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s0005 Introduction

p0005 Molecular fossils, ‘biomarkers’, add to the growing
arsenal of climate indicators scientists are using to
reconstruct climate history and understand what
causes climate to change. Advances in analytical
chemistry and instrumentation over the last two dec-
ades have expanded the analytical window in which
organic geochemists can routinely work. Precise and
highly sensitive mass spectrometers, that can deter-
mine molecular structures and isotope ratios are now
coupled to gas and liquid chromatographs, that can
separate the complex mixtures of organic constitu-
ents found in geologic samples into pure components.

p0010 As more geoscientists become facile with these new
techniques there are likely to be tremendous advances
in organic geochemical climate proxies. Here we
review some of the more promising and novel bio-
marker proxies now being used in paleoclimate
research. The article is organized around the climate
parameters of most interest to paleoceanographers
and paleoclimatologists: temperature and salinity.

s0010 Biomarker Proxies of Temperature

p0015 The reconstruction of ocean and lake surface tem-
peratures is central to understanding past climatic
changes. Impressive advances have been made in
organic geochemical approaches to temperature
reconstructions. Here we focus on the three most
promising and widely applied organic geochemical
temperature proxies: Uk’

37, Tex86, and C25 HBI.

s0015 Alkenone Paleothermometry

p0020 The discovery of temperature-controlled unsatura-
tion patterns in long-chain ketones, alkenones
(nC37–nC39 methyl and ethyl ketones), in the mid-
1980’s (Brassell et al., 1986), and their identification
as biomolecules unique to prymnesiophyte algae,
principally the coccolithophorid Emiliania huxleyi
(Volkman et al., 1980; Marlowe et al., 1984), was a
watershed event in paleoclimate research. For the
first time paleoceanographers had a tool for recon-
structing sea-surface temperatures (SST) that was
unambiguously derived from organisms living in the

uppermost part of the ocean where sunlight can pene-
trate, that was not influenced by salinity (as, for
instance, oxygen isotope ratios in planktonic forami-
nifera are), and that was not corrupted by the chemi-
cal composition of ocean bottom water. Thus, a
sizeable advantage of the alkenone paleotemperature
technique over other temperature proxies such as
Mg/Ca ratios in planktonic foraminifera or faunal
(foraminifera, radiolarian, diatoms) assemblage
changes is the fact that alkenones are preserved in
the sediments even after the dissolution of the calcar-
eous remains of their producers. The technique can
therefore be applied in regions where other techni-
ques would fail (e.g., the Southern Ocean).

p0025The original definition of the unsaturation ratio
(Uk

37 index) includes the tetra-unsaturated C37 alke-
none (Brassell et al., 1986), which was later omitted
due to its insignificant contribution (Uk’

37¼C37:2/
(C37:2þC37:3)). Prahl et al. (1988) were the first to
publish a quantitative calibration of the Uk’

37-index to
growth temperature (Uk’

37¼ 0.034Tþ 0.039,
r2¼ 0.994) based on cultured E. huxleyi, and initial
field measurements showed that this calibration repro-
duced SSTs in the northeast Pacific Ocean (Prahl and
Wakeham, 1987). This calibration has since been
widely used for the reconstruction of past SSTs in
most parts of the world’s oceans (Sachs and Lehman,
1999). Extensive alkenone analyses on a global set of
core-top samples and correlation of the Uk’

37 index to
overlying mean annual SSTs (Uk’

37¼ 0.033Tþ 0.069,
r2¼ 0.981) have further confirmed the culture-derived
relation of Prahl et al. (1998) (Müller et al., 1998) and
demonstrated its applicability for most oceanic areas
(Figure 1). Though slight differences exist in the Uk’

37-
temperature dependence for different coccolitho-
phorid species and genetic variations, past changes in
species composition do not compromise paleo-SST
reconstructions.

p0030Most studies, including the core-top Uk’
37-SST

calibration of Müller et al. (1998), assume that
Uk’

