsilon$  values for the C<sub>18</sub> and C<sub>16</sub> fatty acids suggests that the uncertainty is relatively small.

# 3.7. Hydrogen isotope fractionation in FAMEs and phytadienes

3.7.1. FAME and phytadiene  $\delta D$  values in B. braunii  $\delta D$  values of naturally occurring C<sub>16</sub>, C<sub>18:1</sub> and C<sub>28:1</sub> FAMEs in B. braunii A (Titicaca) and B (Martinique) races closely tracked water  $\delta D$  values, with  $R^2 > 0.99$  (Figs. 1c and 2c). The  $\varepsilon$  values of the A race (Titicaca) FAMEs were -181.4% to -189.4% for C<sub>16</sub>, C<sub>18:1</sub> and C<sub>28:1</sub> FAMEs (Table 2). The C<sub>20:1</sub>

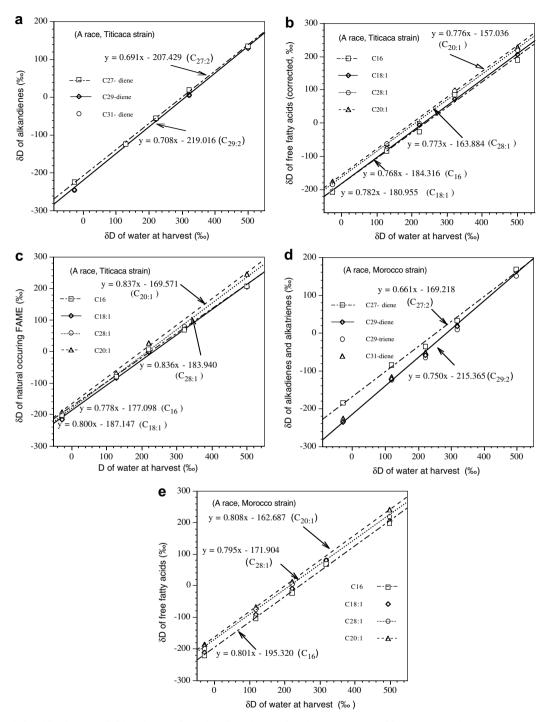



Fig. 1. Relationships between lipid and water  $\delta D$  values in cultures of *B. braunii*, A race, Titicaca (a–c) and Morocco (d–e) strains. All alkadiene, alkatriene, fatty acid and FAME  $\delta D$  values were highly correlated with water  $\delta D$  values ( $R^2 > 0.99$ ). (a)  $C_{27}$ ,  $C_{29}$  and  $C_{31}$  alkadienes in the Titicaca strain.  $C_{27}$  alkadienes were deuterium-enriched compared to other homologues. (b)  $C_{16}$ ,  $C_{18:1}$ ,  $C_{20:1}$  and  $C_{28:1}$  fatty acids in the Titicaca strain.  $C_{20:1}$  was most deuterium-enriched, followed by  $C_{28:1}$  and  $C_{16}$ . (c)  $C_{16}$ ,  $C_{18:1}$ ,  $C_{20:1}$  and  $C_{28:1}$  FAMES in the Titicaca strain. Chain-length-dependent  $\delta D$  variations were identical to the fatty acids. (d)  $C_{27}$ ,  $C_{29}$  and  $C_{31}$  alkadienes and  $C_{29}$  alkatriene in the Morocco strain.  $C_{27}$  was most deuterium-enriched. (e)  $C_{16}$ ,  $C_{18:1}$ ,  $C_{20:1}$  and  $C_{28:1}$  fatty acids in the Morocco strain.  $C_{27}$  was most deuterium-enriched. (e)  $C_{16}$ ,  $C_{18:1}$ ,  $C_{20:1}$  and  $C_{20:1}$  was most deuterium-enriched. (e)  $C_{16}$ ,  $C_{18:1}$ ,  $C_{20:1}$  and  $C_{20:1}$  was most deuterium-enriched. (e)  $C_{16}$ ,  $C_{18:1}$ ,  $C_{20:1}$  and  $C_{28:1}$  fatty acids in the Morocco strain.  $C_{20:1}$  was most deuterium-enriched compared to  $C_{16}$ .

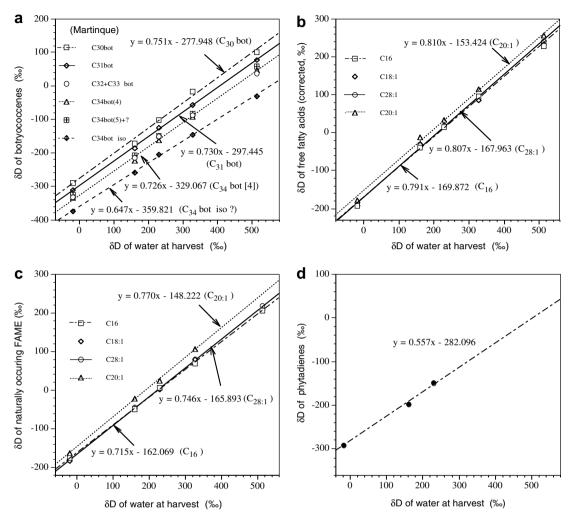



Fig. 2. Relationships between lipid and water  $\delta D$  values in cultures of *B. braunii*, B race, Martinique strain. All botryococcene, fatty acid, FAME and phytadiene  $\delta D$  values were highly correlated with water  $\delta D$  values ( $R^2 > 0.99$ ). (a)  $C_{30}$ – $C_{34}$  botryococcenes (see structures in Appendix A). Deuterium-depletion increased with increasing carbon number. The compound labeled " $C_{34}$  bot iso?" (i.e., the last peak in SFig. 5a) may be an isomer of the  $C_{34}$  botryococcene, or possibly a longer homologue. (b)  $C_{16}$ ,  $C_{18:1}$ ,  $C_{20:1}$  and  $C_{28:1}$  fatty acids.  $C_{20:1}$  was consistently the most deuterium-enriched homologue. (c) FAMEs. (d) Phytadiene.

FAME was  $\sim 20\%_{00}$  enriched in deuterium relative to other homologues, as observed for the free fatty acids. The  $\varepsilon$  values of B race (Martinique) FAMEs were from  $-181.6\%_{00}$  to  $-184.0\%_{00}$  for C<sub>16</sub>, C<sub>18:1</sub> and C<sub>28:1</sub> (Table 2). And, similar to the A race, the C<sub>20:1</sub> FAME was enriched in deuterium relative to other FAMEs by  $\sim 20\%_{00}$ , with an  $\varepsilon$  value of  $-159.5\%_{00}$ .

Phytadiene  $\delta D$  values were measured in three B race (Martinique) cultures that had sufficient material.  $\delta D$  values of phytadiene were linearly correlated with water  $\delta D$  values, with  $R^2 > 0.99$ (Fig. 2d). The  $\varepsilon$  values averaged  $-298.5 \pm 18.1\%$ (Table 2), substantially greater than for fatty acids and FAMEs. We also note that the slope of the regression was low, 0.557, compared to 0.73–0.83 for fatty acids (Fig. 2d; Table 4). With only three cultures to define the slope, however, we are unable to evaluate its significance.

### 3.7.2. FAME and phytadiene $\delta D$ values in

### E. unicocca and V. aureus

 $\delta D$  values of C<sub>16</sub> and C<sub>18:1</sub> FAMEs from *E. unic*occa closely tracked water  $\delta D$  values, with  $R^2 > 0.99$ (Fig. 3b). The  $\varepsilon$  values for two FAMEs in *E. unic*occa were -69.5‰ and -78.3‰, somewhat more negative than the corresponding FAs (Table 3).

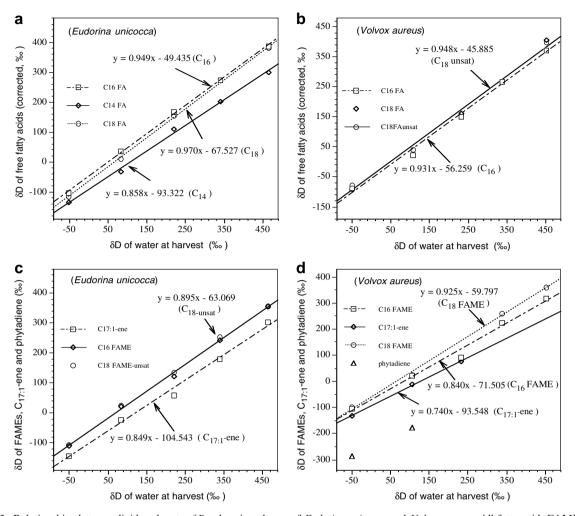



Fig. 3. Relationships between lipid and water  $\delta D$  values in cultures of *Eudorina unicocca* and *Volovx aureus*. All fatty acid, FAME and *n*-alkene  $\delta D$  values were highly correlated with water  $\delta D$  values ( $R^2 > 0.99$ ). (a) C<sub>14</sub>, C<sub>16</sub> and C<sub>18</sub> fatty *E. unicocca* cultures. C<sub>14</sub> was deuterium-depleted compared to both C<sub>16</sub> and C<sub>18</sub>. (b) Heptadecenes and C<sub>16</sub> and C<sub>18</sub> FAMEs in *E. unicocca*. Heptadecene is substantially depleted in deuterium relative to fatty acids and FAMEs. (c) C<sub>16</sub> and C<sub>18</sub> fatty acids in *V. aureus*. (d) FAMEs, heptadecene and phytadienes in *V. aureus*.  $\delta D$  values of heptadecene (in three cultures for which we have data) were depleted in deuterium relative to fatty acids of phytadienes were performed both were significantly depleted in deuterium relative to all other lipids.

