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Subtropical North Atlantic
Temperatures 60,000 to

30,000 Years Ago
Julian P. Sachs* and Scott J. Lehman

A reconstruction of sea surface temperature based on alkenone unsaturation
ratios in sediments of the Bermuda Rise provides a detailed record of subtropical
climate from 60,000 to 30,000 years ago. Northern Sargasso Sea temperatures
changed repeatedly by 2° to 5°C, covarying with high-latitude temperatures
that were previously inferred from Greenland ice cores. The largest temperature
increases were comparable in magnitude to the full glacial-Holocene warming
at the site. Abrupt cold reversals of 3° to 5°C, lasting less than 250 years,
occurred during the onset of two such events (Greenland interstadials 8 and 12),
suggesting that the largest, most rapid warmings were especially unstable.

Annually dated records of isotope paleotem-
perature from Greenland ice cores depict a
highly volatile climate during the last glacial
period [80,000 to 10,000 years ago (ka)] (1).
Many of the largest temperature excursions oc-
curred from 60 to 30 ka during marine isotope
stage (MIS) 3, an interval characterized by in-
termediate ice sheet size, high-latitude radiation
receipts, and atmospheric CO2 concentrations.
Similar excursions are seen in faunal records of
high-latitude sea surface temperature (SST) (2)
and geochemical records of deep ocean venti-
lation (3, 4), consistent with numerical model-
ing results showing a large dependence of high-
latitude sea and air temperatures on the rate and
mode of ocean thermohaline circulation (5).
There are also indications of related SST
change at lower latitudes (6–8), but these are
primarily based on planktonic foraminiferal iso-
tope records that may be influenced by factors
other than temperature. The SST of the warm
ocean is nonetheless expected to play a crucial
role in amplifying and propagating climate
change because the partial pressure of water
vapor, an abundant and effective greenhouse
gas, depends exponentially on temperature (9).
Here, we present alkenone-derived SST records
from Bermuda Rise sediments in the northwest

Sargasso Sea and from high-deposition rate
sites in the southwest Sargasso Sea in order to
evaluate the temperature history of the subtrop-
ical Atlantic Ocean during MIS 3.

The Bermuda Rise is a sediment drift
deposit northeast of the islands of Bermuda.
Lateral sediment focusing within the North
American Basin augments deposition at the
site (10), so that late Quaternary sedimenta-
tion rates range from 10 to 200 cm/1000
years (1 ky) (11), some 5 to 100 times the
open ocean average. As a result, Bermuda
Rise sediments provide exceptional resolu-
tion in time. Core MD95-2036 (from
33°41.4449N, 57°34.5489W, at a water depth
of 4462 m) is 52.7 m in length and contains
sediments of Holocene through penultimate
glacial (MIS 6) age (11). We determined
SSTs by alkenone paleothermometry (12) in
contiguous 1- or 2-cm intervals throughout
the 12-m section of the core corresponding to
MIS 3. Sedimentation rates averaged 30 cm/ky
during the interval, so that single samples rep-
resent 33 to 67 years of deposition on average.

Lipids were extracted from 1 to 4 g of
freeze-dried sediment with a pressurized fluid
extractor, and alkenone abundances were quan-
tified by gas chromatography with flame-ion-
ization detection (13). Down-core results are
presented in Fig. 1 in units of the alkenone
unsaturation ratio (Uk937) and as estimated
SSTs from the regression relation of Prahl
and others (12, 14). Our semiautomated an-
alytical procedure allows the routine analysis
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of 50 samples per week with an external
precision of 0.0058 Uk937 units (0.17°C) (15).
Dispersion of duplicate measurements in the
interval from 2750 to 3000 cm exceeds the
external precision because of a contamination
problem that was encountered and eliminated
early in our study (16).

Reconstructed SSTs ranged from ;15.5° to
21°C during MIS 3 and are associated with
changes in sediment lightness (Fig. 1), a proxy
for the CaCO3 content of the sediment at this
location that has been previously correlated to
the Greenland record of paleotemperature (11).
Millennium- to century-scale SST minima (sta-
dials) were typically between 15.5° and 17°C,
and maxima (interstadials) were between 19°
and 21°C. The mean warming from stadial
minima to interstadial maxima for 12 millenni-
um-scale SST oscillations was 3.1°C (a range
of 1.7° to 5.3°C). In addition, stadial minimum
temperatures reached successively colder levels
during MIS 3, from 17.3°C before interstadial
15 (IS-15) to 15.3°C before IS-5. The large SST
changes documented in core MD95-2036 are
consistent with ;1–per mil millennial varia-
tions in planktonic foraminiferal d18O mea-
sured in nearby core KNR31-GPC5 from the
Bermuda Rise (8), although there are notable
differences in the two proxy records that sug-
gest either an important salinity influence on
the planktonic d18O (17) or changes in the
season or depth of foraminiferal calcification.