37 values reflect temperatures at the sea surface.
However, alkenone concentrations in sediment traps
indicate that the depth of maximum production var-
ies regionally and can even change between different
seasons. Alkenone-producing haptophytes show
highest abundance in the surface mixed-layer North
Atlantic (Conte et al., 2001) and in the northwest
Pacific (Hamanaka et al., 2000). Similarly,
Ohkouchi et al. (1999) concluded from a sediment
transect in the Pacific, that alkenones are produced in
the surface mixed layer at high and low latitudes,
while thermocline production prevails at mid-lati-
tudes. In the gyre region of the subtropical North
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Pacific, haptophyte growth is linked to the depth of
the chlorophyll maximum that can vary in depth
throughout the year (Prahl et al., 2005). Alkenone
production shows a strong seasonal cycle in most
areas (Conte et al., 2001; Prahl et al., 2005), but
the unsaturation ratio preserved in the sediments
predominantly reflects mean annual temperatures
(Müller and Fischer, 2001; Prahl et al., 2005). In
contrast, a strong summer to fall bias in Uk’

37-SST
estimates is observed in the Subantarctic and
Antarctic Pacific and Indian Oceans (Sikes and
Volkman, 1993), suggesting that in some areas regio-
nal Uk’

37-SST calibrations better reproduce sea sur-
face temperatures.

p0035 Alkenones have been found in sediments as old as
the early Cretaceous (Brassell et al., 2004) and used
to reconstruct SSTs on time-scales ranging from
10–106 years.

p0040 Despite substantial alkenone loss both in the water
column and in the sediment after deposition (Müller
and Fischer, 2001), several studies indicate stability
of the Uk’

37-index over geologic time and therefore
no effect on paleo-SST reconstructions (Müller and
Fischer, 2001). However, contrasting studies indicate
differential removal of C37:3 (Rontani et al., 2005),
which can have implications for alkenone paleother-
mometry, depending on the conditions under which
degradation occurred (e.g., anoxic, oxic, denitrify-
ing). Other environmental factors potentially affect-
ing the unsaturation ratio of alkenones include light
limitation (causing a bias toward warmer SSTs) and
nutrient limitation (bias towards lower SSTs) (Prahl
et al., 2003).

p0045Alkenones are analyzed from the total lipid extract
of sediment samples or ‘cleaned’ fractions (using a
number of successive steps including’ for example,
hydrolysis and silica column chromatography
Villanueva et al., (1997) by gas chromatography
(GC) typically coupled to a flame ionization detector
(FID). Quantification of di- and tri-unsaturated alke-
nones by peak integration allows the determination
of the Uk’

37-index for SST estimation.

s0020The TEX86 Paleotemperature Proxy

p0050Throughout the 1990s, it was increasingly recognized
that a certain group of archaea, the kingdom of life
previously thought to exist only in extreme environ-
ments, were also living in oceans and that these
planktonic archaea were actually making up a large
part of the pelagic biomass (Karner 2001). It was
already known that the membrane lipids of archaea
are built up by either glycerol-dialkyl-diethers or gly-
cerol-dialkyl-glycerol-tetraethers (GDGT’s) (De Rosa
and Gambacorta, 1988), and indeed these lipids were
found in large abundance in ocean sediments
(Schouten et al., 2000). The advancement of HPLC-
MS techniques allowed easy analysis and isolation of
intact GDGT’s (Hopmans et al., 2000), which led to
the structural identification of the crenarchaeota-spe-
cific GDGT crenarchaeol (Sinninghe Damsté et al.,
2002), and paved the way for discovery of a tempera-
ture dependence on DGDT structure during bio-
synthesis.

p0055Schouten et al (2002) found that the extent of
cyclization in the isoprenoid alkyl chains correlated
with the sea surface temperature (Figure 2), and in
analogy to the Uk’

37 temperature proxy, the Texel
(Netherlands) based Tetra-Ether indeX with 86 car-
bon atoms, Tex86, was proposed (Figure 3). The
original 14 surface sediments used to establish this
new proxy was extended to 32 in 2004 (Wuchter,
2004) and is still expanding (Figure 3). The current
precision of the Tex86 temperature proxy is ,0.3 #C,
similar to that of the alkenone method (Schouten,
pers. comm.).

p0060Non-hyperthermophylic crenarcheota have also
been discovered in lakes, and the Tex86 proxy has
been used in lacustrine settings (Powers et al., 2004).
In such settings care must be taken to ensure that the
sedimentary GDGTs derived primarily from aquatic
archaea, as opposed to from soils and peats. This
distinction can be made by measuring the so-called
Branched-to-Isoprenoidal Tetraether (BIT)-index
(Hopmans et al., 2004).

p0065The GDGTs used in the TEX86 temperature proxy
have been found in sediments as old as 112Ma and
used to reconstruct temperatures on sediments as old

Global core-top calibration (60° S-60° N)

Estim. SST = (UK′37-0.044)/0.033
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f0005 Figure 1

AU2

Global core-top calibration of Uk’
37-derived SST ver-

sus overlying mean annual SST from Müller et al. (1998)
(SST¼Uk’

37$0.044)/0.033, r2¼0.958).