 $\delta D$  values of the C<sub>16</sub> FAME in *V. aureus* also closely tracked water  $\delta D$  values, with  $R^2 = 0.99$  (Fig. 3d). The  $\varepsilon$  value for the C<sub>16</sub> FAME in *V. aureus*, -78%, was more negative than in *E. unicocca*. The slope of the water–lipid  $\delta D$  regression for the C<sub>18:1</sub> FAME was larger than for the C<sub>16</sub> FAME (Fig. 3d; Table 5).

Two *V. aureus* cultures had sufficient phytadiene for  $\delta D$  determination. The  $\varepsilon$  values of -246.6% and -257.2% indicate substantial deuterium depletion in phytadiene relative to FAs and FAMEs. A similar isotopic depletion in phytadiene relative to FAs and FAMEs was observed in *B. braunii* (Martinique) (Fig. 2d; Table 2).

### 4. Discussion

### 4.1. Hydrogen isotopes in lipids from B. braunii

Lipids within a single class generally fell within a narrow  $\delta D$  range of <50%. Between lipid classes hydrogen isotopic differences of 50-200% were

| Table 4                                                           |
|-------------------------------------------------------------------|
| Summary of D/H fractionation parameters in lipids from B. braunii |

| Strain            | Analyte                                   | $R^2$ | Slope <sup>a</sup> | Intercept <sup>a</sup> | $\alpha^{\mathbf{b}}$ | Stdev <sup>c</sup> | $\varepsilon^{d}$ |
|-------------------|-------------------------------------------|-------|--------------------|------------------------|-----------------------|--------------------|-------------------|
| Hydrocarbon       |                                           |       |                    |                        |                       |                    |                   |
| Titicaca Strain   | C <sub>27</sub> -alkadiene                | 0.999 | 0.691              | -207.4                 | 0.7755                | 0.0141             | -224.5            |
|                   | C <sub>29</sub> -alkadiene                | 0.999 | 0.708              | -219.0                 | 0.7685                | 0.0103             | -231.5            |
|                   | C <sub>31</sub> -alkadiene                | 0.999 | 0.709              | -219.0                 | 0.7688                | 0.0098             | -231.2            |
| Morocco strain    | C <sub>27</sub> -alkadiene                | 0.995 | 0.661              | -169.2                 | 0.8028                | 0.0259             | -197.2            |
|                   | C <sub>29</sub> -alkadiene                | 0.998 | 0.750              | -215.4                 | 0.7790                | 0.0073             | -221.0            |
|                   | C <sub>29</sub> -alkatriene               | 0.998 | 0.723              | -213.9                 | 0.7757                | 0.0112             | -224.3            |
|                   | C <sub>31</sub> -alkadiene                | 0.998 | 0.744              | -207.1                 | 0.7849                | 0.0094             | -215.1            |
| Martinique strain | C <sub>30</sub> botryococcene             | 0.994 | 0.751              | -277.9                 | 0.7272                | 0.0103             | -272.8            |
|                   | C <sub>31</sub> botryococcene             | 1.000 | 0.730              | -297.4                 | 0.7075                | 0.0046             | -292.5            |
|                   | C <sub>34</sub> botryococcene             | 0.997 | 0.726              | -329.1                 | 0.6808                | 0.0089             | -319.2            |
|                   | $C_{34}$ bot isomer + ? <sup>e</sup>      | 0.999 | 0.724              | -316.3                 | 0.6909                | 0.0058             | -309.1            |
|                   | $C_{32} + C_{33}$ bot (?) <sup>e</sup>    | 0.999 | 0.699              | -318.3                 | 0.6847                | 0.0051             | -315.3            |
|                   | C <sub>34</sub> bot (?) <sup>e</sup>      | 0.999 | 0.647              | -359.8                 | 0.6413                | 0.0030             | -358.7            |
| Fatty acids       |                                           |       |                    |                        |                       |                    |                   |
| Titicaca strain   | C <sub>16</sub> fatty acid                | 0.992 | 0.768              | -184.3                 | 0.8076                | 0.0118             | -192.44           |
|                   | $C_{18:1}$ fatty acid                     | 0.999 | 0.782              | -181.0                 | 0.8128                | 0.0052             | -187.2            |
| Morocco strain    | $C_{20:1}$ fatty acid <sup>f</sup>        | 0.999 | 0.776              | -157.0                 | 0.8319                | 0.0111             | -168.1            |
|                   | $C_{28:1}$ fatty acid                     | 0.997 | 0.773              | -163.9                 | 0.8254                | 0.0103             | -174.6            |
|                   | C <sub>16</sub> fatty acid                | 0.999 | 0.801              | -195.3                 | 0.8041                | 0.0046             | -195.9            |
|                   | $C_{18:1}$ fatty acid                     | 0.998 | 0.797              | -183.5                 | 0.8132                | 0.0056             | -186.8            |
|                   | C <sub>20:1</sub> fatty acid <sup>f</sup> | 1.000 | 0.808              | -162.7                 | 0.8330                | 0.0052             | -167.0            |
|                   | C <sub>28:1</sub> fatty acid              | 0.999 | 0.795              | -171.9                 | 0.8225                | 0.0049             | -177.5            |
| Martinique strain | C <sub>16</sub> fatty acid                | 0.998 | 0.791              | -169.9                 | 0.8230                | 0.0065             | -177.0            |
|                   | C <sub>18:1</sub> fatty acid              | 0.998 | 0.790              | -168.2                 | 0.8242                | 0.0078             | -175.8            |
|                   | C <sub>20:1</sub> fatty acid              | 0.997 | 0.810              | -153.4                 | 0.8399                | 0.0078             | -160.1            |
|                   | C <sub>28:1</sub> fatty acid              | 0.999 | 0.807              | -168.0                 | 0.8275                | 0.0050             | -172.5            |
| Titicaca strain   | C <sub>16</sub> FAME                      | 0.998 | 0.778              | -177.1                 | 0.8153                | 0.0079             | -184.7            |
|                   | C <sub>18:1</sub> FAME                    | 0.998 | 0.800              | -187.1                 | 0.8106                | 0.0055             | -189.4            |
|                   | C <sub>20:1</sub> FAME <sup>f</sup>       | 0.998 | 0.837              | -169.6                 | 0.8314                | 0.0072             | -168.6            |
|                   | C <sub>28:1</sub> FAME <sup>f</sup>       | 0.999 | 0.836              | -183.9                 | 0.8186                | 0.0037             | -181.4            |
|                   | C <sub>16</sub> FAME                      | 1.000 | 0.715              | -162.1                 | 0.8160                | 0.0166             | -184.0            |
|                   | C <sub>18:1</sub> FAME                    | 1.000 | 0.736              | -166.4                 | 0.8161                | 0.0128             | -183.9            |
|                   | C <sub>20:1</sub> FAME <sup>f</sup>       | 0.999 | 0.770              | -148.2                 | 0.8405                | 0.0097             | -159.5            |
|                   | C <sub>28:1</sub> FAME                    | 1.000 | 0.746              | -165.9                 | 0.8184                | 0.0118             | -181.6            |
| Phytadiene        |                                           |       |                    |                        |                       |                    |                   |
| Martinique strain | Phytadiene <sup>g</sup>                   | 0.996 | 0.557              | -282.1                 | 0.7015                | 0.0181             | -298.5            |

<sup>a</sup> The values of slopes and intercepts are derived from the linear regressions of  $\delta D$  values of biomrakers and  $\delta D$  values of waters at harvest; *n* is typically 5, unless noted otherwise.

<sup>b</sup> Fractionation factor,  $\alpha$ , was calculated for each culture from the measured  $\delta D$  values of biomarkers and water at harvest according to the equation:  $\alpha_{\text{lipid-water}} = (D/H)_{\text{lipid}}/(D/H)_{\text{water}} = (\delta D_{\text{lipid}} + 1000)/(\delta D_{\text{water}} + 1000)$ . Reported is average value of five cultures with standard deviation given n = 5 unless otherwise noted.

<sup>c</sup> Stdev, standard deviation of measured fractionation factors n = 5 unless otherwise noted.

<sup>d</sup> Fractionation,  $\varepsilon$ , is defined as  $1000 \times (\alpha - 1) = [(\delta D_{\text{lipid}} + 1000)/(\delta D_{\text{water}} + 1000) - 1] \times 1000$ , where  $\alpha$  is the fractionation factor.

<sup>e</sup> Peak identification with certain uncertainty. See text for details.

