Hydrogen isotopes in dinosterol from the Chesapeake Bay estuary

Julian P. Sachs*, Valérie F. Schwab 1

University of Washington, School of Oceanography, Box 355351, Seattle, WA 98195, USA

Received 25 March 2010; accepted in revised form 19 October 2010; available online 27 October 2010

Abstract

The hydrogen isotope ratio of the dinoflagellate sterol dinosterol (4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol) was measured in suspended particles and surface sediments from the Chesapeake Bay estuary in order to evaluate the influence of salinity on hydrogen isotope fractionation. D/H fractionation was found to decrease by 0.99 ± 0.23‰ per unit increase in salinity over the salinity range 10–29 PSU, a similar decrease to that observed in a variety of lipids from hypersaline ponds on Christmas Island (Kiribati). We hypothesize that the hydrogen isotopic response to salinity may result from diminished exchange of water between algal cells and their environment, lower growth rates and/or increased production of osmolytes at high salinities. Regardless of the mechanism, the consistent sign and magnitude of dinosterol δD response to changing salinity should permit qualitative to semi-quantitative reconstructions of past salinities from sedimentary dinosterol δD values.

© 2010 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

The hydrologic cycle is a central component of the climate system that has proven difficult to reconstruct in the past and challenging to forecast into the future. For much of the globe that means that precipitation rates are largely unknown prior to the widespread use of weather satellites in the 1970s, and forecasts of changing precipitation patterns in the coming decades are highly uncertain (cf. Solomon et al., 2009). Though tree rings have been successfully used to reconstruct rainfall in temperate regions of continents (Cook et al., 1999, 2004) precipitation is often a second-order influence on ring width and density when compared to temperature (Briffa et al., 2002). Furthermore, trees in tropical and desert regions often do not produce annual rings, and some 75% of the surface of the planet is covered by ocean or ice where trees do not exist. Attempts to reconstruct hydrologic changes from the chemical and isotopic composition of seawater preserved in the fossil remains of carbonate plankton and corals have evolved to the point where relatively large changes in hydrologic conditions can be discerned for the last few hundred years in the case of corals, and on millennial time-scale in the case of foraminifera, but the changes in seawater chemistry caused by hydrologic changes are relatively small, making for a low signal-to-noise ratio in carbonate-based paleohydrologic proxies. Such studies are also limited to the shallow-water tropics in the case of corals, and those regions of the ocean where carbonate preservation in marine sediments is good. Without long records of precipitation over large parts of the globe it is difficult to evaluate the significance of precipitation trends in recent decades.

A promising new tool for reconstructing hydrologic conditions in the past from virtually any location where plant or phytoplankton remains can be found is the hydrogen isotope ratio (2H/H or D/H) of lipids produced by plants, phytoplankton and cyanobacteria (Sauer et al., 2001; Huang et al., 2002; Englebrecht and Sachs, 2005; Schefuss et al., 2005; Pagani et al., 2006; Schouten et al., 2006; Pahnke et al., 2007; van der Meer et al., 2007, 2008; Zhang and Sachs, 2007; Sachse and Sachs, 2008; Sachs et al., 2009; Schwab and Sachs, 2009; Zhang et al., 2009). Since vascular plants transpire, and transpiration causes variable isotopic enrichment of leaf water that depends on several environmental parameters (Flanagan et al., 1991), lipids derived

* Corresponding author.

E-mail address: jsachs@u.washington.edu (J.P. Sachs).

1 Present address: Max-Planck-Institute for Biogeochemistry, Hans-Knoell-Str. 10, 07745 Jena, Germany.
from phytoplankton and cyanobacteria are desirable targets for paleohydrologic reconstructions based on D/H ratios (Englebrecht and Sachs, 2005; Pahnke et al., 2007; van der Meer et al., 2007, 2008; Zhang and Sachs, 2007; Sachs et al., 2009).

Both laboratory (Englebrecht and Sachs, 2005; Schouten et al., 2006; Zhang and Sachs, 2007; Zhang et al., 2009) and field (Huang et al., 2002; Englebrecht and Sachs, 2005; Sachs et al., 2008; Schwab and Sachs, 2009) studies demonstrate that the hydrogen isotope ratio (δD), of a wide range of algal lipids closely co-varies with the δD values of the water in which they were produced. Their substantial deuterium depletion relative to environmental water, which is typically about 100–350‰, depending on the algal species and type of lipid (Sessions et al., 1999; Sauer et al., 2001; Zhang and Sachs, 2007), is likely the result of several isotope fractionating steps that occur during lipid biosynthesis. The magnitude of this depletion can also be modified by certain growth and environmental conditions that are just starting to be evaluated (Schouten et al., 2006; Zhang and Sachs, 2007; Sachs and Sachs, 2008; Wolhowe et al., 2009; Zhang et al., 2009).

Salinity (Schouten et al., 2006; Sachse and Sachs, 2008), nutrient-limited growth rate (Schouten et al., 2006; Sachse and Sachs, 2008; Zhang et al., 2009), growth stage (Wolhowe et al., 2009), and temperature (Zhang et al., 2009) have all been shown to influence D/H fractionation expressed in algal lipids. The mechanisms by which these environmental and growth conditions cause changes in the isotopic composition of cellular lipids are not yet well understood, though a variety of hypotheses have been put forth by the authors of the individual studies and, by several other researchers investigating D/H fractionation in plants and algae (Estep and Hoering, 1980; Sternberg et al., 1984; Sternberg et al., 1986; Ziegler, 1989; Smith and Ziegler, 1990; Luo et al., 1991; Zakir, 1992; Schleucher et al., 1999; Sessions et al., 1999, 2002; Hayes, 2001; Schmidt et al., 2003; Kreuzer-Martin et al., 2006; Sessions, 2006; Smith and Freeman, 2006; Chikaraishi and Naraoa, 2007; Campbell et al., 2009; Schwab and Sachs, 2009; Zhang et al., 2009). What is clear is that multiple environmental parameters can influence D/H fractionation expressed in algal lipid δD values via the changes they exert on cellular metabolism, biochemical changes, and the primary photosynthetic processes.

Salinity has recently emerged as an important influence on hydrogen isotope ratios in phytoplankton and cyanobacteria. A decrease in D/H fractionation between environmental water and lipids was observed when salinity increased in both laboratory culture (Schouten et al., 2006) and field experiments (Sachse and Sachs, 2008). When Schouten et al. (2006) cultured the common oceanic haptophyte *Etimilania luxevyi* and *Gephyrocapsa oceanica* at salinities between 25 and 35 PSU, they observed a decrease in D/H fractionation between alkenones and water ($\delta_{29/28}/water$) of ca. 0.003 to 3‰ per salinity unit. A strong influence of salinity on D/H fractionation in lipids was also observed in saline and hypersaline ponds on Christmas Island, Republic of Kiribati, where δD values of cyanobacterial lipids increased by 100‰ as salinity increased from 14 to 149 PSU, and lake water δD values increased just 12‰ (Sachse and Sachs, 2008). Based on these results, lipid δD values are now being used to reconstruct paleosalinity variation in a wide range of marine and terrestrial settings (Pahnke and Sachs, 2006; van der Meer et al., 2007; van der Meer et al., 2008; Sachs et al., 2009). As alternative proxies for salinity are virtually non-existent, there is a great need to continue to develop our understanding of the ways in which salinity may influence the δD values of lipids.

In an effort to evaluate the influence of salinity on D/H fractionation as recorded by dinosterol (4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol), a ubiquitous lipid in marine and continental waters that is produced by dinoflagellates, and the fidelity with which dinosterol records water δD values, we measured its hydrogen isotope composition along the salinity and water δD gradient of the Chesapeake Bay (CB) estuary in Maryland and Virginia, eastern USA.

2. ANALYTICAL PROCEDURES

2.1. Sample collection

Sediment and suspended particles were collected May 22–25, 2006, from the *R/V Kerhin* at 11 sites along the longitudinal central axis of the CB (Fig. 1b). Samples were collected at sites routinely visited by the Maryland and Virginia Chesapeake Bay Monitoring Programs (http://www.chesapeakebay.net/). Near-surface sediments were collected with a Van Veen sediment grab sampler. The upper 0–2 cm of greenish-yellow surface sediment was scraped off, bagged and immediately frozen at −20 °C. Water and suspended particle samples were collected at multiple depths at each sampling site – typically 1, 3, 5, 10 and 20 m – by tubing attached to a conductivity-temperature-depth continuous profiling instrument (Hydrolab series 3, Hach Environmental, Loveland, CO, USA) and filtered through a pre-combusted 293 mm diameter glass fiber filter with a 0.7 μm nominal pore size (Whatman GF/F) that was subsequently frozen at −20 °C. Water for hydrogen isotope analysis was collected with each filter and between stations. Surface water salinity and temperature were continuously measured with a flow-through system on board the vessel.