2 Biomarker Indicators of Past Climate
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as the Cretaceous (Schouten et al., 2003). With
ancient sediments, care must be taken to ensure
their geological immaturity because high tempera-
tures and pressures can alter GDGT molecular struc-
tures (Schouten et al., 2004). The Tex86 proxy has
expanded the effective age range for biomarker SST
reconstructions (>110Ma) significantly beyond that
of alkenones (ca. 6Ma). Because this proxy is just
four years old, and there are few laboratories that

have the instrumentation and expertise to measure
GDGT’s, published paleotemperature records using
TEX86 are scarce, limited primarily to the cretaceous
(Schouten et al., 2003; Jenkyns et al., 2004) and the
late Quaternary (Powers et al., 2005).

s0025The HBI Temperature Proxy

p0070The recent discovery of highly branched isoprenoid
(HBI) alkenes in phytoplankton with numbers of
unsaturations that co-vary with temperature repre-
sents a promising new paleotemperature proxy
(Rowland et al., 2001a) (Figure 4).

p0075C25 and C30 HBI alkenes are ubiquitous compo-
nents in recent sediments that appear to originate
from four genera of marine diatoms (Class
Bacillariphyceae), namely: Rhizosolenia, Haslea,
Navicula and Pleurosigma (Grossi et al., 2004).
Several C25 HBI alkenes (C25:1 to C25:6) have been
characterized in cultures of Haslea and Pleurosigma
(Wraige et al., 1997). C30 HBI alkenes have been
detected in cultures of Rhizosolenia sp. (Rowland
et al., 2001b).

p0080The structure and distribution of C25 HBI alkenes,
termed Haslenes because of their first discovery in
Halsea, were shown to vary with environmental
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f0010 Figure 2 HPLC-MS base peak chromatograms and GDGT structures from Schouten et al. (2004). GDGT distributions in surface
sediments from (a) Halley Bay Station, Antarctica and (b) the Arabian Sea. Structure I is crenarchaeol, II-V are GDGTs with increasing
amounts of pentacyclic rings. VI is a regio-isomer of crenarchaeol. The Tex86 index is calculated by dividing the quantity of each isomers
according to: Tex86¼ ([IV]þ [V]þ [VI])/([III]þ [IV]þ [V]þ [VI]).
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f0015 Figure 3 Updated temperature calibration of TEX86 from core-
top sediments spanning annual mean SSTs from 0#–30 #C from
Wuchter et al., (2004).
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conditions (Wraige et al., 1997). In particular, tem-
perature appeared to strongly influence haslene dis-
tributions, while salinity had no appreciable effect
(Wraige et al., 1998).

p0085 Rowland et al. (2001a) batch-cultured Haslea
ostrearia over a range of temperatures, keeping sali-
nity and irradiance constant, and demonstrated a
strong temperature dependance on haslene unsatura-
tions (Figure 4). At 5 #C, only di-unsaturated haslene
was produced, while at 15 #C tri-unsaturated haslene
predominated. At 25 #C, tetra-unsaturated haslene
predominated, accompanied by smaller quantities of
pentaenes (Rowland et al., 2001a).

p0090 Similarly, culture studies with the diatom
Rhizosolenia setigera revealed an increase in the
degree of unsaturation of both haslene and C30 HBI
alkenes as temperatures increased from 18# to 25 #C
(Rowland et al., 2001b).

p0095 Although this proxy has not yet been applied in
paleotemperature reconstructions, it has great pro-
mise as an SST proxy in the high (>25 #C) and low
(<10 #C) temperature range where the alkenone
paleothermometer is not precise (because the concen-
tration of either the di- or tri-unsaturated compounds
is exceedingly small, making calculation of the Uk’

37

unsaturation ratio imprecise), in settings where coc-
colithophorids are not abundant, such as in the
Southern Ocean, and as an independent measure of
SST when accuracy is important.

