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Light 3°C events during deglaciation of the East Greenland
continental shelf attributed to methane release from gas

hydrates

L.M. Smith’, J.P. Sachs?, A.E. Jenningsl, D.M. Anderson®, A. deVernal*

Abstract. We have documented high-resolution stable
isotope records from three marine cores on the East Greenland
shelf. These records exhibit three rapid light §'°C events (-3
to -7%o) in benthic and planktic foraminifera during
deglaciation that are spatially and temporally transgressive.
The light 5'°C events are associated with light planktic §'°0,
indicative of meltwater. In Kangerlussuaq Trough, the first
8C event occurs at initial deglaciation, 13.94-14.0 cal ka
and the second occurs at 12.85-12.9 cal ka. A younger event
at 10.3-9.3 cal ka is recorded near the mouth of Nansen Fjord
during final deglaciation. The hypothesized mechanism for
the light 8"C is expulsion of methane from gas hydrates in the
seafloor from pressure release during ice sheet retreat.

Introduction

Marine records of oxygen and carbon isotopes have recently
documented 8°C depletions between 3-5%o and attributed
them to rapid expulsion of methane from gas hydrates (Kennett
et al., 2000; Hesselbo et al., 2000). Gas hydrates are solids
formed under high pressure and low temperature in sediments
that trap water and CHs (Kvenvolden, 1993). When
overlying pressure decreases or temperature increases, gas
hydrates dissociate and release methane (Dickens et al., 1995).
If significant amounts of methane are released from gas
hydrates, then the 8"3C of bicarbonate, from which foraminifera
secrete their shells, decreases considerably (Rathburn et al.,
2000). Comparison of living versus fossil foraminifera at cold-
water seeps along the California margin show large 3"C
excursions near methane seeps (Rathburn et al., 2000).

Ice core records also document significant changes in
methane coincident with temperature warmings (Stauffer et al.,
1988; Severinghaus et al., 1998; Brook et al., 2000). The ice
core methane concentration spikes are attributed to increases
in tropical and boreal continental wetland methane sources.
Brook et al. (2000) infer methane increases to be slower than
temperature due to the lag time for the terrestrial ecosystem to
respond to temperature, and they dismiss methane expulsion
from gas hydrates as a significant methane source. Yet, few
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causes, besides methane, can explain such light 83C intervals
in marine records (Dickens et al., 1995). Methane release from
gas hydrates may not always impact global climate, but it
cannot be dismissed as an important source of methane,
especially from polar regions (Kvenvolden, 1993).

We present three events of anomalously light 81C values,
-3 to —7%o, from benthic and planktic foraminifera during
deglaciation of the East Greenland continental shelf, 68°N,
correlative to intervals of light 8'®0, indicative of meltwater.
Evidence is presented to attribute the anomalous 81°C values
to the release of methane from gas hydrates by pressure release
during deglaciation.

Regional Setting

The morphology of the East Greenland continental shelf,
~68°N, is marked by shallow banks and deep (upwards of 650
mwd), fault controlled, glacially modified troughs (Figure 1).
Glacial, deglacial and post-glacial sediments have
accumulated within these troughs (Andrews et al, 1994,
1996; Stein, 1996; Jennings and Weiner, 1996; Smith, 1997).
The East Greenland current (EGC), flowing south along East
Greenland from the Arctic Ocean, is composed of cold, fresh
water at the surface that carries icebergs and sea ice and warm,
saline Atlantic-type water at depth (Aagaard and Coachman,
1968). The inland ice expanded onto the continental shelf,
filled both troughs, and extended to the shelf break during the
Last Glacial Maximum (Andrews et al., 1996; Jennings et al.,
1998). Ice retreated from the shelf edge prior to 14,000 “C
years ago, with an inferred standstill of the ice margii. <n the
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Figure 1. Bathymetric map of East Greenland, in meters,
showing cores used in this study. White areas on land
indicate present-day locations of glaciers.
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Figure 2. Stable isotope measurements of §"°C and 8'®0 from benthic and planktic foraminifera, and bulk
organic matter 8'°C. There are three time-transgressive intervals of light §°°C and 8'30 values, as shown by
the gray lines or gray box. Benthic foraminifera isotope data are shown as circles and planktic foraminifera
isotope data are shown as diamonds. Squares indicate levels of radiocarbon dates (filled squares) and tephra

(open squares) used in the age models.

inner shelf during the Younger Dryas, and then final retreat
into the fjords soon afterwards (Andrews et al., 1996;
Jennings et al., 1998).