2.2. Lipid extraction and pre-treatment

The procedure for dinosterol extraction and purification was slightly modified from that in Smittenberg and Sachs (2007). n-C17 alkane, 2-nondecanone (C19-ketone) and cholesterol (Sigma-Aldrich) were added as internal standards to freeze-dried sediment prior to extraction with an Accelerated Solvent Extractor (ASE-200, Dionex Corp., Sunnyvale, CA, USA). Each sample was extracted three times for 5 min with a mixture of dichloromethane and methanol, (DCM/MeOH, 9:1 v/v) in a nitrogen atmosphere (N2) at a temperature of 150 °C and a pressure of 1500 p.s.i. The solvent was removed under a stream of nitrogen using a Turbovap system (Caliper, Hopkinton, MA, USA). The extracts were separated with column chromatography on

Dinosterol D/H in Chesapeake Bay estuary 445
pre-combusted Al_2O_3 into four fractions. F1 was eluted with hexane/DCM (9:1, v/v) and contained hydrocarbons, F2 was eluted with hexane/DCM (1:1, v/v) and contained aromatic lipids and ketones, F3 was eluted with DCM/MeOH (1:1, v/v) and contained alcohols (including dinosterol) and F4 was eluted 100% MeOH and contained acids and polar lipids. Elemental sulphur was removed from F1 and F2 using activated Cu powder.

An aliquot of the F3 (alcohol) fraction was subsequently dried and re-dissolved in 10 μL of dry pyridine to which was added 10 μL of bis(trimethylsilyl)trifluoroacetamide (BSTFA, Sigma–Aldrich, St. Louis, MO, USA). The mixture was heated at 60°C for 30 min to convert alcohols into their corresponding trimethylsilyl ethers. The trimethyl silyl ether of dinosterol was identified by gas chromatography–mass spectrometry (GC–MS) using an Agilent (Santa Clara, CA, USA) 6890N gas chromatograph equipped with an Agilent 5983 autosampler, a split-splitless injector operated in splitless mode, and a HP-5ms column (30 m × 0.32 mm i.d. × 0.25 μm film thickness, Agilent) interfaced to an Agilent 5975 quadrupole mass selective detector (MSD). After an initial period of 7 min at 70°C the column was heated to 150°C at 15°C/min, then at 6°C/min to 320°C where it was held for 28 min. The MSD was operated in the electron impact mode at 70 eV, with a source temperature of 250°C, an emission current of 1 mA and with multiple-ion detection in the mass range from 50 to 700 amu at 2.28 scans/s.

Dinosterol was quantified with a Gas Chromatograph–Flame Ionization Detector (GC-FID). The Agilent 6890 GC was equipped with an Agilent 5983 autosampler and a programmable temperature vaporization inlet (PTV) operated in splitless mode. A 60 m Varian Chrompack CP-Sil 5 capillary column (0.32 mm × 0.25 μm) was used with helium as the carrier gas (1.6 ml/min). The oven temperature was increased from 100°C to 275°C at 40°C/min, then at 2°C/min to 315°C where it was held for 37 min, and finally at 5°C/min to 325°C where it was held for 5 min. Quantification of dinosterol was performed by comparing its integrated peak area to that of a cholesterol internal standard and a n-C36 alkane external standard.

2.3. Dinosterol purification by HPLC–MS

Dinosterol was purified using high performance liquid chromatography–mass spectrometry (HPLC–MS) using a slightly modified procedure to that described in Smittenberg and Sachs (2007). Notable differences from this method are as follows. Prior to HPLC–MS the dinosterol-containing F3 fraction was re-dissolved in 100 μL of 10% of dichloromethane (DCM) in hexane pre-filtered through a 0.2 μm syringe filter (Acrodisc PSF, Pall Life Sciences, Ann Arbor, MI, USA). To improve separation and peak shape on the HPLC–MS, injection mass and volume were reduced to be less than 40 μg of dinosterol in 50 μL of solvent. The solvent gradient was also modified to streamline separation, using isocratic elution with a mixture of 15% DCM in hexane for 30 min at 1.5 mL/min (followed by 100% DCM for 10 min at 2.0 mL/min to clean the column). 2,2,4-trimethylpentane was used as the makeup flow to the
~2% MS split in favor of hexane, and detection of dinosterol was improved by monitoring the extracted ion m/z 411 as opposed to obtaining mass spectra in full scan mode.

Dinosterol retention time typically varied by ~ ± 10 s, depending on the quantity and concentration in the injection. To ensure quantitative recovery of dinosterol and avoid δD fractionation that occurs across the HPLC peak (Smittenberg and Sachs, 2007), while at the same time minimizing the contribution of contaminants that could co-elute with dinosterol during subsequent GC-irMS analyses, the fraction collector was used to acquire several 30-s-long fractions before and after the (expected) elution time of dinosterol. Any vial with ~2% or more of the total dinosterol as determined by HPLC–MS and/or GC–MS was added to the primary sample. Each sample was analyzed by GC-FID and GC–MS before and after the HPLC–MS treatment in order to quantify dinosterol and determine its recovery and purity.

2.4. Hydrogen isotope analyses of water

The hydrogen isotope compositions of water were determined by Thermal Conversion Elemental Analysis (TC/EA) (Thermo Scientific, Waltham, MA, USA) coupled to a Thermo DELTA V PLUS mass spectrometer. Water (2 µL) was injected into a standard water-configured TC/EA pyrolysis reactor at a temperature of 1450 °C. The H$_3^+$ factor (Sessions et al., 2001) was determined daily and varied between 3 and 4. Water samples were analyzed with six replicate analyses, of which typically the first three analyses were omitted due to memory effects from the primary sample. H$_2$ with a known isotopic composition was used as a reference gas and the hydrogen isotope compositions were determined by the pooled standard deviation (s_p), calculated with ISODAT software pack 2 (Thermo-Fisher, Bremen, Germany) using the two co-injected standards. We verified our chosen injection concentration with dilution tests in which dinosterol and co-injection standards were analyzed at varying concentrations to ensure that no peak-area related isotopic bias was being introduced (Polissar et al., 2009). Dinosterol δD values were corrected for the three carboxylic hydrogen atoms in the acetylated derivative by a mass balance calculation.

Instrument performance and the H$_3^+$ factor were determined daily using a tank of H$_2$ reference gas and a mixture of n-alkanes (n-C$_{34}$ to n-C$_{44}$) with known δD values that had been determined by TC/EA-irMS. The n-C$_{34}$ and n-C$_{38}$ standards used for δD corrections and added to the n-alkane mixture used in monitoring instrument performance were purchased from A. Schimmelmann, Indiana University, Bloomington, Indiana. The average difference between the δD values of n-alkanes measured by GC-irMS and TC/EA-irMS was 3.9‰ (N = 165 runs with 22 peaks = 3630 analyses). The H$_3^+$ factor remained below 4 and stable during the period in which the measurements reported here were conducted.