<sup>f</sup> Where n = 4.

<sup>g</sup> Where n = 3.

common (Tables 1–3). In *B. braunii* A (Titicaca) and B (Martinique) races fatty acids and FAMEs with the same carbon skeleton had similar  $\delta D$  values (Fig. 4a and c), suggesting that the hydrogen atoms

on the FAME were derived from the same pool of hydrogen from which fatty acids were produced and that the esterification reaction imparted little or no hydrogen isotope fractionation.

Table 5 Summary of D/H fractionation parameters in lipids from *E. unicocca* and *V. aureus* 

| Strain                | Analyte                        | n <sup>a</sup> | $R^2$ | Slope <sup>b</sup> | Intercept <sup>b</sup> | $\alpha^{c}$ | Stdev <sup>d</sup> | $\varepsilon^{e}$ |
|-----------------------|--------------------------------|----------------|-------|--------------------|------------------------|--------------|--------------------|-------------------|
| Hydrocarbon           |                                |                |       |                    |                        |              |                    |                   |
| Eudorina unicocca     | 8-heptadecene                  | 5              | 0.993 | 0.849              | -104.5                 | 0.8884       | 0.0146             | -111.6            |
| Fatty acids           |                                |                |       |                    |                        |              |                    |                   |
| Eudorina unicocca     | C <sub>14</sub> fatty acid     | 4              | 0.997 | 0.858              | -93.3                  | 0.8991       | 0.0103             | -100.9            |
|                       | $C_{16}$ fatty acid            | 5              | 0.999 | 0.949              | -49.4                  | 0.9502       | 0.0053             | -49.8             |
|                       | C <sub>18</sub> FA-unsaturated | 4              | 0.999 | 0.984              | -47.0                  | 0.9571       | 0.0067             | -42.9             |
|                       | C <sub>18</sub> fatty acid     | 4              | 0.999 | 0.970              | -67.5                  | 0.9373       | 0.0076             | -62.7             |
| Volvox aureus         | C <sub>16</sub> fatty acid     | 5              | 0.994 | 0.931              | -56.3                  | 0.9419       | 0.0141             | -58.1             |
|                       | C <sub>18</sub> FA-unsat       | 4              | 0.992 | 0.948              | -45.9                  | 0.9536       | 0.0164             | -46.4             |
|                       | C <sub>18</sub> fatty acid     | 3              | 0.996 | 0.978              | -47.9                  | 0.9562       | 0.0128             | -43.8             |
| Natural occurring fat | ty acid methyl esters (FAM     | (E)            |       |                    |                        |              |                    |                   |
| Eudorina unicocca     | C <sub>16</sub> FAME           | 5              | 0.998 | 0.895              | -63.1                  | 0.9305       | 0.0097             | -69.5             |
|                       | C <sub>18</sub> FAME-unsat     | 5              | 0.999 | 0.898              | -57.6                  | 0.9355       | 0.0075             | -64.5             |
| Volvox aureus         | C <sub>16</sub> FAME           | 5              | 0.988 | 0.840              | -71.5                  | 0.9146       | 0.0212             | -78.1             |
|                       | C <sub>18</sub> FAME-unsat     | 5              | 0.982 | 0.838              | -55.4                  | 0.9280       | 0.0262             | -63.9             |
|                       | C <sub>18</sub> FAME           | 4              | 0.998 | 0.925              | -59.8                  | 0.9380       | 0.0102             | -62.0             |

Notes:

<sup>a</sup> *n* indicates the number of cultures in which  $\delta D$  values of a biomarker were measured.

<sup>b</sup> The values of slopes and intercepts are derived from the linear regressions of  $\delta D$  values of a biomarkers and  $\delta D$  values of waters at harvest.

<sup>c</sup> Fractionation factor,  $\alpha$ , was calculated for each culture from the measured  $\delta D$  values of biomarkers and water at harvest according to the equation:  $\alpha_{\text{lipid-water}} = (D/H)_{\text{lipid}}/(D/H)_{\text{water}} = (\delta D_{\text{lipid}} + 1000)/(\delta D_{\text{water}} + 1000)$ . Reported is average value of five cultures with standard deviation given n = 5 unless noted otherwise.

<sup>d</sup> Stdev, standard deviation of measured fractionation factors n = 5 unless noted otherwise.

<sup>e</sup> Fractionation,  $\varepsilon$ , is defined as  $1000 \times (\alpha - 1) = [(\delta D_{lipid} + 1000)/(\delta D_{water} + 1000) - 1] \times 1000$ , where  $\alpha$  is the fractionation factor.

Hydrocarbons were depleted in deuterium relative to fatty acids in all cultures: Alkadienes in the A race (Titicaca and Morocco) by about 40%, and botryococcenes in the B race (Martinique) by 100-180% (Fig. 4a–c; Tables 1 and 2). While in agreement with Estep and Hoering (1980), who reported deuterium enrichments in fatty acids relative to hydrocarbons in higher plants, these findings are at odds with Sessions et al. (1999) who reported deuterium depletions of ~50–100‰ in fatty acids relative to hydrocarbons in both a higher plant *Daucus carota* (carrot) and a microalga *Isochrysis gallana* (haptophyte).

Carbon chain length had a minor and variable influence on  $\delta D$  values of fatty acids, FAMEs and alkadienes in *B. braunii*, but a significant influence on  $\delta D$  values of botrycoccenes. In the Martinique strain,  $\delta D$  values of C<sub>16</sub> and C<sub>18:1</sub> fatty acids were very similar while in both the Titicaca and Morocco strains  $\delta D$  values of C<sub>18:1</sub> fatty acids were slightly elevated compared to those of C<sub>16</sub> fatty acids. However, in all three strains,  $\delta D$  values of C<sub>28:1</sub> were about 10% more positive than those of C<sub>16</sub> and C<sub>18:1</sub>. The C<sub>20:1</sub> fatty acid, a minor component, was always the most deuterium-enriched fatty acid, typically by  $\sim 20\%$  relative to C<sub>16</sub>, C<sub>18:1</sub> and C<sub>28:1</sub> FAs. Similar isotopic relationships were observed for FAMEs (Table 2).

The trend toward deuterium enrichment with increasing fatty acid chain length reported by Sessions et al. (1999) is not borne out by our data. Nor are the large deuterium enrichments of 112-163<sup> $\infty$ </sup> in C<sub>18</sub> relative to C<sub>16</sub> FA in marine red and brown macroalgae reported by Chikaraishi et al. (2004c). Chikaraishi et al. (2004c) also reported a progressive deuterium depletion of -117% to -181% with increasing degree of unsaturation in  $C_{18:0}$  to  $C_{18:4}$  FAs. One possible explanation for the discordant findings might be isotopic fractionation during lipid purification when argentation chromatography was used. Chikaraishi et al. (2004c) converted FAs into FAMEs and then used AgNO<sub>3</sub>-impregnated silica gel to separate unsaturated from saturated FAs, a procedure likely to cause D/H fractionation in carbon double bonds, particularly when multiple unsaturations exist (de Ligny, 1976). Alternatively, there might be real differences in isotopic fractionations during fatty acid

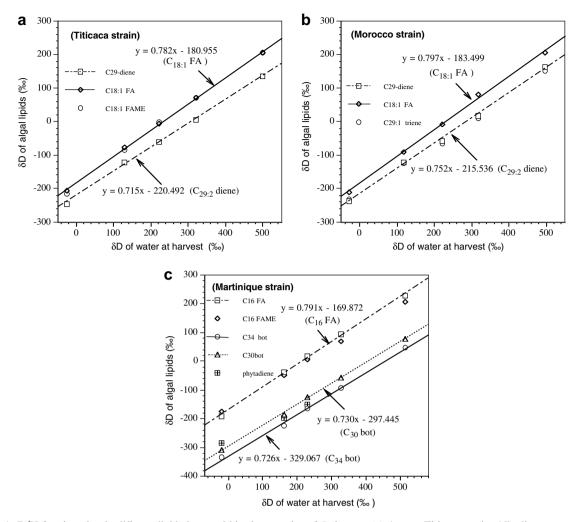



Fig. 4. D/H fractionation in different lipid classes within three strains of *B. braunii.* (a) A race, Titicaca strain. Alkadienes were  $\sim 40\%$  depleted in deuterium relative to fatty acids. (b) A race, Morocco strain. Alkadienes and alkatrienes were  $\sim 40\%$  depleted in deuterium relative to fatty acids. (c) B Race, Martinique strain. Botryococcenes and phytadienes were >110% depleted in deuterium relative to fatty acids and FAMEs.

synthesis between the green algae we cultured and the red/brown algae Chikaraishi et al. (2004c) investigated. Additional culture experiments and standardized lipid purification procedures are required to address this discrepancy.