Methods

Sediment gravity cores, 10 cm in diameter, were raised from
the East Greenland shelf in 1996 on the R/VJan Mayen. Two-
centimeter thick samples were removed from the cores every 5
cm. The samples were wet sieved at 63 and 106 Mm, and
benthic and planktic foraminifera were picked from the 106-
250 Mm fraction for stable isotope measurements. We
measured the stable isotopic composition of planktic
foraminifera (Neogloboquadrina pachyderma (s)) from all
cores and benthic foraminifera (Cassidulina neoteretis or
Cibicides lobatulus) from cores with a high enough
abundance of these benthic species'. These benthic
foraminifera are typically used for isotopic analyses in
paleoceanographic reconstructions on Arctic shelves (Vilks
and Deonarine, 1988; D.A.R. Poole, unpublished data).
Stable isotope measurements of foraminifera from cores JM96-
1214 and -1215 were performed at WHOI on a Finnigan MAT
252 mass-spectrometer with an on-line Kiel Carbonate Device
(Ostermann and Curry, 2000). Foraminifera samples from
JM96-1207 were analyzed at the Leibniz-Laboratory for
Radiometric Dating and Stable Isotope Research at Kiel
University on a Finnigan MAT 251 mass-spectrometer with
an on-line Kiel Carbonate Device, with a precision of +0.05%o
for carbon and +0.08%o for oxygen isotopes. Selected samples
with enough individuals for duplicates were measured, and

the light 8°C values were duplicated within machine error.

Bulk sediment samples were analyzed for 8"°C on a Finnigan
Delta-S isotope ratio mass spectrometer after preparation
using the continuous flow method at the Boston University
Stable Isotope Laboratory, with a precision of 0.2%o.

Age control was gained for all cores from radiocarbon
dating' (Smith and Licht, 2000; Hagen, 1999; A.E. Jennings
et al., Holocene shift in Arctic sea ice variability on the East
Greenland shelf, submitted to Holocene, 2000), and the
presence of Vedde and Saksunarvatn Ash in cores IM96-1214
and -1215 (Jennings et al., manuscript in preparation).
Radiocarbon ages were calibrated using CALIB 4.1 (Stuiver
and Reimer, 1986; 1993). Calibrated radiocarbon dates and
tephra layers used in the age models are plotted on Figure 2.

Results

The marine cores recovered ice-proximal and postglacial
sediments (Jennings et al., 1998; Hansen, 1998). Seismic
stratigraphic data indicate that glacial diamicton sediments
directly underlie these recovered sediments (Stein, 1996).
Therefore, basal radiocarbon ages constrain the timing of
glacial retreat and onset of glacial marine sedimentation.
There are three intervals of light 8°C and 80 values in
benthic and planktic foraminifera: 13.94-14.0, 12.85-12.9, and
10.3-9.3 cal ka (Figure 2). The 8§"C depletions are 4-6%o
lighter than average core values. These three events are
temporally and spatially distinct, and the age and location
differences indicate that the events are transgressive from the
mid continental shelf to the coast (Figures 1&2).
Accumulation rates in these light 8'°C and 8'0 intervals
range from 300 cm/ka in JM96-1214 to 200 cm/ka in JM96-
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Figure 3. Conditions on the East Greenland margin at the
Last Glacial Maximum (top) and immediately following ice
retreat (bottom). The presence of the ice sheet on the
continental shelf increased the pressure in the sediments, and
maintained the temperature close to freezing, creating a broad
region of the shelf that was stable with respect to gas hydrates
(ca 40-60 atm, 0°C). Retreat of the ice sheet at the end of the
Last Glacial Maximum reduced the pressure due to overlying
ice, and allowed contact with warm AIW (3-4°C) from the
EGC, destabilizing the methane from the gas hydrates.

1215 to 100 cm/ka in IM96-1207. The light 8'°C events are
larger in the planktic than benthic foraminifera in JM96-1207,
but greater in the benthic foraminifera in JM96-1215. In the
JM96-1214 light 3"C event, dinocyst concentrations are
lower than 200 cysts per cm’, indicating low productivity.
The dinocyst assemblage is dominated by
Algisdasphaeridum(?) minutum, and indicates that sea ice
was present for 7-11 months/year and cold summer sea surface
temperatures (averaging ~1.5°C in August) (deVernal and
Hillarie-Marcel, 2000). Light 880 events of 0.5-1%o0 are
associated with each 8'°C depletion. Stable isotope values in
bulk sedimentary organic matter from the light §"°C interval in
IM96-1214 ranges from -22 to -23 %o.