Dinosterol δD values were typically measured in triplicate. The precision of dinosterol δD measurements, as determined by the pooled standard deviation (s_p), calculated from Eq. (1), of 31 samples, 30 of which were measured in triplicate, one in duplicate, was 2.6‰. Individual sample measurement errors are reported as the standard deviation of replicate analyses.

$$s_p = \sqrt{\frac{\sum_{i=1}^{n}((n_i - 1)s_i^2)}{\sum_{i=1}^{n}(n_i - 1)}}$$

3. RESULTS

3.1. Chesapeake Bay water chemistry, hydrology and physical properties

The CB is a 300-km long, shallow and partially mixed estuary located in the Mid-Atlantic region of the United

Dinosterol δD values were determined by GC-irMS on a Thermo DELTA V PLUS system (Thermo Scientific, Waltham, MA, USA) (Smittenberg and Sachs, 2007). The gas chromatograph (Trace Ultra, Thermo) was equipped with a split-splitless injector operated in splitless mode at 300 °C, a TRIPLUS autosampler (Thermo Scientific, Waltham, MA, USA), and a DB5 ms capillary column (60 m × 0.32 mm × 0.25 μm, Agilent) programmed from 80 to 200 °C at 20 °C/min, then at 4 °C/min to 320 °C, and held at 320 °C for 30 min. Helium was used as the carrier gas under a constant flow of 1 ml/min. Compounds were pyrolyzed in an empty ceramic tube heated at 1420 °C that was activated by injecting 1 µL of n-hexane. Samples of 1 µL were co-injected with 1 µL of a standard comprised of C$_{34}$ and C$_{38}$ n-alkanes with known hydrogen isotopic compositions (A. Schimmelmann, Indiana University, Bloomington, Indiana) bracketing the dinosterol peak, and concentrations were adjusted so that the peak areas were similar to that for dinosterol. Isotopic values were calculated with ISODAT software pack 2 (Thermo-Fisher, Bremen, Germany) using the two co-injected standards. We verified our chosen injection concentration with dilution tests in which dinosterol and co-injection standards were analyzed at varying concentrations to ensure that no peak-area related isotopic bias was being introduced (Polissar et al., 2009). Dinosterol δD values were corrected for the three carboxylic hydrogen atoms in the acetylated derivative by a mass balance calculation.

Instrument performance and the H$_3^+$ factor were determined daily using a tank of H$_2$ reference gas and a mixture of n-alkanes (n-C$_{34}$ to n-C$_{44}$) with known δD values that had been determined by TC/EA-irMS. The n-C$_{34}$ and n-C$_{38}$ standards used for δD corrections and added to the n-alkane mixture used in monitoring instrument performance were purchased from A. Schimmelmann, Indiana University, Bloomington, Indiana. The average difference between the δD values of n-alkanes measured by GC-irMS and TC/EA-irMS was 3.9‰ (N = 165 runs with 22 peaks = 3630 analyses). The H$_3^+$ factor remained below 4 and stable during the period in which the measurements reported here were conducted.

Dinosterol δD values were typically measured in triplicate. The precision of dinosterol δD measurements, as determined by the pooled standard deviation (s_p), calculated from Eq. (1), of 31 samples, 30 of which were measured in triplicate, one in duplicate, was 2.6‰. Individual sample measurement errors are reported as the standard deviation of replicate analyses.
States of America. The axial channel is 12–30 m deep and the Bay average 14 m in depth. Circulation in the CB is typical for an estuary, with a seaward flow of freshwater in the upper layers and an influx of seawater at depth. Consequently surface salinities increase from the head to the mouth of the Bay (Fig. 1a), and there is a strong vertical salinity gradient (cf. Table 1) (Schubel and Pritchard, 1986; Austin, 2004). Seasonal, inter-annual and low frequency salinity variations are modulated by freshwater discharges from the largest tributaries, the Susquehanna (48% of total freshwater flux), Potomac (33%) and James (13%) Rivers (Austin, 2004).

Multi-decade time series of monthly physical, chemical and biological parameters in CB have been performed by the Chesapeake Bay Monitoring Program (http://www.chesapeakebay.net) in an effort to evaluate the progression of eutrophication and anoxia caused by agricultural and industrial runoff (Officer et al., 1984; Cooper and Brush, 1991; Harding and Perry, 1997; Zimmerman and Canuel, 2000; Marshall et al., 2003; Marshall et al., 2005). A summary of the water chemistry of the main stem of the CB during the time of our sampling in May 2006 is as follows (http://www.chesapeakebay.net/data_waterquality). Spring 2006 was relatively dry with low freshwater discharge from the Susquehanna River. As a result, nutrient loading to the Bay was relatively low and the spring bloom event was relatively small. In May 2006, Chl a concentrations at 5 m water depth ranged from 1.07 to 31.4 µg L⁻¹, with minimum values at the mouth of the Bay and maximum values in the mid-Bay region. Dissolved inorganic nitrogen and phosphate ranged from 0.13 to 0.88 mg L⁻¹ and from 5.0 to 21.7 µg L⁻¹, respectively, with both nutrients most abundant at the head of the Bay and least abundant at the mouth. Surface water (0–2 m) temperatures were between 14.9 and 20.1 °C (Fig. 1c). A weak thermocline existed, with mean surface temperatures 1 °C to 2 °C higher than bottom water temperatures. Surface water (0–2 m) salinities increased from 0 PSU at the head of the Bay to 30.8 PSU at the mouth (Fig. 1a). The mid-section of the Bay was characterized by a strong halocline at approximately 8 m, with bottom water salinities as much as 15 PSU higher than surface salinities. Hypoxic (1–30% O₂ saturation) or anoxic conditions characterized the bottom waters in the mid-Bay area in May 2006.

3.2. Water δD values

One hundred and sixty-seven water samples collected at different depths along the N–S longitudinal transect of the CB (electronic annex) and 11 freshwater samples from CB tributaries (electronic annex) were analyzed for their hydrogen isotope composition. δD values spanned the range -56.2_{SMOW} to -3.8_{SMOW} over a salinity range of 0–30.8 PSU (Fig. 1b). The hydrogen isotope composition of water in CB tributaries ranged from -54.8_{SMOW} in the Susquehanna River on the north side of the drainage basin, to -29.6_{SMOW} in the Choptank and Marshyhope Rivers on the east side of the drainage basin (electronic annex, Fig. 1b). A value of -27.3_{SMOW} was measured in the York River in a sample that is suspected to have contained some seawater. Three other river water samples suspected of containing some seawater are indicated in the electronic annex and omitted from Fig. 2. The δD values of CB water were linearly correlated with salinity ($\delta D_{\text{water}} = 1.63 ± 0.04 \times$ salinity $-52.3 ± 0.7$, $R^2 = 0.91$; Fig. 2), with uncertainties represented as the standard error of the slope and intercept of the regression. The observed relationship reflects fractionation due to evaporation toward more saline media and the mixing line between marine and freshwater (Craig, 1961; Craig and Gordon, 1965b).