Hydrogen isotope fractionation in alkadienes from the A race may have a slight carbon-chainlength dependence. In the Titicaca strain,  $\delta D$  values of C<sub>29</sub> and C<sub>31</sub> alkadienes were almost identical, while the C<sub>27</sub> alkadiene was enriched in deuterium by ~7% relative to C<sub>29</sub> and C<sub>31</sub> (Fig. 1a; Table 1). In the Morocco strain  $\delta D$  values of C<sub>27</sub> alkadienes were enriched by ~24% relative to C<sub>29</sub> (Table 1). The one alkatriene analyzed, C<sub>29:3</sub>, had a  $\delta D$  value very close to the  $C_{29:2}$ -diene (Table 1), suggesting further desaturation did not cause D/H fractionation.

Botryococcene  $\delta D$  values had a discernible carbon-chain-length dependence, with longer chainlengths generally associated with more negative  $\delta D$ values (Fig. 2a; Table 1). As such, the C<sub>30</sub> botryococcene—the precursor to all other botryococcenes—had the least negative  $\delta D$  value (-272.8‰), followed by the C<sub>31</sub>(-292.5‰), and C<sub>34</sub> botryococcenes (-319.2‰) (Table 1). We hypothesize that the methyl donor in botryococcene synthesis is depleted in deuterium relative to the C<sub>30</sub> botryococcene, resulting in increasingly negative  $\delta D$  values with increasing carbon number. Nevertheless, our conclusion must be considered tentative due to co-elution of the  $C_{32}$  and  $C_{33}$  botryococcenes on the GC–IRMS (see Section 3.2.2.1).

Phytadienes in the B race had  $\varepsilon$  values that averaged -298.5%, significantly deuterium-depleted relative to fatty acids (Table 2), consistent with prior studies of D/H fractionation in phytol from marine algae (Estep and Hoering, 1980; Sessions et al., 1999) and vascular plants (Chikaraishi et al., 2004a). Hydrogen isotope fractionation between phytadiene and water was similar to that between C<sub>34</sub> botryococcenes and water (Fig. 4c; Tables 1 and 2).

### 4.2. Hydrogen isotopes in lipids from E. unicocca and V. aureus

FAMEs in both *E. unicocca* and *V. aureus* cultures were  $20-27\%_{00}$  depleted in deuterium relative to fatty acids (Table 3). The only dominant hydrocarbon in both species, 8-heptadecene, was 48– $62\%_{00}$  more negative than the C<sub>16</sub> FAs.

A chain length effect may exist for fatty acids in *E.* unicocca cultures in which the  $C_{14}$  FA was 50% more negative than the  $C_{16}$  and  $C_{18}$  fatty acids (Table 3).

Two analyses of phytadiene  $\delta D$  values were made in *V. aureus*, yielding deuterium depletions of -246%and -257% relative to water (Table 3), similar to the deuterium depletions in *B. braunii* (Martinique).

### 4.3. Hydrogen isotope fractionation during lipid synthesis

During photosynthesis water is oxidized to  $O_2$ and NADP<sup>+</sup> is reduced to NADPH (Raven et al., 1999), with the latter associated with a large D/H fractionation (Estep and Hoering, 1980; Luo et al., 1991). 3-Phosphoglyceric acid (PGA) (also called glycerate 3-phosphate) is produced when ribulose-1,5-bisphosphate and CO<sub>2</sub> are catalyzed by the Rubisco enzyme. The PGA is then converted to glyceraldehydes-3-phosphate (G3P) using ATP as energy and NADPH as reductant. During this conversion, NADPH yields hydrogen that is incorporated into organic matter.

Hydrogen isotopic variations within and between lipids in a single cell, and between lipids in different species, come from three sources: (1) the isotopic composition of biosynthetic precursors, (2) isotope effects during biosynthetic reactions, and (3) the isotopic composition of added hydrogen, primarily from NADPH and NADH (Smith and Epstein, 1970). The third source of isotopic variation is not related to the flow of substrates used in the assembly of carbon skeletons, providing a distinct difference from carbon isotope studies (Sessions et al., 1999).

Lipids in plants derive from three primary biosynthetic pathways (Chikaraishi et al., 2004a). Straightchain (*n*-alkyl) lipids are produced via the acetogenic pathway using acetyl coenzyme-A (acetyl-CoA). Isoprenoid (i.e., branched) lipids are synthesized via the mevalonic acid (MVA) or non-mevalonic-acid pathway (DOXP/MEP, or 1-deoxy-D-xylulose 5-phosphate/2-C-methylerythritol 4-phosphate) using isopentenyl pyrophosphate (IPP).

### 4.3.1. D/H fractionation in acetogenic lipids: fatty acids

Fatty acids are the precursor to all other acetogenic lipids and acetyl-CoA is the direct precursor to fatty acids (Harwood, 1988). The principle photosynthate in the plant cell, sucrose, is converted to glucose 1-phosphate and further degraded in the cytoplasm to either malic or pyruvic acid (Stumpf, 1980). These two respiratory substrates enter the mitochondria where pyruvate is oxidatively decarboxylated to form acetyl-CoA and  $CO_2$ by the pyruvate dehydrogenase complex (Fig. 5a).

Palmitic acid ( $C_{16}$ ) is synthesized from acetyl-CoA and malonyl-CoA via several enzymatic reactions involving acyl carrier protein (ACP), NADPH and NADH (Fig. 5a) (Stumpf, 1980; Ohlrogee, 1987). Its immediate precursor is palmitoyl-ACP, which can have three fates: elongation to stearoyl-ACP, use in glycerolipid synthesis, or hydrolysis to palmitic acid. Hydrogen isotope fractionation in  $C_{16}$  fatty acid in algae is the sum of these processes.

Elongation of palmitoyl-ACP to stearoyl-ACP, and the subsequent desaturation of stearoyl-ACP to form oleoyl-ACP do not, in all likelihood, cause much hydrogen isotope fractionation, as evidenced by similar  $\delta D$  values in C<sub>16</sub> and C<sub>18:1</sub> fatty acids in three strains of *B. braunii* (Table 2). This is consistent with the findings of Behrouzian et al. (2001) who reported that desaturation by stearoyl-ACP  $\Delta^9$ desaturase proceeded without a measurable kinetic isotope effect. Stearoyl-ACP desaturase has such a high activity that stearoyl-ACP rarely accumulates, with near complete conversion to oleate (Harwood, 1997). Supporting that notion is our observation of much higher concentrations of C<sub>18:1</sub> than C<sub>18:0</sub> fatty acids in *B. braunii* (SFigs. 3b, 4b, and 5b).

Longer FA homologues are synthesized from oleic acid by two different elongases, one in the

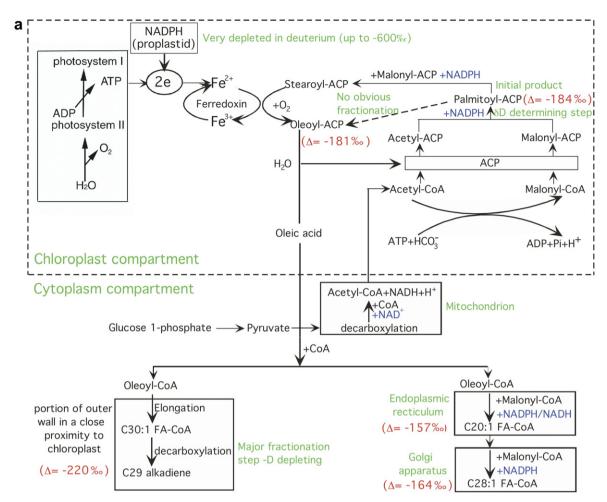



Fig. 5. Lipid biosynthetic pathways in *B. braunii* with estimated D/H fractionation. (a) Fatty acids and alkadienes in the A race (Titicaca) are produced via the acetogenic pathway using acetyl coenzyme-A as a precursor. (b) Botryococcenes and phytadiene in the B race (Martinique) are isoprenoid (i.e., branched) lipids synthesized via the DOXP/MEP pathway using isopentenyl pyrophosphate as a precursor (IPP).  $\Delta$  values shown represent D/H fractionation when  $\delta D_{water} = 0$ . Acronyms are as follows, Co-A: coenzyme A; ACP: acyl carrier protein; DMAPP: dimethylallyl diphosphate; DOXP: 1-deoxy-D-xylulose 5-phosphate; FPP: farnesyl diphosphate; GPP: geranyl diphosphate; IPP: isopentenyl diphosphate; MEP: 2-C-methyl-D-erythritol 4-phosphate; PSPP: presqualene diphosphate. (Referred from Pollard et al., 1979; Stumpf, 1980, 1987; Templier et al., 1984, 1991; Agrawal and Stumpf, 1985; Harwood, 1988; Schwender et al., 1997, 2001; Lichtenthaler, 1999; Rohmer, 1999; Charon et al., 1999, 2000; Szkopińska, 2000; Wanke et al., 2004; Sato et al., 2004).

endoplasmic reticulum (C<sub>18</sub>-CoA elongase, catalyzing C<sub>18:1</sub>  $\rightarrow$  C<sub>20:1</sub>), the other in the Golgi apparatus (C<sub>20</sub>-CoA elongase, catalyzing C<sub>20:1</sub>  $\rightarrow$  C<sub>22:1</sub>  $\rightarrow$ C<sub>30:1</sub>) (Agrawal and Stumpf, 1985a,b; Lessire et al., 1985). Agrawal and Stumpf (1985b) further demonstrated that both the C<sub>18:1</sub>  $\rightarrow$  C<sub>20:1</sub> and C<sub>20:1</sub>  $\rightarrow$  C<sub>22:1</sub> elongations can proceed with NADPH as a reductant, but that only NADH can be used for the C<sub>18:1</sub>  $\rightarrow$  C<sub>20:1</sub> elongation (Fig. 5a).