Our temperature estimates are largely insen-
sitive to the regression relation used to convert
Uk937 values to SST. For example, a calibration
from a recent global compilation of core-top
and contemporary mean annual SSTs (18)
yields results that are nearly identical to those
we obtained using a relation (12) based on
culture experiments (14). In addition, measure-
ments of box-core samples spanning the past
2500 years of sedimentation at the Bermuda
Rise yield an average SST of 21.8° 6 0.5°C
(n 5 49) with the culture relation (19). Consid-
ering that this interval includes the Little Ice
Age cold excursion (20), the 2500-year average
is close to the modern annual mean and pro-
duction-weighted SSTs at 0 m of 22.8° and
22.5°C, respectively (21). Changes in the con-
tribution of fine-grained sediment to the site
have not influenced measured Uk937 values (22).

Reconstructed millennium- and century-
scale SST oscillations at the Bermuda Rise are
unexpectedly large in light of climate proxy
data (23) and numerical models (24) indicating
2° to 5°C of warming between full glacial and
present-day or Holocene–average temperatures
in the region. In order to determine whether
such variations were a local response to the
movement of an oceanographic front or were
associated with more widespread temperature
change, we also measured Uk937 ratios across
selected events in cores from the Blake
(KNR140-JPC27; from 30°019N, 73°369W,
water depth of 3975 m) and Bahama (KNR31-

GPC9; from 28°159N, 74°269W, water depth of
4758 m) outer ridges, in the southwestern Sar-
gasso Sea (Fig. 2). SSTs rose abruptly by 2° to
2.5°C during the transitions into IS-8, IS-12,

and IS-14 at both locations (25), equivalent to
one-half the warming observed at the Bermuda
Rise (Fig. 1). Absolute SSTs in the southwest-
ern Sargasso Sea were higher than those at the

Fig. 1. Alkenone-derived SSTs (red circles) and sediment lightness values (a proxy for the CaCO3 content
of the sediment) (black lines) shown to depth in Bermuda Rise core MD95-2036, with an expanded view
of results for MIS 3 (60 to 30 ka). Uk937 values were converted to SST with the equation Uk937 5
0.034T 1 0.039 (12, 14). The precision of the analysis (1s error bar) is 0.00585 Uk937 units or 0.17°C.
Scatter between 2750 and 3000 cm is the result of contamination by partially coeluting compounds
(16). Warm interstadial events (numbered in blue) were identified on the basis of visual correlation to
the GISP2 isotope temperature record (1). Two ice-rafted debris (IRD) maxima in Bermuda Rise
sediment cores, corresponding to Heinrich events 4 and 5 (H4 and H5) (8), are also shown (vertical
dashed lines).

Fig. 2. Alkenone-derived SSTs (red circles) and CaCO3 content of the sediment (black line) for two
sites in the southwestern Sargasso Sea. The CaCO3 content of the sediment was used to identify
the position of interstadial events (blue numbers) (25). SSTs rose abruptly at the onset of IS-7 and
IS-8 at the Blake Outer Ridge (core KNR31-GPC9; 28°159N, 74°269W) and at the onset of IS-11,
IS-12, and IS-14 at the Bahama Outer Ridge (core KNR140-JPC27; 30°019N, 73°369W). The
amplitude of warming was about half that at the Bermuda Rise in the northern Sargasso Sea.
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Bermuda Rise throughout the studied intervals.
At the Blake Outer Ridge, stadial cool episodes
were warmer by 1° to 1.5°C, and at the Bahama
Outer Ridge, the stadials were warmer by 2° to
3.5°C. In contrast, maximum interstadial tem-
peratures at both southwestern locations were
within 0.5° to 1.0°C of those at the Bermuda
Rise for coeval events. The larger divergence of
lower latitude SSTs from those at the Bermuda
Rise during cold periods suggests that dimin-
ished poleward heat transport contributed to
stadial cooling, an expected consequence of
weakened thermohaline circulation (26). SST
relations among these study sites thus support
the interpretation of Bermuda Rise SSTs in
terms of a regional climatic signal rather than a
localized response to the movement of an
oceanographic front.