<table>
<thead>
<tr>
<th>Stations</th>
<th>Depth (m)</th>
<th>Dinosterol conc. (µg/g)</th>
<th>δD$_{\text{dino}}$ (% SMOW)</th>
<th>Std. dev.</th>
<th>N</th>
<th>δD$_{\text{water}}$ (% SMOW)</th>
<th>Std. dev.</th>
<th>Salinity (PSU)</th>
<th>x$_{\text{dino-water}}$</th>
<th>Std. dev.</th>
<th>ε$_{\text{dino-water}}$</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB3.3C</td>
<td>0–2</td>
<td>1.8</td>
<td>-329</td>
<td>3.1</td>
<td>3</td>
<td>-37.6</td>
<td>0.3</td>
<td>9.6</td>
<td>0.697</td>
<td>0.003</td>
<td>-303</td>
<td>3.2</td>
</tr>
<tr>
<td>CB3.3C</td>
<td>4–5</td>
<td>0.9</td>
<td>-331</td>
<td>2.1</td>
<td>3</td>
<td>-28.9</td>
<td>0.4</td>
<td>13.9</td>
<td>0.689</td>
<td>0.002</td>
<td>-311</td>
<td>2.2</td>
</tr>
<tr>
<td>CB4.2C</td>
<td>0–2</td>
<td>0.8</td>
<td>-328</td>
<td>0.1</td>
<td>3</td>
<td>-32.1</td>
<td>0.7</td>
<td>12.7</td>
<td>0.695</td>
<td>0.001</td>
<td>-305</td>
<td>0.5</td>
</tr>
<tr>
<td>CB4.2C</td>
<td>4–5</td>
<td>1.2</td>
<td>-327</td>
<td>3.0</td>
<td>3</td>
<td>-27.7</td>
<td>0.3</td>
<td>13.6</td>
<td>0.692</td>
<td>0.003</td>
<td>-308</td>
<td>3.1</td>
</tr>
<tr>
<td>CB4.2C</td>
<td>8–10</td>
<td>0.8</td>
<td>-317</td>
<td>1.4</td>
<td>3</td>
<td>-19.9</td>
<td>1.0</td>
<td>15.0</td>
<td>0.697</td>
<td>0.002</td>
<td>-303</td>
<td>1.6</td>
</tr>
<tr>
<td>CB4.2C</td>
<td>10–13</td>
<td>0.2</td>
<td>-298</td>
<td>0.8</td>
<td>3</td>
<td>-15.5</td>
<td>0.3</td>
<td>18.9</td>
<td>0.713</td>
<td>0.001</td>
<td>-287</td>
<td>0.8</td>
</tr>
<tr>
<td>CB4.4</td>
<td>0–2</td>
<td>2.0</td>
<td>-320</td>
<td>2.8</td>
<td>3</td>
<td>-28.0</td>
<td>0.4</td>
<td>11.7</td>
<td>0.690</td>
<td>0.003</td>
<td>-300</td>
<td>2.9</td>
</tr>
<tr>
<td>CB5.2</td>
<td>0–2</td>
<td>1.1</td>
<td>-312</td>
<td>2.2</td>
<td>3</td>
<td>-25.8</td>
<td>1.3</td>
<td>13.9</td>
<td>0.706</td>
<td>0.002</td>
<td>-294</td>
<td>2.4</td>
</tr>
<tr>
<td>CB5.3</td>
<td>0–2</td>
<td>0.9</td>
<td>-320</td>
<td>2.4</td>
<td>3</td>
<td>-28.5</td>
<td>0.9</td>
<td>14.6</td>
<td>0.700</td>
<td>0.003</td>
<td>-300</td>
<td>2.6</td>
</tr>
<tr>
<td>CB5.3</td>
<td>4–5</td>
<td>1.0</td>
<td>-323</td>
<td>2.8</td>
<td>3</td>
<td>-29.5</td>
<td>0.9</td>
<td>14.6</td>
<td>0.697</td>
<td>0.003</td>
<td>-303</td>
<td>2.9</td>
</tr>
<tr>
<td>CB5.3</td>
<td>8–10</td>
<td>0.2</td>
<td>-312</td>
<td>2.4</td>
<td>3</td>
<td>-27.3</td>
<td>1.1</td>
<td>15.3</td>
<td>0.707</td>
<td>0.003</td>
<td>-292</td>
<td>2.6</td>
</tr>
<tr>
<td>CB6.4</td>
<td>0–2</td>
<td>0.5</td>
<td>-308</td>
<td>1.2</td>
<td>3</td>
<td>-19.2</td>
<td>0.2</td>
<td>18.5</td>
<td>0.704</td>
<td>0.001</td>
<td>-294</td>
<td>1.2</td>
</tr>
<tr>
<td>CB7.3</td>
<td>0–2</td>
<td>1.3</td>
<td>-303</td>
<td>0.6</td>
<td>3</td>
<td>-15.3</td>
<td>1.0</td>
<td>20.5</td>
<td>0.707</td>
<td>0.001</td>
<td>-292</td>
<td>0.9</td>
</tr>
<tr>
<td>CB7.4N</td>
<td>0–2</td>
<td>0.5</td>
<td>-301</td>
<td>1.2</td>
<td>3</td>
<td>-10.6</td>
<td>1.0</td>
<td>28.8</td>
<td>0.706</td>
<td>0.001</td>
<td>-294</td>
<td>1.4</td>
</tr>
<tr>
<td>CB7.4N</td>
<td>4–5</td>
<td>0.8</td>
<td>-292</td>
<td>2.3</td>
<td>3</td>
<td>-11.4</td>
<td>1.1</td>
<td>29.7</td>
<td>0.716</td>
<td>0.002</td>
<td>-284</td>
<td>2.5</td>
</tr>
<tr>
<td>CB7.4N</td>
<td>12</td>
<td>0.3</td>
<td>-291</td>
<td>2.0</td>
<td>3</td>
<td>-5.0</td>
<td>0.7</td>
<td>29.8</td>
<td>0.713</td>
<td>0.002</td>
<td>-287</td>
<td>2.1</td>
</tr>
</tbody>
</table>

$x_{\text{dino-water}} = (1000 + \delta D_{\text{dino}})/(1000 + \delta D_{\text{water}})$; $\varepsilon_{\text{dino-water}} = ((\langle \delta D_{\text{dino}} + 1000 \rangle)/(\langle \delta D_{\text{water}} + 1000 \rangle) - 1) \times 1000$.

Author’s personal copy
3.3. Dinosterol distributions and δD values along the bay

Dinosterol (4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol) occurred in ample quantities for δD analyses in suspended particles from eight stations that had surface salinities between 9.6 and 28.8 PSU (Table 1), and in surface sediments from nine stations that had surface salinities between 7.7 and 30.8 PSU (Table 2). Dinosterol concentrations in suspended particles were between 0.2 and 2.0 μg g⁻¹ dry weight of suspended particles (Table 1), and between 0.1 and 187 μg g⁻¹ dry weight of sediment (Table 2), reaching a maximum in the middle Bay area.

Dinosterol δD values in suspended particles from surface water (0–2 m) were lowest (−329 ± 3‰) at Stn. CB3.3C, where both salinity (9.6 PSU) and δDwater (−38‰) were lowest, and highest (−301 ± 1‰) at Stn. CB7.4N, where both salinity (28.8 PSU) and δDwater (−11‰) were highest (Table 1). Station locations, along with surface water salinities and δDwater values are shown in Fig. 1a and b. δDdino values in suspended particles from subsurface waters in the 4–13 m depth range were usually higher than at 0–2 m and spanned the range −331 ± 2‰ at 4–5 m at Stn. CB3.3C, to −291 ± 2‰ at 12 m at Stn. CB7.4N (Table 1).

δDdino values in the top 2 cm of sediment were lowest (−333 ± 2‰) at Stn. CB3.2, above which (at 3 m water depth) both salinity (7.7 PSU) and δDwater (−41‰) were lowest, and highest (−277 ± 3‰) at Stn. CB7.4N, above which (at 3 m water depth) both salinity (30.8 PSU) and δDwater (−9.4‰) were highest (Table 2). At the two stations (CB3.2 and CB5.3) where δDdino values were measured in the 0–12 cm interval of sediment, in addition to the

Table 2

<table>
<thead>
<tr>
<th>Stations (cb)</th>
<th>Depth (cm)</th>
<th>Dinosterol conc. (μg/g)</th>
<th>δDdino (‰ VSMOW)</th>
<th>Std. dev.</th>
<th>N</th>
<th>δDwater (‰ VSMOW)</th>
<th>Std. dev.</th>
<th>Salinity at 3 m (PSU)</th>
<th>dino-water Standard dev.</th>
<th>εdino-water Standard dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB3.2</td>
<td>0–2</td>
<td>1.8</td>
<td>−333</td>
<td>1.8</td>
<td>3</td>
<td>−41.4</td>
<td>1.1</td>
<td>7.7</td>
<td>0.695</td>
<td>0.002</td>
</tr>
<tr>
<td>CB3.2</td>
<td>0–12</td>
<td>3.7</td>
<td>−338</td>
<td>1.9</td>
<td>3</td>
<td>−41.4</td>
<td>1.1</td>
<td>7.7</td>
<td>0.691</td>
<td>0.002</td>
</tr>
<tr>
<td>CB3.3C</td>
<td>0–2</td>
<td>4.3</td>
<td>−328</td>
<td>3.0</td>
<td>3</td>
<td>−37.6</td>
<td>0.7</td>
<td>10</td>
<td>0.698</td>
<td>0.003</td>
</tr>
<tr>
<td>CB4.4</td>
<td>0–2</td>
<td>7.5</td>
<td>−316</td>
<td>4.9</td>
<td>3</td>
<td>−30.0</td>
<td>1.3</td>
<td>13.5</td>
<td>0.706</td>
<td>0.005</td>
</tr>
<tr>
<td>CB5.2</td>
<td>0–2</td>
<td>187.4</td>
<td>−305</td>
<td>2.3</td>
<td>3</td>
<td>−28.8</td>
<td>0.6</td>
<td>12.7</td>
<td>0.715</td>
<td>0.002</td>
</tr>
<tr>
<td>CB5.3</td>
<td>0–2</td>
<td>0.9</td>
<td>−305</td>
<td>2.8</td>
<td>3</td>
<td>−28.5</td>
<td>1.1</td>
<td>12.6</td>
<td>0.715</td>
<td>0.003</td>
</tr>
<tr>
<td>CB5.3</td>
<td>0–12</td>
<td>1.1</td>
<td>−319</td>
<td>3.6</td>
<td>3</td>
<td>−28.5</td>
<td>1.1</td>
<td>12.6</td>
<td>0.700</td>
<td>0.004</td>
</tr>
<tr>
<td>CB6.2</td>
<td>0–2</td>
<td>0.8</td>
<td>−300</td>
<td>1.3</td>
<td>3</td>
<td>−25.4</td>
<td>0.5</td>
<td>16</td>
<td>0.718</td>
<td>0.001</td>
</tr>
<tr>
<td>CB6.4</td>
<td>0–2</td>
<td>0.6</td>
<td>−289</td>
<td>2.0</td>
<td>3</td>
<td>−19.2</td>
<td>0.9</td>
<td>18.7</td>
<td>0.724</td>
<td>0.002</td>
</tr>
<tr>
<td>CB7.3</td>
<td>0–2</td>
<td>0.1</td>
<td>−285</td>
<td>2.8</td>
<td>3</td>
<td>−15.3</td>
<td>1.0</td>
<td>21.4</td>
<td>0.726</td>
<td>0.003</td>
</tr>
<tr>
<td>CB7.4N</td>
<td>0–2</td>
<td>0.2</td>
<td>−277</td>
<td>2.9</td>
<td>3</td>
<td>−9.4</td>
<td>0.4</td>
<td>30.8</td>
<td>0.730</td>
<td>0.003</td>
</tr>
</tbody>
</table>