We hypothesize that consistently higher  $\delta D$  values of C<sub>20:1</sub> relative to all other fatty acids (Table 2; Figs. 1b, e and 2b) resulted from either or both its synthesis from C<sub>18:1</sub> in the endoplasmic reticulum

or NADH serving as the sole reductant. Likewise, similar  $\delta D$  values of both C<sub>28:1</sub> and C<sub>30:1</sub> fatty acids (Table 1) may result from their synthesis in the Golgi apparatus. The hydrogen isotope data thus support the notion that the C<sub>20:1</sub> fatty acid is synthesized from C<sub>18:1</sub> in a different location than that in which subsequent elongations occur.

### 4.3.2. D/H fractionation in acetogenic lipids: alkadienes

The observed  $\sim 40\%$  deuterium depletion of alkadienes relative to fatty acids (Fig. 4a, b) can be attributed to D/H fractionation during elongation

### **b** Cytoplasm

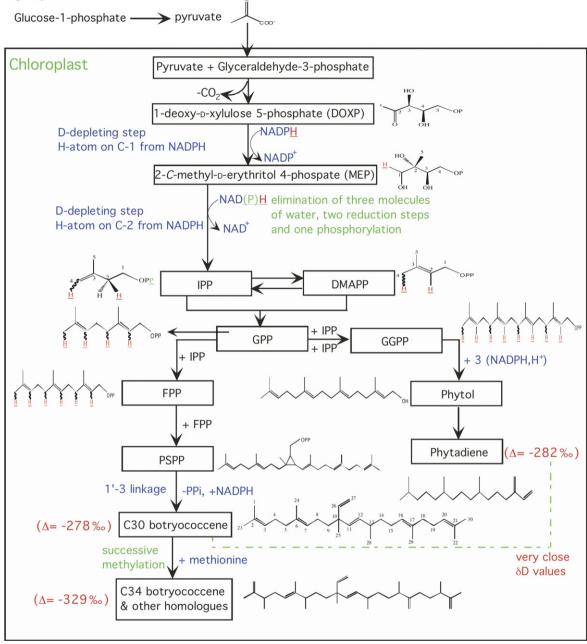



Fig. 5 (continued)

and decarboxylation of  $C_{18:1}$  fatty acids during alkadiene (and alkatriene) biosynthesis (Templier et al., 1984, 1991). Considering that D/H fractionation during elongation of fatty acids is significantly less than 40<sub>00</sub> it is possible that the decarboxylation process is characterized by a large kinetic isotope effect (Fig. 5a). Furthermore, we note that the  $C_{29}$  and  $C_{31}$  alkadienes had similar  $\delta D$  values in both (Titicaca and Morocco) A race strains, whereas the  $C_{27}$  alkadiene was enriched in deuterium (Fig. 1a and d; Table 1), suggesting a common biosynthetic route for  $C_{29}$ and  $C_{31}$  that differed from that for  $C_{27}$ . The  $C_{29}$ alkatriene  $\delta D$  values were similar to the  $C_{29}$  alkadiene values suggesting that further desaturation resulted in little or no D/H fractionation.

#### 4.3.3. D/H fractionation in isoprenoid lipids

 $\delta D$  values of isoprenoid (i.e., branched) lipids, such as botryococcenes and phytadienes, were much lower than  $\delta D$  values of acetogenic lipids (Tables 1– 3). This pattern has been observed previously by several researchers and attributed to the different biosynthetic pathways for those two classes of lipids (c.f., Sessions et al., 1999; Hayes, 2001).

Green algae use the DOXP/MEP pathway exclusively for isoprenoid synthesis (Lichtenthaler, 1999; Schwender et al., 2001; Sato et al., 2003). Hydrogen atoms in isoprenoids have two sources. The decarboxylation of pyruvate and G3P yields DOXP (Schwender et al., 1997; Charon et al., 1999, 2000). A rearrangement followed by a reduction leads to the formation of MEP, which possesses the C<sub>5</sub> isoprene backbone (Fig. 5b) (Charon et al., 1999, 2000). That step uses NADPH as a hydrogen thus incorporating deuterium-depleted donor. hydrogen to C1 of MEP (corresponding to C-4 of IPP) (Fig. 5b). Conversion of MEP into IPP results in the elimination of three water molecules via two reductions and one phosphorylation (Lichtenthaler, 1999; Rohmer, 1999). Hydrogen atoms on C2 and C4 of IPP and/or DMAPP (dimethylallyl diphosphate) comes from NADH or NADPH (Charon et al., 1999), while the remaining hydrogen atoms comes from DOXP/MEP. It is likely that the IPP synthesis is responsible for much of the deuterium-depletion in isoprenoids from green algae (Fig. 5b).

IPP and farnesyl diphosphate (FPP), the direct precursors  $C_{30}$  botryococcene, are synthesized via the DOXP/MEP pathway in *B. braunii* (B Race) (Sato et al., 2003) via a 2-step reaction in the chloroplast (Okada et al., 2004) (Fig. 5b). In the first step two molecules of FPP are condensed to form presqualene diphosphate (PSPP). In the second step, the cycloprapane ring in PSPP is cleaved, followed by reduction with NADPH (Fig. 5b) (Okada et al., 2004).

 $C_{30}$  botryococcene is rapidly converted to higher molecular weight ( $C_{31}-C_{34}$ ) botryococcenes by successive methylation reactions (Metzger et al., 1987). The source of the additional methyl groups is presumably methionine, the origin of which remains unknown (Metzger et al., 1987). The fact that we observed progressively more deuteriumdepletion with increasing carbon number (i.e.,  $C_{30}-C_{34}$ ) in botryococcenes suggests either that the methionine is depleted in deuterium relative to the  $C_{30}$  botryococcene and/or there is a kinetic isotope effect associated with the methylation reaction. The position of methylation on the  $C_{30}$  botryococcene may also influence the  $\delta D$  values of different isomers.

Phytadiene (specifically, neophytadiene (Compound 8 in the Appendix A), the most abundant isomer) is produced by dehydration of phytol (Volkman

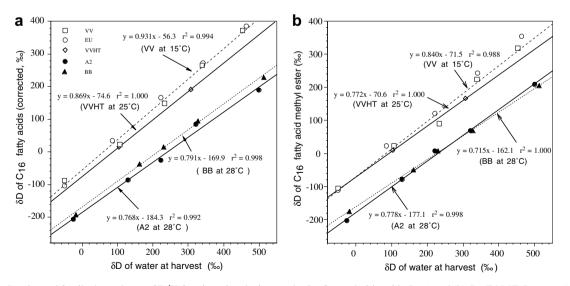



Fig. 6. Species and family dependence of D/H fractionation during synthesis of (a) palmitic acid ( $C_{16:0}$ ) and (b)  $C_{16}$  FAME. Large (~100‰) differences in D/H fractionation in a single lipid are observed between families of green algae. The effect is much larger than for temperature, which has a small influence (see, for example, the lower slope for the high-temperature (VVHT, 25 °C) experiment with *V. aureus* compared to the 15 °C experiment (VV)). Acronyms are as follows: EU: *E. unicocca* grown at 15 °C. VV: *V. aureus* grown at 15 °C. VVHT1 and VVHT2: *V. aureus* grown at 25 °C. BB: *B. braunii*, B race, Martinique strain grown at 28 °C. A2: *B. braunii*, A race, Titicaca strain, grown at 28 °C.

and Maxwell, 1986; Grossi et al., 1996), which in turn is synthesized from GGPP (geranylgeranyl diphosphate) during three hydrogenation reactions using NADPH (Chikaraishi et al., 2004a). IPP and DMAPP serve as precursors to GGPP (Fig. 5b). Though we did not measure the  $\delta D$  value of phytol we did observe  $\varepsilon$  values of -251% to -298% in phytadienes, relative to water, in three species (*B. braunii* (B race), *E. unicocca* and *V. aureus*), in accord with Chikaraishi et al. (2004a).

### 4.3.4. Summary of D/H fractionation during lipid synthesis

Though fatty acids, botryococcenes and phytadienes in the Martinque strain of *B. braunii*, and fatty acids and phytadiene in *V. aureus* are all synthesized in the chloroplast (cf. Sato et al., 2003), presumably with the same pool of NADPH, significant hydrogen isotopic differences exist between botryococcenes/phytadienes and fatty acids in *B. braunii*, and phytadiene and fatty acids in *V. aureus*. These hydrogen isotopic differences between acetogenic and isoprenoid lipids result from different biosynthetic pathways for the two types of lipids.