Discussion

The extreme 8'°C depletions we observe in both planktic
and benthic foraminifera (Figure 2) were most likely derived
from methane expelled from gas hydrates, because methane §'°C
can reach -90%o0 (Kvenvolden, 1993). The core sites within
Kangerlussuaqg and Nansen shelf troughs (>400 mwd) are
sufficiently deep for gas hydrate formation (Dickens and
Quinby-Hunt, 1994; Kvenvolden, 1993). Total organic
carbon contents (averaging = 0.4 wt %) may be too low to
produce methane via microbial activity (Kvenvolden, 1993).
Based on the spatial- and time-transgressive nature of the §"°C
and 80 depletions (Figures 1&2), we hypothesize that ice
retreat across the shelf during deglaciation is the causal
mechanism for release of methane from gas hydrates (Figure 3).
Ice retreat is inferred from the existence of ice-proximal glacial
marine sediments overlying glacial till (Stein, 1996; Andrews
et al, 1996; Jennings et al, 1998). Since the dinocyst
assemblage indicates the presence of sea ice over our sites for
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7-11 months of the year (deVernal and Hillaire-Marcel, 2000),
the light 8'%0 values in planktic foraminifera are attributed to
both glacial meltwater and sea ice melt.

Retreat of the ice margin would have released enough
pressure to dissociate the gas hydrates and expel methane into
the overlying sediments and ocean water (Figure 3) (Dickens
and Quinby-Hunt, 1994; Kvenvolden, 1993). A 600 m thick
ice margin would produce a basal pressure of ca. 550 atm and a
basal temperature near freezing. Ice retreat and associated
isostatic rebound would both reduce the seafloor pressure,
depending on the change in seafloor depth. Additionally, ice
retreat would allow warm EGC water to flow across the site,
increasing bottom water temperatures from zero to 2°-4°C.
This increase in temperature would further destabilize gas
hydrates (Figure 3) (Dickens and Quinby-Hunt, 1994;
Kvenvolden, 1993). The low 8'®0 values of benthic
foraminifera during the &C excursions (Figure 2) are
consistent with intrusion of warm bottom waters of the EGC.

We analyzed the 8BC of the bulk organic matter, primarily
composed of phytoplankton, across Event 2 to determine
whether phytoplankton had utilized the isotopically depleted
carbon derived from methane. Because the organic matter 8C
is similar to the 8°C of average marine organic matter (ca.
-22%o, Figure 2), we infer that the surface layer in which the
phytoplankton lived did not entrain methane-derived carbon.

We excluded four alternative hypotheses as the cause of the
313C events: biological effects, vital effects, terrestrial influx of
depleted carbon, and air-sea exchange. First, the light s8¢
values cannot be attributed to the nutrient dynamics of ocean
water. The PO4 concentration would have to double or triple
to support the corresponding light 313C values, according to
the Redfield Ratio (Schlesinger, 1997). Second, vital effects
are dismissed because we analyzed single species of
foraminifera and the vital effects in foraminifera are too small
(2-3%o) to account for the large 8"°C depletions (McCorkle et
al, 1990; D.A.R. Poole, unpublished data; Simstich, 1999).
Third, if a source of isotopically depleted organic matter, such
as coal from the Kangerlussuaq region (Brooks and Nielsen,
1982), were carried to the ocean by rivers or glaciers, 11-26%
of the marine DIC would have to derive from that source. We
cannot conceive of a mechanism by which to transport and
remineralize this quantity of recalcitrant organic carbon from
land to ocean'. Lastly, the air-sea exchange of carbon is not
large enough to explain this extreme depletion of 8"°C in
foraminifera (Lynch-Stieglitz et al, 1995).  The initial
invasion of isotopically-depleted atmospheric carbon is too
small to create the observed 8'°C depletion events, and the
long term effect of atmospheric exchange is to enrich the
surface ocean (Lynch-Stieglitz et al., 1995).

Conclusions

We have documented a robust signal of three light 8§"C
events, and propose a causal mechanism for these 3"C events:
the expulsion of methane from destabilized gas hydrates when
bottom pressure decreased and bottom temperature increased

'Supporting material is available via Web browser or via Anonymous
FTP from fip;//kosmos.agu.org, directory "apend" (Username =
"anonymous", Password = "guest"); subdirectories in the fip site are
arranged by paper number. Information on searching and submitting
electronic  supplements is found at  http://www.agu.org/pubs/
esupp_about.html.
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following retreat of the East Greenland ice sheet. These three
events are not documented in nearby Greenland ice core
records (Brook et al, 2000), and hence, may be localized
events of insufficient magnitude to impact global climate.

Our results are consistent with other studies that attribute
anomalous carbon isotopic depletions in marine sediments to
the release of biogenic methane from destabilized methane
hydrates (Kennett et al., 2000; Hesselbo et al., 2000; Dickens
et al., 1995). Our study is unique in invoking both pressure
and temperature changes associated with ice shelf retreat as
the mechanism for gas hydrate dissociation.
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