δdino-water = (1000 + δDdino)/(1000 + δDwater); εdino-water = (((δDdino + 1000)/(δDwater + 1000)) − 1) × 1000.
0–2 cm interval, they were lower in the former (−338 ± 2‰ vs. −333 ± 2‰) at Stn. CB3.2, and −319 ± 4‰ vs. −305 ± 3‰ at Stn. CB5.3 (Table 2). Insufficient data exist to determine if this difference is representative of CB sediments, and therefore attributable to a temporal shift in δD values.

Fractionation factors between individual dinosterol samples and water were calculated from the relationships:

\[x_{\text{dino/water}} = \left(1000 + \delta D_{\text{dino}}\right) / \left(1000 + \delta D_{\text{water}}\right) \]

(3)

\[\epsilon_{\text{dino/water}} = \left(x_{\text{dino/water}} - 1\right) \times 1000 \]

(4)

(Sessions and Hayes, 2005). Uncertainty in the derived \(x_{\text{dino/water}} \) value is therefore the propagated uncertainty in the measurement error of both \(\delta D_{\text{dino}} \) and \(\delta D_{\text{water}} \). These fractionation factors represent the ecosystem-integrated signal, as the dinosterol in our samples must certainly come from a variety of dinoflagellate species. Although no dinoflagellate culture experiments have been performed to determine the species-specific isotope effect, it is likely that significant differences exist given the large species influence observed in other culture data (Schouten et al., 2006; Zhang and Sachs, 2007). The dinosterol data considered here should therefore be viewed as apparent fractionation factors representing the average environmental signal.

The greatest isotope fractionation in particulate dinosterol was observed at station CB3.3C, where \(x_{\text{dino/water}} = 0.689 ± 0.002 \) and \(\epsilon_{\text{dino/water}} = −311 ± 2‰ \) (Table 1). The smallest isotope fractionation in particulate dinosterol occurred at station CB7.4N where \(x_{\text{dino/water}} = 0.716 ± 0.002 \) and \(\epsilon_{\text{dino/water}} = −284 ± 3‰ \). In surface sediments, an additional complication is that the sediments are clearly not derived exclusively from water of the exact same salinity and isotopic composition as those that were present in the overlying water column at the time of sampling. Nevertheless, there is benefit to comparing the results from particles and sediments as the sedimentary interval is more integrated signal, so we note that the greatest fractionation between sedimentary dinosterol and the overlying water at 3 m depth was at station CB3.2 where \(x_{\text{dino/water}} = 0.691 ± 0.002 \) and \(\epsilon_{\text{dino/water}} = −309 ± 2‰ \), and the least apparent-fractionation was at station CB7.4N where \(x_{\text{dino/water}} = 0.730 ± 0.003 \) and \(\epsilon_{\text{dino/water}} = −270 ± 3‰ \) (Table 2).

4. DISCUSSION

The Chesapeake Bay estuary provides an ideal environmental setting to evaluate (i) the fidelity with which algal lipids record the hydrogen isotopic composition of water and (ii) the influence of salinity and other properties on \(D / H \) fractionation in those lipids because the water \(\delta D \) values span a 53‰ range from −56.8‰ to −3.8‰ and the salinity spans a 31 PSU range from 0 to 31 PSU. Below we first discuss the isotopic hydrology of the CB and identify possible influences on the relationship between water \(\delta D \) values and salinity. The next section addresses the relationship between water \(\delta D \) values and \(\delta D \) values in dinosterol from CB particles and sediments, demonstrating that this lipid faithfully tracks the isotopic composition of water. A discussion of the influence of salinity on \(D / H \) fractionation in dinosterol follows, in which we show that \(D / H \) fractionation decreases as salinity increases, consistent with recent field and laboratory studies on other lipids (Schouten et al., 2006; Sachse and Sachs, 2008). Three hypotheses are subsequently posed to explain why salinity may exert a strong influence on \(D / H \) fractionation between dinosterol and environmental water.

4.1. Chesapeake Bay water \(\delta D \) values, salinity, and source water regions

The distribution of salinity and water \(\delta D \) values in the Chesapeake Bay is the result of both freshwater–seawater mixing as well as isotopic enrichment due to evaporation within the Bay. Each of these processes will produce slightly different relationships between water \(\delta D \) values and salinity (Craig, 1961; Dansgaard, 1964), so the degree to which one process may dominate locally over another may explain some amount of scatter in the relationship between the two (\(R^2 = 0.91, N = 167 \)). The strength of the observed correlation argues against large variability in these effects, and the fact that the y-intercept plots between the measured \(\delta D \) values of the two major freshwater input sources, the Susquehanna and Potomoc Rivers, suggests that CB hydrology is dominated by mixing as opposed to evaporative processes (Fig. 2). If the system was evaporation-dominated, the slope of the relationship between water \(\delta D \) values and salinity would differ due to the kinetic isotope effects associated with evaporation, which reduces the isotopic enrichment relative to evaporation-driven increases in salinity as compared to the isotopic enrichment and increasing salinity associated with freshwater–seawater mixing. As the balance between mixing and evaporative processes may not be constant through time, potential application of stable isotopes to any paleoclimate hydrology question must consider how the changing nature of these relationships through time might affect the reconstructed signal.

4.2. Producers of dinosterol in the Chesapeake Bay

The sterol composition of many dinoflagellates is dominated by 4α,23,24-trimethyl-5α-cholestan-22E-en-3β-ol, commonly referred to as dinosterol (Boon et al., 1979; Withers, 1983; Alam et al., 1984; Volkman, 1986; Volkman et al., 1998; Leblond and Chapman, 2002). Of the 13 most common taxa of dinoflagellates (Dinophyceae) in the CB according to Marshall et al. (2006), 8 are known to produce dinosterol (Akashivio sanguinea, Gymnodinium spp., Gyrodinium spp., Heterocapsa triquetra, Prorocentrum minimum, Prorocentrum micans, Protoperdinium spp., Scrippsiella trochoidea) and one (Karludinium micrum) does not (Alam et al., 1984; Robinson et al., 1987; Mansour et al., 1999; Leblond and Chapman, 2002; Amo et al., 2007; Place et al., 2009). We were unable to find sterol data on the remaining 4 common dinoflagellate species (Ceratium furca, Ceratium lineatum, Cochlodinium polykrikoides, and Heterocapsa rotundata), but data on species closely related to 3 of these 4 suggest that one of them is likely to produce dinosterol (H. rotundata because Heterocapsa niet, Heterocapsa pygmaea (Leblond and Chapman, 2002) and H. triquetra...
Dinosterol D/H in Chesapeake Bay estuary

(Alam et al., 1984) produce it) and two are not ($C. furca$ and $C. lineatum$ because $Ceratium furcoides$ does not (Robinson et al., 1987). We thus expect that 9 of the 13 most common dinoflagellate taxa in the CB produce dinosterol, 3 probably do not, and one ($C. polykrikoides$) remains unknown.