# 4.4. Species-dependence of hydrogen isotope fractionation in green algae

A small but significant difference of  $\sim 10-15\%$ in D/H fractionation during lipid synthesis was observed in different species, while a large difference of  $\sim 90-100\%$  was observed between families of green algae (*B. braunii*, from the Trebouxiophyceae; *E. unicocca* and *V. aureus* from the Chlorophyceae) (Fig. 6a and b).

The water-lipid isotopic difference for two compounds (C<sub>16</sub> FA and FAME) from four species and two families was compared (Fig. 6a and b). Notwithstanding a small influence of temperature on D/H fractionation during C<sub>16</sub> FA and FAME synthesis of  $\sim -3\%$ /°C (Zhang and Sachs, unpublished results), deuterium depletion in C<sub>16</sub> FAs (Fig. 6a) and FAMEs (Fig. 6b) was much greater (i.e., >110‰) in *B. braunii* (Trebouxiophyceae) compared to either *V. aureus* or *E. unicocca* (Chlorophyceae), suggesting a large interfamily difference in D/H fractionation.

Between species the water- $C_{16}$  FA isotopic difference was much smaller, amounting to 15% between the B (Martinique) (-177%) and A (Titicaca) (-192%) races of *B. braunii* (Table 2), and 8% between *E. unicocca* (-50%) and *V. aureus* (-58%) (Table 3). Similarly, the water- $C_{16}$  FAME

isotopic difference was  $1_{00}^{\circ}$  between Martinique  $(-184_{00}^{\circ})$  and Titicaca  $(-185_{00}^{\circ})$  strains of *B. braunii*, and  $8_{00}^{\circ}$  between *E. unicocca*  $(-70_{00}^{\circ})$  and *V. aureus*  $(-78_{00}^{\circ})$  (Tables 2 and 3).

Schouten et al. (2006) studied the effect of growth rate on D/H fractionation in alkenones from marine coccolithophorids. In a subsequent paper, we will explore the role that growth rate may play in D/H fractionation of lipids. Here, we note that a 5-fold difference in growth rate (at constant temperature) caused little change in  $\varepsilon$ . So although the large difference in D/H fractionation during C<sub>16</sub> FA and FAME synthesis in *B. braunii* vs. *E. unicocca* and *V. aureus* may result in part from differing growth rates, there are likely to be large differences in the hydrogen isotopic fractionation during synthesis of a single lipid by different families of algae.

### 4.5. Implications for paleohydrologic reconstructions from lipid D/H

The near-perfect linear correlation ( $R^2 > 0.99$ ) between all lipids studied and water  $\delta D$  values in five species of freshwater microalgae, and in alkenones from the marine phytoplankton *Emiliania* huxleyi (Englebrecht and Sachs, 2005), provides a sound basis for using sedimentary algal lipid  $\delta D$  values to reconstruct water  $\delta D$  values through time. An important caveat to doing so, however, is that very little is known yet about the role environmental parameters such as nutrients, light, temperature and salinity may play in influencing D/H fractionation during lipid synthesis. Studies we and other researchers are conducting ought to shed light on these potential influences in the near future.

Tables 4 and 5 list the linear regression equations for all lipids we have studied as well as  $\alpha$  and  $\varepsilon$  values. Though the empirical linear regression equations can usually be used to derive water  $\delta D$  values from lipid  $\delta D$  values, neither the slope nor the intercept are equivalent to D/H fractionation as expressed by  $\alpha$ and  $\varepsilon$ . Furthermore, simply adding  $\varepsilon$  to lipid  $\delta D$  values to reconstruct water  $\delta D$  values could be inappropriate if water  $\delta D$  values span a large range. We therefore recommend reconstructing water  $\delta D$  values from lipid  $\delta D$  values using  $\alpha$ , which accounts for the D/H discrimination between lipid and water, using the equation:  $\delta D_{water} = (\delta D_{lipid} + 1000)/\alpha - 1000$ .

To demonstrate the utility of this approach we calculated water  $\delta D$  values from palmitic acid  $\delta D$  values in five *B. braunii* (Martinique) cultures using the average  $\alpha$  value (0.816) reported in Table 4, and

compared this value to the measured  $\delta D_{\text{water}}$  values in those cultures at the time of harvest. The differences were 0.5%, 8.1%, 4.2%, 3.4%, and -20.4% for BBW1 to BBW5, respectively. Except for BBW5, which had  $\delta D_{\text{water}} = 500\%$ , the reconstructed  $\delta D_{\text{water}}$  values are satisfactory.

Furthermore, if non source-specific lipids, such as most fatty acids and sterols, are used to reconstruct water  $\delta D$  values, the influence of changing organic matter inputs to the particular lake or ocean sediment must be considered. Compounds such as palmitic acid (C<sub>16</sub>) and oleic acid (C<sub>18:1</sub>) are ubiquitous, being found in higher plants, algae and bacteria. Because large (>90‰) differences in D/H fractionation were observed in palmitic acid in different families of green algae (Fig. 6a) it is prudent to assume similarly large differences occur in other types of algae. Consequently, a change in the proportion of different algae in a lake would be expected to alter the  $\delta D$  value of palmitic acid deposited in sediment, absent any change in the lake water D/H ratio.

Palmitic acid and other lipids that derive from both aquatic and terrestrial plants and algae further confound the interpretation of down-core changes in  $\delta D$  measured on a non source-specific (i.e., ubiquitous) lipid because higher plant lipids are enriched in deuterium by ~30–60‰ relative to aquatic lipids (Sachse et al., 2004). Thus any change in the proportion of palmitic acid derived from aquatic algae and higher plants would be expected to alter the  $\delta D$ value of sedimentary palmitic acid in the absence of any change in lake or meteoric water  $\delta D$  values.

Clearly the use of non-specific lipids in lake sediment, such as palmitic acid, for reconstructing lake water  $\delta D$  values and paleohydrology is susceptible to misinterpretation (cf Huang et al., 2002). A better approach for down-core lake water  $\delta D$  reconstructions is the use of a lipid biomarker specific to a family of plants or algae, if not a species (the interspecies differences being rather small at ~5–15‰), and for which the fractionation factor,  $\alpha$ , or an empirical water–lipid  $\delta D$  calibration has been developed. An example would be the C<sub>34</sub> botryococcene, produced solely by the B race of *B. braunii*.

### 5. Conclusions

Here we have shown that lipids from five species of cultured green algae, including *E. unicocca*, *V. aureus* and three strains of *B. braunii*, were near-perfect recorders ( $R^2 > 0.99$ ) of water D/H ratios. Barring any as yet unknown environmental influences on D/H fractionation during lipid synthesis, algal lipid  $\delta D$  values can therefore be used as surrogates for water  $\delta D$  values when the lipids derive from a single species or family.

All algal lipids were highly depleted in deuterium relative to environmental water, the result of kinetic isotope effects during enzymatic processes. In the green algae we studied, deuterium depletion in lipids varied with the biosynthetic pathways that produced them. As observed previously in other plants and algae, isoprenoid lipids (botryococcenes and phytadiene), which are synthesized via the DOXP/ MEP pathway, were highly depleted in deuterium relative to acetogenic lipids (straight-chain fatty acids, alkadienes, etc.), which are synthesized via the acetogenic pathway.

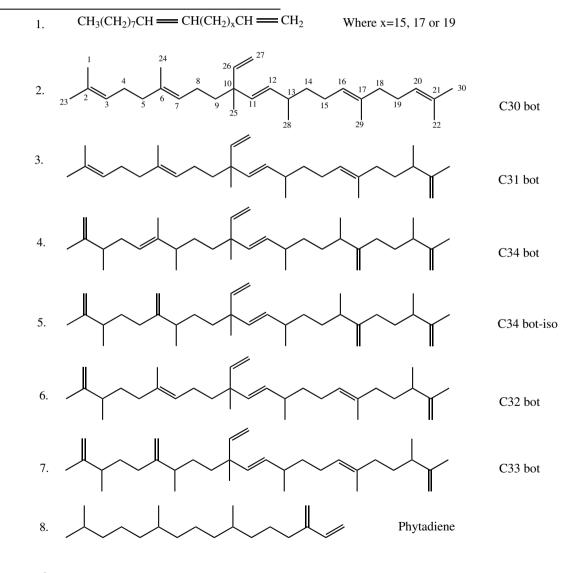
Systematic hydrogen isotopic differences were associated with carbon chain length. The  $C_{20:1}$  fatty acid was consistently deuterium-enriched relative to the  $C_{28:1}$  and  $C_{30:1}$  fatty acids, both of which were enriched in deuterium relative to the  $C_{16}$  and  $C_{18:1}$ fatty acids. We attribute these differences to the site of elongation, which differs for  $C_{18:1}$ – $C_{20:1}$ , and for  $C_{20:1}$ – $C_{28:1}/C_{30:1}$  fatty acids. Similarly, the  $C_{30}$  botryococcene is enriched in deuterium relative to longer ( $C_{31}$ – $C_{34}$ ) homologues, implicating the methylation reactions as an additional source of hydrogen isotopic fractionation.