s0030Biomarker Proxies of Salinity

p0100Along with temperature, salinity is the most impor-
tant oceanographic parameter. Its reconstruction can
shed light on changes in ocean stratification, water
mass circulation, and precipitation that are tightly
linked to climate. Recent developments in organic
geochemistry has produced two promising paleosali-
nity proxies: the relative abundance of tetra-unsatu-
rated C37 methyl ketones (alkenones), and the
hydrogen isotopic composition (D/H) of organic
compounds produced by phytoplankton and plants.

s0035The %C37:4 Paleosalinity Proxy

p0105The C37:4 alkenone is produced only primarily in cold
regions (surface water temperatures<10 #C) (Rosell-
Melé et al., 1994) and it is not well preserved in
sediments compared to the di- and tri-unsaturated
alkenones. It is therefore most often excluded from
alkenone paleotemperature reconstructions (see
Section 2.1 above, on alkenone paleothermometry).
However, in polar regions, the inclusion of C37:4 into
the unsaturation ratio (Uk37) can in some cases
increase its correlation with sea surface temperature
(Bendle and Rosell-Melé, 2004).

p0110At concentrations of %C37:4 (relative abundance
of C37:4 to the total abundance of C37:2, C37:3, and
C37:4, as percentage) >5%, the temperature relation
breaks down (Rosell-Melé et al., 2002; Sicre et al.,
2002), however, and a correlation with salinity has
instead been suggested in the Nordic Seas and the
North Atlantic (Rosell-Melé et al., 2002; Sicre et
al., 2002) (Table 1). A %C37:4-salinity dependence
was also observed in the low-salinity waters of the
Sea of Okhotsk (Seki, 2005), the Bering Strait
(Harada et al., 2003) and the Baltic Sea (Blanz et
al., 2005) (Table 1), leading to the suggestion that
low salinities may impose stress on the alkenone-
producing haptophytes, causing them to increase
production of C37:4 (Harada et al., 2003).

p0115The established %C37:4-salinity relations, how-
ever, vary significantly between oceanic regions
(Table 1), and no correlation with salinity was
found in particulate and surface sediment samples
from the Nordic Seas (Bendle et al., 2005) or the
Atlantic, Pacific and Indian sectors of the Southern
Ocean (Sikes and Sicre, 2002). The applicability of
%C37:4 as a salinity proxy may thus be restricted to
certain cold, low-salinity marine environments.
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f0020 Figure 4 Partial gas chromatography illustrating the distribu-
tions of C25 HBIs in diatom Haslea ostrearia cultures grown at 5
(27 days), 15 (7 days) and 25 #C (10 days). Roman letters I, II, III
and IV indicate the number of double bonds in the C25 HBIs (after
Rowland et al., (2001)).
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due to a possible contribution to C37:4 production
from other environmental factors. Nevertheless, the
importance of establishing past salinity variations
justifies this further work.

s0040 The Lipid !D Paleosalinity Proxy

p0120 The hydrogen isotopic (!D) composition of specific
organic compounds reflects the !D value of environ-
mental water (Sessions et al., 1999; Sauer et al.,
2001; Sachse et al., 2004; Englebrecht and Sachs,
2005). Precipitation is strongly influenced by envir-
onmental variables, mainly temperature and amount
of precipitation. The former dominates at high lati-
tudes, while the latter is most important in the tro-
pics, leading to increasing isotopic depletion at lower
temperatures and high precipitation amount
(Dansgaard, 1964). Since most hydrogen in lipids is
bound to carbon and therefore non-exchangeable,
the !D value of sedimentary biomarkers contains
important information on past hydrological condi-
tions and climate.

p0125 !D values in alkenones have been shown in culture
and field studies to closely record the isotopic com-
position of the water in which they were produced
(Englebrecht and Sachs, 2005). Additional D/H frac-
tionation of alkenones occurs with increasing salinity
(Schouten et al., 2005). Alkenone !D values are

depleted relative to that of the water by some
$193‰ (Englebrecht and Sachs, 2005), reflecting
the initial deuterium depletion of the primary photo-
synthate of $171‰ (Yakir and DeNiro, 1990) and
further fractionation during alkenone biosynthesis
(Figure 5).

p0130Sauer et al. (2001) analyzed !D values of algal
sterols from marine sediments and suggested that
they reliably reflect the water hydrogen isotopic com-
position with a fractionation factor of $201% 10‰.