Though dinosterol is produced in minor amounts by a small number of other phytoplankton, such as the marine diatom $Navicula speciosa$ (Volkman et al., 1993) and Prymnesiophytes of the genus $Pavlova$ (Volkman et al., 1990), these phytoplankton are uncommon in the Bay (Marshall et al., 2005). The ubiquity of dinosterol in lacustrine and marine settings and relative recalcitrance to chemical and biological degradation has prompted its widespread use as an indicator (biomarker) of dinoflagellates in both marine and lake sediments (Robinson et al., 1984; Schubert et al., 1998; Ishiwatari et al., 1999; Hanisch et al., 2003; Menzel et al., 2003; Calvo et al., 2004; Theissen et al., 2005).

The 13 most common species of dinoflagellates in the CB represent a substantial fraction of the total phytoplankton assemblage (Marshall et al., 2006). Of the species present, six are found throughout the bay, while the other seven are limited to either freshwater/oligohaline settings or mesohaline/polyhaline regions. Although these results are presented in the context of salinity regimes, there is no indication from these data that the dinoflagellate assemblages in the Bay vary gradually as a function of the salinity gradient. The seasonal phytoplankton succession is often initiated by an early spring bloom of dinoflagellates comprised primarily of $H. rotundata$ and $S. trochoidea$ in the freshwater/oligohaline regions, and $H. rotundata$, $S. trochoidea$, $H. triqueta$, $Gymnodinium$ spp., and $P. minimum$ in the mesohaline/polyhaline regions (Marshall et al., 2005). In summer, dinoflagellates, and $H. rotundata$ in particular, comprise a substantial fraction of the phytoplankton community in the Bay, with significantly higher abundances and total biomass than in spring (Malone et al., 1991; Marshall et al., 2005). The phytoplankton assemblage during winter and autumn is generally dominated by diatoms, in particular $Skeletonema costatum$ (Marshall, 1980), with varying abundances of cryptomonads and dinoflagellates (especially $Katodinium rotundatum$ and $H. triqueta$) (Marshall and Nesius, 1996).

4.3. Relationship between δD_{dino} and δD_{water}

Dinosterol δD values and water δD values in the CB were highly correlated, with a higher slope and intercept in surface sediments ($\delta D_{\text{dino}} = 1.91 \pm 0.15 \times \delta D_{\text{water}} - 256 \pm 4, R^2 = 0.95, N = 11$) than in suspended particles ($\delta D_{\text{dino}} = 1.35 \pm 0.15 \times \delta D_{\text{water}} - 283 \pm 4, R^2 = 0.86, N = 16$) (Fig. 3a). Uncertainties in these and all subsequent regression analyses are given as the standard errors of the slope and intercepts. Since dinoflagellates in the CB occur predominantly in the summer months (Malone et al., 1991; Marshall et al., 2005), and we sampled the Bay in late spring when runoff rates are high compared to the summer, higher dinosterol δD values in surface sediments relative to particles most likely represent the long-term (i.e., 1–10 years, based on a linear sedimentation rate of 0.1–1 cm yr$^{-1}$ (Colman and Bratton, 2003)) accumulation of dinosterol produced in summer when surface water δD values are expected to be relatively high due to the diminished freshwater input. Concomitant higher surface salinities in summer relative to the rest of the year are also likely to contribute to the higher slope of the δD_{dino} vs. δD_{water} regression in sediment as compared to particles (Fig. 3a), as discussed below.

The slope and intercept of the linear regressions in Fig. 3a provide two expressions of the D/H fractionation (Sessions and Hayes, 2005) associated with dinosterol synthesis, χ_{slope} and $\chi_{\text{int, intercept}}$, respectively. $\chi_{\text{int, intercept}}$ values can be converted to $\chi_{\text{int, intercept}}$ values according to the relationship $\chi_{\text{int, intercept}} = (\chi_{\text{int, intercept}} / 1000) + 1$, resulting in $\chi_{\text{int, intercept}}$ of 0.718 \pm 0.004 for particulate dinosterol and 0.745 \pm 0.004 for sedimentary dinosterol. These values are much lower than the χ_{slope} values of 1.35 \pm 0.15 and 1.91 \pm 0.15 for particulate and sedimentary dinosterol, respectively. Furthermore, linear regression analysis of individual $\chi_{\text{dino/water}}$
values onto δD_{water} values (Table 2) produces a positive slope of 0.000703 ± 0.000166 alpha units/$^\circ\text{C}$ for suspended particles and 0.00124 ± 0.000148 alpha units/$^\circ\text{C}$ for surface sediments (Fig. 4a). This positive slope implies that other parameters that are positively correlated with δD_{water} in the CB influence D/H fractionation in dinosterol. We propose that salinity is the most important such parameter, and that its effect on D/H fractionation during dinosterol biosynthesis causes just over half of the positive slope of the linear regression of δD_{dino} onto δD_{water} (Fig. 3a) and most of the positive slope of the linear regression of $\alpha_{\text{dino/water}}$ onto δD_{water} (Fig. 4a).

4.4. Influence of salinity on D/H fractionation in dinosterol

D/H fractionation in dinosterol decreased linearly as salinity increased in the CB (Fig. 4b). When regressed onto salinity $\alpha_{\text{dino/water}}$ values increased by 0.000990 ± 0.000229 (SE of regression slope) per unit increase in salinity in suspended particles and by 0.00174 ± 0.000321 per unit salinity increase in surface sediments, both significant at the 95% confidence level (Fig. 4b). These values imply a decrease in D/H fractionation of $0.99 \pm 0.23\%$ per unit increase in salinity when measured in suspended particles and $1.7 \pm 0.32\%$ per unit increase in salinity when measured in surface sediments. Multiplying the 20.2 PSU increase in salinity (i.e., 9.6–29.8 PSU) in the region of the Bay from which the particulate dinosterol samples were taken by the $0.99 \pm 0.23\%$/PSU $\alpha_{\text{dino/water}}$ value for particles (Table 1) implies that $20 \pm 4\%$ of the total increase in δD_{dino} values in the CB can be attributed to the salinity increase.

That leaves $(38\% - 20 \pm 4\%) = 18 \pm 4\%$, or 47% of the observed increase in δD_{dino} that can be attributed to a 33% increase in δD_{water} values, plus non-salinity influences on D/H fractionation during dinosterol biosynthesis. Factors other than salinity that have been demonstrated to influence D/H fractionation during lipid synthesis in plants and algae, or are suspected to, include: (i) nutrient-related growth rates (Zhang et al., 2009), (ii) water temperatures (which varied between 14.9° and 20.1°C in this study; electronic annex, Fig. 1c) (Zhang et al., 2009), (iii) light levels, (iv) growth phase (Wolhowe et al., 2009), and (v) algal species cf. (Zhang and Sachs, 2007).

As discussed in Section 4.3, the higher slopes of the linear regressions of δD_{dino} onto both δD_{water} (Fig. 3a) and $\alpha_{\text{dino/water}}$ (Fig. 3b), and $\alpha_{\text{dino/water}}$ onto both δD_{water} (Fig. 4a) and salinity (Fig. 4b) in sedimentary dinosterol relative to particulate dinosterol can be explained by high dinoflagellate production during summer when river flows and runoff are lowest. The particulate dinosterol and water samples were taken during high flow conditions in springtime when surface water δD values and salinities in the CB are expected to be relatively low compared to the summer. In other words, the water overlying sediments in May is likely to be characterized by lower δD_{water} and salinity values than would typically occur in summer when dinoflagellate production peaks. Annual flux-weighted δD_{dino} values are thus expected to be higher than δD_{dino} values measured in May in response to the combined influence of higher δD_{water} values and diminished D/H fractionation in higher salinity water during summer.

An estimate of the fractionation factor for dinosterol biosynthesis at zero salinity is provided by the intercept of the linear regression of $\alpha_{\text{dino/water}}$ onto salinity, which is 0.685 for both particulate and sedimentary dinosterol (Fig. 4b). The resulting $\alpha_{\text{dino/water}}$ value of -315% is within the range of previously reported values for isoprenoid lipids synthesized via the cytosolic mevalonate (MVA) pathway that span the range -142% to -376% (Sessions et al., 1999; Sauer et al., 2001; Zhang and Sachs, 2007). The fact that the y-intercept of the linear regression of $\alpha_{\text{dino/water}}$ onto salinity is nearly identical for both particulate and sedimentary dinosterol (0.6845 and 0.6848, respectively; Fig. 4b) suggests that 0.685 ($\alpha_{\text{dino/water}} = -315\%$) is close to the true freshwater end-member of the ecosystem-integrated apparent fractionation factor for dinosterol biosynthesis.