Alkadienes, the products of elongation and decarboxylation of the  $C_{18:1}$  fatty acid, are depleted in deuterium by 40% relative to that precursor, presumably the result of isotopic discrimination during the decarboxylation reaction.

D/H fractionation in lipids also varies between species of green algae. Deuterium depletion in a single compound, such as the  $C_{16}$  fatty acid (palmitic acid), was approximately 100% greater in *B. braunii* than in both *E. unicocca* and *V. aureus*.

Attempts at reconstructing water  $\delta D$  values through time using non-source-specific lipids, such as palmitic acid, therefore run the risk of misinterpreting changes in the source of sedimentary lipids for changes in water D/H ratios. Lipid biomarkers unique to a family (or genus) should be targeted for down-core reconstructions of water D/H ratios using empirically derived water–lipid fractionation factors ( $\alpha$ ) established from culture experiments.

### Acknowledgements


We are indebted to Dr. Pierre Metzger in the Laboratoire de Chimie Bioorganique et Organique Physique (France) for supplying *Botryococcous* braunii inocculants and for sharing his wisdom on culturing and understanding this alga, and to Dr. Daniel Repeta at the Woods Hole Oceanographic Institution for assisting with the culture experiments. We thank Drs. Stefan Schouten, Alex Sessions and Mark Pagani for constructive reviews that greatly improved this manuscript, and Amy Cash for useful editorial comments. We are grateful to Carolyn Colonero and Roger Summons for assistance with GC–IRMS instrumentation at MIT, Anthony Faiia for water  $\delta D$  analyses at Dartmouth College, and Yanek Hebting for assistance in hydro-

genating botryococcenes and alkadienes. We thank

the Culture Collection of Algae and Protozoa in Scotland, UK for providing inoculants of *E. unicocca* and *V. aureus*. Funding for this research was provided in part by the Gary Comer Science and Education Foundation (J.S.), the Jeptha H. and Emily V. Wade Award for Research at MIT (J.S.), and a Henry L. and Grace Doherty Professorship at MIT (J.S.).

### Appendix A

Molecular structures of hydrocarbons discussed in this paper. Compounds 2-7 are botryococcenes containing 30-34 carbon atoms.



9.  $CH_3(CH_2)_6CH = CH(CH_2)_7CH_3$ 

#### Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.orggeochem.2006.12.004.

### Associate Editor—S. Schouten

### References

- Adolf, J.E., Stoecker, D.K., Harding, L.W., 2003. Autotrophic growth and photoacclimation in *Karlodinium micrum* (Dinophyceae) and *Storeatula major* (Cryptophyceae). Journal of Phycology 39, 1101–1108.
- Agrawal, V.P., Stumpf, P.K., 1985a. Characterization and solubilizatoin of an acyl chain elongation system in microsomes of leek epidermal cells. Archives of Biochemistry and Biophysics 240, 154–165.
- Agrawal, V.P., Stumpf, P.K., 1985b. Elongation system involved in the biosynthesis of erucic acid from oleic acid in developing *Brassica juncea* seeds. Lipids 20, 361–366.
- Akamatsu, Y., Law, J.H., 1970. The enzymatic synthesis of fatty acid methyl esters by carboxyl group alkylation. Journal of Biological Chemistry 245, 709–713.
- Behrouzian, B., Buist, P.H., Shanklin, J., 2001. Application of KIE and thia approaches in the mechanistic study of a plant stearoyl-ACP  $\Delta^9$  desaturase. Chemical Communications, 401–402.
- Burgoyne, T.W., Hayes, J.M., 1998. Quantitative production of H<sub>2</sub> by pyrolysis of gas chromatographic effluents. Analytical Chemistry 70, 5136–5141.
- Charon, L., Pale-Grosdemange, C., Rohmer, M., 1999. On the reduction steps in the mevalonate independent 2-C-methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in bacterium Zymomonas mobilis. Tetrahedron Letters 40, 7231–7234.
- Charon, L., Hoeffler, J.-F., Pale-Grosdemange, C., Lois, L.-M., Campos, N., Boronat, A., Rohmer, M., 2000. Deuterium labeled isotopomers of 2-C-methylerythritol as tools for the elucidation of the 2-C-methylerythritol 4-phosphate for isoprenoid biosynthesis. Biochemical Journal 40, 737–742.
- Chikaraishi, Y., Naraoka, H., Poulson, S.R., 2004a. Carbon and hydrogen isotopic fractionation during lipid biosynthesis in a higher plant (*Cryptomeria japonica*). Phytochemistry 65, 323– 330.
- Chikaraishi, Y., Naraoka, H., Poulson, S.R., 2004b. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C<sub>3</sub>, C<sub>4</sub> and CAM) and aquatic plants. Phytochemistry 65, 1369–1381.
- Chikaraishi, Y., Suzuki, Y., Naraoka, H., 2004c. Hydrogen isotopic fractionation during desaturation and elongation associated with polyunsaturated fatty acid biosynthesis in marine macroalgae. Phytochemistry 65, 2293–2300.
- Chikaraishi, Y., Matsumoto, K., Ogawa, N.O., Suga, H., Kitazato, H., Ohkouchi, N., 2005. Hydrogen, carbon and nitrogen isotopic fractionations during chlorophyll biosynthesis in C<sub>3</sub> plants. Phytochemistry 66, 911–920.
- Chikaraishi, Y., 2006. Carbon and hydrogen isotopic composition of sterols in natural marine brown and red macroalgae and associated shellfish. Organic Geochemistry 37, 428–436.

- Chu, I.M., Wheeler, M.A., Holmlund, C.E., 1972. Fatty acid methyl esters in *Tetrahymena pyriformis*. Archives of Biochemistry and Biophysics 270, 18–22.
- Douglas, A.G., Douraghi-Zadeh, K., Eglinton, G., 1969. The fatty acids of the alga *Botryococcus braunii*. Phytochemistry 8, 285–293.
- Englebrecht, A.C., Sachs, J.P., 2005. Determination of sediment provenance at drift sites using hydrogen isotopes and unsaturation ratios in alkenones. Geochimica et Cosmochimica Acta 69, 4253–4265.
- Epstein, S., Yapp, C.J., Hall, J.H., 1976. The determination of the D/H ratio of non-exchangeable hydrogen in cellulose extracted from aquatic and land plants. Earth and Planetary Science Letters 30, 241–254.
- Estep, M.F., Hoering, T.C., 1980. Biogeochemistry of the stable hydrogen isotopes. Geochimica et Cosmochimica Acta 44, 1197–1206.
- Estep, M.F., Hoering, T.C., 1981. Stable hydrogen isotopes fractionation during autotrophic and mixotrophic growth of microalgae. Plant Physiology 67, 474–477.
- Fathipour, A., Schlender, K.K., Sell, H.M., 1967. The occurrence of fatty acid methyl esters in the pollen of *Zea mays*. Biochimica et Biophysica Acta 144, 476–478.
- Fukushima, K., Yasukawa, M., Muto, N., Uemura, T., Ishiwatari, R., 1992. Formation of C<sub>20</sub> isoprenoid thiophenes in modern sediments. Organic Geochemistry 18, 83–91.
- Gelpi, E., Schneider, H., Mann, J., Oró, J., 1970. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry 9, 603–612.
- Grossi, V., Baas, M., Schogt, N., Klein Breteler, W.C.M., De Leeuw, J.W., Rontani, J.-F., 1996. Formation of phytadienes in the water column: myth or reality? Organic Geochemistry 24, 833–839.
- Harwood, J.L., 1988. Fatty acid metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 39, 101–138.
- Harwood, J.L., 1997. Plant lipid metabolism. In: Mey, P.M., Harbone, J.B. (Eds.), Plant Biochemistry. Academic Press, San Diego, pp. 237–272.
- Hayes, J.M., 2001. Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. In: Valley, J.W., Cole, D.R. (Eds.), Stable Isotope Geochemistry. Mineralogical Society of America, pp. 225–277.
- Hilkert, A.W., Douthitt, C.B., Schlüter, H.J., Brand, W.A., 1999. Isotope ratio monitoring gas chromatography/mass spectrometry of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry 13, 1226–1230.
- Hoefs, J., 2004. Stable Isotope Geochemistry. Springer, Berlin, pp. 1–26.
- Huang, Y., Shuman, B., Wang, Y., Webb, T., 2002. Hydrogen isotope ratios of palmitic acid in lacustrine sediments record late quaternary climate variations. Geology 30, 1103–1106.
- Huang, Y.S., Shuman, B., Wang, Y., Webb, T., 2004. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test. Journal of Paleolimnology 31, 363–375.
- Kirk, D.L., 1998. Volvox: Molecular-Genetic Origins of Multicellularity and Cellular Differentiation. Cambridge University Press, Cambridge, pp. 16–44.
- Lajtha, K., Marshall, J.D., 1994. Sources of variations in the stable isotopic composition of plants. In: Lajtha, K., Michener, R.H. (Eds.), Stable Isotopes in Ecology and Environ-

mental Science. Blackwell Scientific Publications, Oxford, pp. 1–21.