p0135Zhang and Sachs (subm.) cultured five species of
freshwater green algae, including three strains of
Botryococcus braunii (two A Race, one B Race),
Eudorina unicocca and Volvox aureus, under con-
trolled conditions in media containing different con-
centrations of deuterium. The hydrogen isotopic
ratios of lipids in the algae, including alkadienes,
botryococcenes, heptadecenes, fatty acids, and phy-
tadiene, were shown to closely track water !D values.
Correlation coefficients (R2) in excess of 0.99 for all
lipids in all species demonstrate that lipid !D values
can be used to determine water !D values with a high
degree of confidence.

p0140All of these studies suggest that D/H ratios in
sedimentary lipids will be a powerful new tool for
reconstructing past hydrologic variations and salinity
in lakes and oceans.

p0145Lipid biomarkers are extracted from the sediment
and the lipids chosen for compound-specific !D ana-
lysis are purified (Englebrecht and Sachs, 2005). D/H
ratios are measured using an isotope-ratio-monitor-
ing gas chromatograph-mass spectrometer system
(irmGCMS) with combustion interface that converts
all H to H2 (Sessions et al., 1999). D/H is determined
with reference to coinjected standards and calibrated
against the VSMOW Vienna Standard Mean Ocean
Water (VSMOW) scale. Values are reported as devia-
tions from the VSMOW standard in per mil
(!D¼ [(D/Hsample)/(D/Hstandard)$ 1]* 1000).

s0045Summary

p0150Tremendous progress has been made in the last dec-
ade developing and applying organic geochemical
indicators of past climate. A small set of the most
significant of these advances has been reviewed here.

t0005 Table 1 %C37:4-Salinity relationships in different ocean basins

Ocean Basin Linear Regression R2 Reference

North Atlantic and Nordic Seas %C37:4¼ 146.9(%10.6)$ 4.1S (%0.3) 0.69 (Rosell-Meléet al., 2002)
North Atlantic %C37:4¼ 48.1Sþ1691 0.78 (Sicre et al., 2002)
Bering Strait %C37:4¼ 11.7Sþ397.6 0.76 (Harada et al., 2003)
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f0025 Figure 5 Hydrogen isotopic composition of C37 (solid symbol
and line) and C38 (open symbol, dashed line) alkenones from
cultured Emiliania huxleyi versus hydrogen isotopic composition
of the culture medium (Englebrecht and Sachs, 2005).
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Advances in analytical chemistry in the coming years
ought to make all of the temperature and hydrologic
proxies described here available to a broad range of
geochemists. The different biological, physical, and
chemical underpinnings of these proxies, as com-
pared to the inorganic paleoclimate proxies widely
used today, such as the oxygen and carbon isotopes
and trace metal ratios in foraminiferal shells, make
them complementary. In some climatic or deposi-
tional environments, one or another of the tempera-
ture or hydrologic proxies may work best, while in
other settings it ought to be possible to apply two or
more indicators of the same climate parameter within
a single sediment core. As a result, increasingly
robust reconstructions of climate are certain to
emerge.
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(2000). Widespread occurrence of structurally diverse tetra-
ether membrane lipids: Evidence for the ubiquitous presence
of low-temperature relatives of hyperthermophiles. PNAS 97,
14,421–14,426.

b0190 Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté,
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b0225Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., van Duin,
A. C. T., and Geenevasen, J. A. J. (2002). Crenarchaeol: the
characteristic core glycerol dibiphytanyl glycerol tetraether
membrane lipid of cosmopolitan pelagic crenarchaeota.
Journal of Lipid Research 43, 1641–1651.

b0230Villanueva, J., Pelejero, C., and Grimalt, J. O. (1997). Clean-up
procedures for the unbiased estimation of C37 alkenone sea
surface temperatures and terrigenous n-alkane inputs in paleo-
ceanography. Journal of Chromatography A757, 145–151.

b0235Volkman, J. K., Eglinton, G., Corner, E. D. S., and Sargent, J. R.
(1980). Novel unsaturated straight-chain C37–C39 methyl and
ethyl ketones in marine sediments and a coccolithophore
Emiliania huxleyi. In Advances in Organic Geochemistry
(1979) (A. G. Douglas and J. R. Maxwell, Eds.), Physics and
Chemistry of the Earth, pp. 219–227. Pergamon Press, Oxford,
Oxford.

b0240Wraige, E. J., Belt, S. T., Lewis, C. A., Cooke, D. A., Robert, J.-M.,
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