The $0.99 \pm 0.23\%$ decrease in D/H fractionation per unit increase in salinity in particulate dinosterol is within 30% of the value determined for phytene (1.1%/$^\circ\text{C}$, PSU),
nC_{17} alkane (0.80 &/PSU) and total lipid extracts (0.70 &/PSU) in hypersaline ponds on Christmas Island (Republic of Kiribati) by Sachse and Sachs (2008) (Fig. 5). Regardless of the biosynthetic pathway, environment, or source of the lipid, the D/H fractionation associated with salinity appears to be relatively constant in the diverse settings of the Chesapeake Bay estuary and the hypersaline ponds on Christmas Island.

These results are in conflict with those of Schouten et al. (2006) who reported a 3.3 &/PSU decrease in D/H fractionation as salinity increased in alkenones from batch cultures of *E. huxleyi* and *G. oceanica* (Schouten et al., 2006) (Fig. 5). The threefold greater sensitivity of D/H fractionation to changes in salinity in alkenones from batch cultures compared to a variety of acetogenic and isoprenoid lipids from Christmas Island and the CB remains unexplained. One possibility is that the "environmental" conditions within a batch culture can change substantially from the beginning to the end of an experiment, and the harvested cells integrate the response to all of those conditions, albeit with a bias toward those near the end of the experiment (owing to exponential growth). Light intensities (from self-shading), nutrient concentrations, growth rates, and the type and quantity of cellular metabolites all change during a batch culture experiment and many of these have either been shown explicitly to alter D/H fractionation in lipids, such as nutrient-induced growth rate changes (Zhang et al., 2009) or growth stage (Wollewe et al., 2009), are likely to cause changes in growth rate or, in the case of light intensity, to alter the \(\delta D \) value of hydrogen available for lipid biosynthesis (Luo et al., 1991; Schmidt et al., 2003).

4.5. Mechanism of salinity-induced D/H fractionation in dinosterol

We put forth three hypotheses to explain why increased salinity results in decreased D/H fractionation between dinosterol and extracellular water.

Hypothesis 1. Higher salinities cause decreased water transport across the cell membrane, resulting in greater recycling of internal water, and an increasingly D-depleted internal water pool from which lipids are synthesized (Kreuzer-Martin et al., 2006; Sachse and Sachs, 2008). Water transport across the cell membrane via aquaporins and Na\(^+\) channels is restricted upon exposure to high salinities to prevent Na\(^+\) toxicity (Pomati et al., 2004; Boursiac et al., 2005), while at the same time the volume of water in cyanobacterial cells has been shown to decline by up to 25% during salt stress (Allakhverdiev et al., 2000a,b). Lower transport rates of water across the cell wall, and a decreased pool of internal water would act in concert to continuously enrich the D/D values characterizing the internal water.
Consequently it is possible that D/H fractionation between dinosterol and Chesapeake Bay water decreases from the headwaters to the mouth of the Bay as a result of decreased water transport across dinoflagellate cell membranes, diminution of their internal water pool, and an increase in the δD value of internal water as water is recycled rather than replenished from outside the cell, and D-depleted hydrogen is withdrawn for NADPH production.

Hypothesis 2. Elevated salinities cause growth rates to decline, resulting in diminished D/H fractionation between lipids and extracellular water. Many studies on phytoplankton and algae indicate that growth rates generally decrease upon exposure to elevated salinities (Herbst and Bradley, 1989; Clavero et al., 2000; Cifuentes et al., 2001). Though different algae are adapted to a range of optimal salinities, virtually all experience a decline in growth rate once a threshold salinity is passed. Laboratory culture studies on the marine diatom *Thalassiosira pseudonana* (Zhang et al., 2009) and the marine coccolithophorids *E. huxleyi* and *G. oceanica* (Schouten et al., 2006) indicate substantial decreases in D/H fractionation expressed in a variety of lipids as growth rates are reduced, either through purposeful nitrogen limitation (Zhang et al., 2009) or some combination of salinity and temperature (Schouten et al., 2006). If growth rates of dinosterol-producing dinoflagellates declined along the length of the CB it is possible that D/H fractionation between dinosterol and CB water decreased in concert.

Hypothesis 3. Upon exposure to high salinities rapid production of osmolytes draws D-depleted hydrogen from an internal pool of water, leaving it, and subsequent lipids synthesized from it, enriched in deuterium. When subjected to osmotic stress cells from all Domains of Life accumulate organic solutes to counteract the external osmotic pressure (Borowitzka and Brown, 1974; Brown, 1978; Reed et al., 1986; Galinski, 1995; Ventosa et al., 1998; Grant, 2004; Roberts, 2005). Also called osmolytes or compatible solutes (because they provide osmotic balance without interfering with the metabolic functions of the cell (Ventosa et al., 1998)) these small molecular species span a wide diversity of structures and can be zwitterionic, uncharged or anionic (Roberts, 2005). Furthermore, they can represent a very substantial fraction of cellular hydrogen, reaching up to 10–20% of the dry weight of cells in some hypersaline bacterial (Ventosa et al., 1998). If hydrogen is shuttled off from internal pools of water and NADPH to rapidly synthesize osmolytes in response to osmotic stress, residual pools of those substances would be left enriched in deuterium, and all subsequent biosynthetic products would reflect this enrichment. Thus if dinoflagellates produce increasingly greater concentrations of osmolytes as salinities increase seaward in the Chesapeake Bay their internal pools of water and NADPH might become increasingly D-enriched, as would the dinosterol synthesized from that water, resulting in less D/H fractionation relative to CB water.

Both Hypotheses 1 and 3 call on a change in the internal water δD value as salinity changes, and would thus predict that all biosynthetic products would experience a decrease in D/H fractionation relative to external water since water is the source of hydrogen for all biochemicals in phytoplankton. **Hypothesis 2** calls upon a salinity-induced reduction in growth rate as the source of lowered D/H fractionation in dinosterol (and other lipids) relative to water, but does not necessarily predict that all biosynthetic products be increased in δD. These are testable hypotheses that future work ought to address.

4.6. Outlook for paleoclimate studies

Data from the Chesapeake Bay make a strong case for the use of sedimentary dinosterol δD values as both qualitative and quantitative indicators of hydrologic changes in freshwater, brackish and saline systems.

It is now well established that a wide diversity of lipids record δD values that track δD_{water} values with near perfection ($R^2 > 0.99$) in cultured marine and freshwater microalgae (Englebrecht and Sachs, 2005; Schouten et al., 2006; Zhang and Sachs, 2007). Because rain and runoff have low δD values compared to seawater (Craig and Gordon, 1965a; Gat, 1996), dinosterol produced in freshwater will have a low δD value reflecting the low δD_{water} values and maximal D/H fractionation relative to environmental water when salinity is zero. In a brackish lake, lagoon or estuary, δD_{water} values will increase as the fraction of seawater increases, resulting in higher δD values of dinosterol. Amplifying the signal and further elevating the δD value of dinosterol produced in brackish water will be a decrease in D/H fractionation during dinosterol biosynthesis in response to saltier environmental water. In this fashion both salinity and water isotopic changes will act in concert to elevate dinosterol δD values. In other words the ‘salinity effect’ on dinosterol δD values amplifies the ‘water effect’. In an estuary or a brackish lake or lagoon, temporal changes in the relative proportion of freshwater and seawater can therefore be sensitively, albeit qualitatively, evaluated from down-core sedimentary δD_{dinost} values.

An additional amplifying influence on the δD_{dinost} hydrologic proxy in low latitudes will be the so-called ‘amount effect’ in which greater precipitation amounts (on a variety of time scales) are associated with lower δD (and $\delta^{18}O$) values of that precipitation (Dansgaard, 1964; Rozanski et al., 1993; Johnson and Ingram, 2004; Sturm et al., 2007; Kurita et al., 2009). This effect is large in tropical marine locations where convective rainfall is prevalent. For example, $\delta D_{\text{precip}}/\delta P = -0.1^{\circ}/$mm when the precipitation amount P (in mm) and δD_{precip} are the long-term monthly mean values on tropical islands (Kurita et al., 2009). The large vertical component of such air masses progressively depletes the precipitation in D. This effect can be amplified by reduced isotopic exchange between raindrops and water vapor and reduced evaporative enrichment of deuterium in heavy rain events (Johnson and Ingram, 2004). Thus a 35% reduction in rainfall in the western tropical Pacific island nation of Palau, from 300 to 200 mm/month, is associated with a 10% increase in the monthly mean δD value of precipitation (Kurita et al., 2009). In a brackish system this effect will be additive with the ‘water effect’ (in which seawater has higher δD_{water} than freshwater) and the ‘salinity
effect’ (in which less D/H fractionation occurs in lipids when external water salinity increases). Acting in concert these three effects make the δD_{dino} signal a sensitive qualitative indicator of hydrologic conditions in tropical saline systems, with higher δD_{dino} values reflecting saltier and/or drier conditions, and lower δD_{dino} values reflecting fresher and/or wetter conditions.