- Laseter, J.L., Weete, J.D., 1971. Fatty acid ethyl esters of *Rhizopus arrhizus*. Science 172, 864–865.
- Laseter, J.L., Weete, J.D., Weber, D.J., 1968. Alkanes, fatty acid methyl esters, and free fatty acids in surface wax of Ustilago maydis. Phytochemistry 7, 1177–1181.
- Lessire, R., Juguelin, H., Moreau, P., Cassagne, C., 1985. Elongation of acyl-CoAs by microsomes from etiolated leek seedlings. Phytochemistry 24, 1187–1192.
- Lichtenthaler, H.K., 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology 50, 47–65.
- de Ligny, C.L., 1976. The investigation of complex association by gas chromatography and related chromatographic and electrophilic methods. In: Giddings, J.C., Grushka, E., Cazes, J., Brown, P.R. (Eds.), Advances in Chromatography, vol. 14. Marcel Dekker, New York, pp. 265–304.
- Luo, Y-H., Sternberg, L.d.S.L., Suda, S., Kumazawa, S., Mitsui, A., 1991. Extremely low D/H ratios of photoproduced hydrogen by cyanobacteria. Plant and Cell Physiology 32, 897–900.
- Maxwell, J.R., Douglas, A.G., Eglinton, G., McCormick, A., 1968. The botryococcenes–hydrocarbons of novel structure from the alga *Botryococccus braunii*, Kützing. Phytochemistry 7, 2157–2171.
- Metzger, P., Berkaloff, C., Casadevall, E., Coute, A., 1985a. Alkadiene- and botryococcenes-producing races of wild strains of *Botryococcus braunii*. Phytochemistry 24, 2305–2312.
- Metzger, P., Casadevall, E., Pouet, M.J., Pouet, Y., 1985b. Structures of some botryococcene: branched hydrocarbons from the B-race of the green alga *Botryococcus braunii*. Phytochemistry 24, 2995–3002.
- Metzger, P., Templier, J., Largeau, C., Casadevall, E., 1986. An *n*-alkatriene and some *n*-alkadienes from the A race of the green alga *Botryococcus braunii*. Phytochemistry 25, 1869– 1872.
- Metzger, P., David, M., Casadevall, E., 1987. Biosynthesis of triterpenoid hydrocarbons in the B-race of the green alga *Botryococcus braunii*. Sites of production and nature of the methylating agent. Phytochemistry 26, 129–134.
- Metzger, P., Casadevall, E., Coute, A., 1988. Botryococcene distribution in strains of the green alga *Botryococcus braunii*. Phytochemistry 27, 1383–1388.
- Metzger, P., Largeau, C., 1999. Chemicals of *Botryococcus braunii*. In: Cohen, Z. (Ed.), Chemicals from Microalgae. Taylor & Francis, London, pp. 205–260.
- Ohlrogee, J.B., 1987. Biochemistry of plant acyl carrier proteins. In: Stumpf, P.K., Conn, E.E. (Eds.), The Biochemistry of Plants, vol. 9. Academic Press, New York, pp. 137–158.
- Okada, S., Devarenne, T.P., Murakami, M., Abe, H., Chappell, J., 2004. Characterization of botryococcene synthase enzyme activity, a squalene synthase-like activity from the green microalga *Botryococcus braunii*, Race B. Archives of Biochemistry and Biophysics 422, 110–118.
- Peterson, D.C., 1980. Water permeation through the lipid bilayer membrane test of the liquid hydrocarbon model. Biochimica et Biophysica Acta 600, 666–677.
- Pollard, M.R., Mckeon, T., Gupta, L.M., Stumpf, P.K., 1979. Studies on biosynthesis of waxes by developing Jojoba seed. II. Demonstration of wax biosynthesis by cell-free homogenates. Lipids 14, 651–662.

- Raven, P.H., Event, R.F., Eichhorn, S.E., 1999. Biology of Plants. W.H. Freeman and Company Worth Publishers, New York, pp. 126–153.
- Rohmer, M., 1999. The mevalonate-independent methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis, including carotenoids. Pure and Applied Chemistry 71, 2279– 2284.
- Sachse, D., Radke, J., Gleixner, G., 2004. Hydrogen isotope ratios of recent lacustrine sedimentary *n*-alkanes record modern climate variability. Geochimica et Cosmochimica Acta 68, 4877–4889.
- Saladin, T.A., Napier, E.A., 1967. Properties and metabolism of 2-alkylalkanoates. III. Absorption of methyl and ethyl 2-methylpalmitate. Journal of Lipid Research 8, 342–349.
- Sato, Y., Ito, Y., Okada, S., Murakami, M., Abe, H., 2003. Biosynthesis of the triterpenoids, botryococcenes and tetramethylsqualene in the B race of *Botryococcus braunii* via the non-mevalonate pathway. Tetrahedron Letters 44, 7035– 7037.
- Sauer, P.E., Eglinon, T.I., Hayes, J.M., Schimmelmann, A., Sessions, A., 2001. Compound-specific D/H ratios of lipid biomarkers from sediment as a proxy for environmental and climatic conditions. Geochimica et Cosmochimica Acta 65, 213–222.
- Schouten, S., Ossebaar, J., Schreiber, K., Kienhuis, M.V.M., Langer, G., Benthien, A., Bijma, J., 2006. The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long-chain alkenones produced by *Emiliania huxleyi* and *Gephyrocapsa oceanica*. Biogeosciences 3, 113–119.
- Schwender, J., Zeidler, J., Gröner, R., Müller, C., Focke, M., Braun, S., Lichtenthaler, F.W., Lichtenthaler, H.K., 1997. Incorporation of 1-deoxy-D-xylulose into isoprene and phytol by higher plants and algae. EFBS Letters 414, 129–144.
- Schwender, J., Gemünden, C., Lichtenthaler, H.K., 2001. Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol-4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212, 223–416.
- Senousy, H.H., Beakes, G.W., Hack, E., 2004. Phylogenetic placement of *Botryococcus braunii* (Trebouxiophyceae) and *Botryococcus sudeticus* isolate UTEX 2629 (Chlorophyceae). Journal of Phycology 40, 412–423.
- Sessions, A.L., Burgoyne, T.W., Schimmelmann, A., Hayes, J.M., 1999. Fractionation of hydrogen isotopes in lipid biosynthesis. Organic Geochemistry 30, 1193–1200.
- Sessions, A.L., Hayes, J.M., 2005. Calculation of hydrogen isotopic fractionations in biogeochemical systems. Geochimica et Cosmochimica Acta 69, 593–597.
- Sessions, A.L., 2006. Seasonal changes in D/H fractionation accompanying lipid biosynthesis in *Spartina alterniflora*. Geochimica et Cosmochimica Acta 70, 2153–2162.
- Sinninghe Damsté, J.S., Rampen, S., Irene, W., Rupstra, C., Abbas, B., Muyzer, G., Schouten, S., 2003. A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in Quaternary marine sediments: indicators for high nutrient conditions. Geochimica et Cosmochimica Acta 67, 1339–1348.
- Smith, B.N., Epstein, S., 1970. Biogeochemistry of the stable isotopes of hydrogen and carbon in salt marsh biota. Plant Physiology 46, 738–742.
- Stumpf, P.K., 1980. Biosynthesis of saturated and unsaturated fatty acids. In: Stumpf, P.K., Conn, E.E. (Eds.), The

Biochemistry of Plants, vol. 4. Academic Press, New York, pp. 177–204.

- Stumpf, P.K., 1987. Biosynthesis of saturated fatty acids. In: Stumpf, P.K., Conn, E.E. (Eds.), The Biochemistry of Plants, vol. 9. Academic Press, New York, pp. 121–136.
- Szkopińska, A., 2000. Ubiquinone. Biosynthesis of quinone ring and its isoprenoid side chain. Intracellular localization. Acta Biochimica Polonica 47, 469–480.
- Templier, J., Largeau, C., Casadevail, E., 1984. Mechanism of non-isoprenoid hydrocarbon biosynthesis in *Botryococcus* braunii. Phytochemistry 23, 1017–1028.
- Templier, J., Largeau, C., Casadevail, E., 1991. Non-specific elongation-decarboxylation in biosynthesis of *cis* and *trans*alkadienes by *Botryococcus braunii*. Phytochemistry 30, 175– 183.
- Volkman, J.K., Maxwell, J.R., 1986. Acyclic isoprenoids as biological markers. In: Johns, R.B. (Ed.), Biological Markers in the Sedimentary Record. Elsevier, Amsterdam, pp. 1– 42.
- Wanke, M., Skorupinska-Tudek, K., Swiezewska, E., 2001. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phophate/ 2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. Acta Biochimica Polonica 48, 663–672.
- Weete, J.D., 1976. Algal and fungal waxes. In: Kolattukudy, P.E. (Ed.), Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam, pp. 350–404.
- Werstiuk, N.H., Ju, C., 1989. Protium-deuterium exchange of benzo-substituted heterocycles in neutral D<sub>2</sub>O at elevated temperatures. Canadian Journal of Chemistry 67, 812–815.