Temporal and spatial changes in the salinity of ocean surface waters are likely to be too small to substantially alter dinosterol and other algal lipid D values because the direct effect of even a 5 PSU change in salinity – about the range of surface salinities in most of the modern ocean away from ice margins and rivers (Antonov et al., 2006) – would alter lipid D values by about 4–5‰ (depending on the lipid) assuming ~ 1‰ per unit increase in salinity, which is close to the precision for lipid D analyses with current analytical techniques. However, with a larger salinity effect, such as the ~ 3‰ per unit increase in salinity reported for alkenones by Schouten et al. (2006), or in those locations where a very large salinity change is possible, such as near rivers and in ice proximal locations, temporal changes in surface ocean salinity may be large enough to cause a detectable change in lipid D/H fractionation.

A high correlation between particulate δD_{dino} and δD_{water} values in the CB where substantial changes in the dinoflagellate assemblage occurs along the gradient from oligohaline to mesohaline to polyhaline waters (Marshall et al., 2006; Marshall et al., 2009) implies that any species-specific differences in D/H fractionation during dinosterol synthesis are a second order influence on δD_{dino} values in the CB estuary compared to the influence of salinity. Extrapolating this spatial observation to the time domain would imply that paleohydrologic reconstructions from sedimentary δD_{dino} values ought to be relatively insensitive to temporal changes in environmental conditions above a core site that could alter the dinoflagellate assemblage. This is important because up to 100‰ differences have been observed in the D values of identical lipids from different genera, and 10–15‰ differences between species of the same genus, of green algae grown in freshwater with the same D value (Zhang and Sachs, 2007). The high correlation between dinosterol $\delta D_{\text{dino/water}}$, and both salinity and δD_{water} further attests to the promise of the δD_{dino} paleohydrologic and paleosalinity proxy. A similar inference was drawn from lipid D values in dozens of saline and hypersaline ponds on Christmas Island in the central equatorial Pacific, where a suite of different lipids and even total lipid extracts were found to have D values highly correlated with salinity (Sachse and Sachs, 2008). Again this suggests the lipid D salinity and hydrologic proxy may be robust across species and environments.

Applying the modern-system spatial calibration to understand the past as described above requires the added assumption that either no changes in the D values of the source precipitation have occurred, or that if they have, they are related to hydrologic factors that are easily interpretable. Many locations in the tropics meet these criteria. In tropical locations that are far enough away from the influence of large landmasses, the dominant cause of isotopic variability on average monthly and annual timescales is the amount effect (Kurita et al., 2009). This makes these locations ideal sites for application of D values in aquatic lipids because competing influences on the D values of source waters are unlikely.

Finally, quantitative determinations of salinity and δD_{water} values from down-core sedimentary δD_{dino} values ought to be possible using the equations relating those parameters in the CB (Fig. 3) provided that the local relationship between δD_{water} and salinity is similar to that in the CB. If the local δD_{water}-salinity relationship differs substantially from the CB relationship ($\delta D_{\text{water}} = 1.63 \times \text{Sal} - 52.2$) then a local calibration of either δD_{water} or δD_{dino} vs. salinity is required. Furthermore, we advise using the equations derived from dinosterol in the CB particles rather than the sediments (Fig. 3). Dinosterol in the particles was presumably produced in the water from which those particles were filtered, the same water used for δD_{water} analyses. Dinosterol in surface sediments was produced over months to years and at a variety of water depths, salinities and δD_{water} values. The latter are likely to vary seasonally and perhaps annually. Yet we used δD_{water} measured at 3 m in May 2006, the approximate depth of highest productivity to calculate z values. This difference in the time and depth over which the surface sediment and water samples integrate would yield δD_{water} values derived from sedimentary δD_{dino} values using the “sediment equation” representative of something akin to May 2006 conditions. The “particle equation” ought to yield δD_{water} values associated with the mean conditions over which the dinosterol extracted from a sediment sample was produced.

5. CONCLUSION

An investigation of the hydrogen isotopic composition of the dinoflagellate sterol dinosterol in suspended particles and sediments of the Chesapeake Bay estuary indicates that the isotopic composition of water and a biological response to salinity contribute equally to δD_{dino} changes. D/H fractionation during dinosterol synthesis decreased by 0.99 ± 0.23‰ per unit increase in salinity along the Bay. This decrease in fractionation is similar to that observed in several lipids from hypersaline ponds on Christmas Island (Kiribati) reported by Sachse and Sachs (2008), but is only 30% of the decrease observed in alkenones from batch-cultured coccolithophorids by Schouten et al. (2006). D/H fractionation during dinosterol biosynthesis at zero salinity is estimated to be −315‰, which is within the range of previously reported values for isoprenoid lipids synthesized via the cytosolic mevalonate (MVA) pathway.

Three hypotheses are presented to explain the sensitivity of D/H fractionation in dinosterol to salinity changes, none or all of which may act to cause a decrease in D/H fractionation as salinity increases. The first possibility is that higher salinities result in decreased water transport across cell membranes, greater recycling of internal water, and an increasingly D-enriched internal water pool from which lipids are synthesized. The second hypothesis is that elevated salinities cause growth rates to decrease, resulting in diminished D/H fractionation between lipids and extracellular water. The third hypothesis is that compatible solutes...
known as osmolytes are produced in great abundance upon exposure to high salinities, drawing substantial quantities of D-depleted hydrogen from an internal pool of water, leaving it, and the lipids synthesized from it, enriched in deuterium.

The high correlation between \(\delta^{18}O_\text{water} \) values in particles and sediments from the Chesapeake Bay and \(\delta^{18}O_\text{water} \) and salinity permits the estimation of salinity and \(\delta^{18}O_\text{water} \) values in the past from sedimentary \(\delta^{18}O_\text{water} \) values in locations that have a similar \(\delta^{18}O_\text{water} \)-salinity relationship. The calibrations derived from suspended particles, which are \(\delta^{18}O_\text{water} = 1.35 \pm 0.15 \times \delta^{18}O_\text{water} - 283 \pm 4 \) \((R^2 = 0.85, N = 16) \) and \(\delta^{18}O_\text{water} = 1.80 \pm 0.26 \times \text{salinity} - 345 \pm 5 \) \((R^2 = 0.77, N = 16) \), ought to be used instead of those derived from surface sediments since dinosterol in the upper 0–2 cm of sediments was found, in the online version, at doi:10.1016/j.gca.2010.10.013.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grants ESH-0639640, EAR-0745982 and EAR-0823503; the American Chemical Society through Petroleum Research Fund grant 46937-AC2; and by the Gary Comer Science and Education Foundation. The Swiss National Science Foundation provided financial support to V. Schwab through a postdoctoral fellowship. We are grateful to Dan Nelson for editing and improving the manuscript. We thank Alyssa Atwood, Jeff Bowman, Dirk Sachse, Rienk Smittenberg, and Guillaume Leduc for thoughtful discussions. The comments of Associate Editor Jaap Sinninghe Damsté, Kate Freeman and two anonymous reviewers strengthened the manuscript significantly. We thank Rienk Smittenberg, Orest Kawka, Dirk Sachse and Zhaoouhi Zhang for assistance in the laboratory, and Rienk Smittenberg and Dirk Sachse for assistance in the field. We are grateful to the Virginia and Maryland Chesapeake Bay Monitoring Programs for making their research vessels and facilities available to us, and to Rick Younger, captain of the RV Kerhin from which many of the Chesapeake Bay samples were collected. We thank Ulrich Weber from the Biochemical Model-Data Integration Group (SNWG) at the Max-Planck-Institute for Biochemistry in Jena, Germany for assistance in making the contour maps in Fig. 1.

APPENDIX A. SUPPLEMENTARY DATA

REFERENCES

Craig H. (1961) Isotopic variations in oceanographic
Dinosterol D/H in Chesapeake Bay estuary

Associate editor: Jaap S. Sinninghe Damsté