To place SST results from core MD95-2036
on an estimated age scale, we correlated varia-

tions in sediment lightness with weight-percent
CaCO3 variations in core KNR31-GPC5 (cor-
relation coefficient r 5 0.90), previously dated
with radiocarbon and oxygen isotopic stage
boundaries (3). However, this method produced
ages for the SST events that were 2000 to 5000
years older than their apparent counterparts in
Greenland paleotemperature (d18O of ice,
d18Oice) records, probably due to radiocarbon
dating errors associated with carbonate dissolu-
tion and poor calibration and to uncertainties in
the SPECMAP age scale (27). We therefore
developed an alternative age model by maxi-
mizing the correlation between Bermuda Rise
SSTs and layer-counted variations in Greenland
d18Oice. Using 146 tie points, we obtained a
correlation coefficient of 0.83 between the two
series (28). This correlation results in a linear
relation of amplitude between the two paleo-
temperature records (Fig. 3A); all major varia-

tions in the ice core are observed at the Bermu-
da Rise.

Although this age model lacks absolute
chronologic control, on the basis of the linear
covariation of millennium- and century-scale
features, we reason that it provides the best
possible estimate of relative age. We know of
no mechanism by which to delay the climate
signal while preserving the linear relation of
amplitude for both brief and long-lasting events
(Fig. 3A). Furthermore, because the heat capac-
ity and mixing time of the atmosphere are small
with respect to those of the ocean, the atmo-
spheric adjustment to such large oceanic chang-
es is expected to be nearly instantaneous, on the
order of days to years. Absolute uncertainty of
the time scale is approximated by the error
associated with counting annual layers in the
Greenland Ice Sheet Project 2 (GISP2) ice core,
which is 5% (29), or 1500 to 3000 years in MIS
3. Relative uncertainty of the SST chronology
is 10 to 100 years during stadial cool episodes,
when inferred resolution and sedimentation
rates (Fig. 3D) are high, and 100 to 1000 years
during interstadial warm periods, when inferred
resolution and sedimentation rates are low (30).

The inferred amplitude lock of the SST and
d18Oice series (Fig. 3A) suggests that Bermuda
Rise SST variations were one-third to one-half
of Greenland air temperature variations, de-
pending on the d18Oice-temperature relation
used to estimate isotopic paleotemperature (31).
The SST record also contains abrupt features
not yet identified in the ice core. The most
important of these are large (3° to 5°C) oscil-
lations that interrupt rapid warmings at the on-
set of IS-8 and IS-12 (Fig. 3, B and C). These
events probably occurred entirely within the
stadial-interstadial transitions marked by
d18Oice in GISP2 and Greenland Ice Core
Project (GRIP) ice cores, a period of not more
than 250 years (28). Estimated rates of sedi-
mentation, as determined by correlation to
GISP2, rose during these transitions (Fig. 3D),
whereas associated SSTs sank to minima that
were substantially colder than preceding stadial
temperatures (Fig. 3B). We thus speculate that
transitional cooling episodes were associated
with enhanced meltwater and iceberg delivery
of sediment to the North Atlantic Basin during
Heinrich events 5 and 4 (at the onsets of IS-12
and IS-8, respectively) (2) and consequent
meltwater suppression of North Atlantic ther-
mohaline circulation (4, 32). A limited number
of benthic foraminiferal Cd/Ca measurements
from IS-8 in core MD95-2036 and additional
Cd/Ca and d13C measurements from correlative
levels in core KNR31-GPC5 support dimin-
ished rates of North Atlantic Deep Water for-
mation during Heinrich event 4 (8). Similarly
abrupt climatic shifts and deep ocean changes
have been previously inferred in association
with this event in both the subpolar North At-
lantic (2, 32) and the western equatorial Atlan-
tic (7).

Fig. 3. (A) Bermuda Rise SSTs (red circles) and central Greenland d18Oice (blue diamonds) for MIS
3 on the GISP2 ice core time scale (28). The position of IRD peaks associated with Heinrich events
4 and 5 in the sediment core is shown for stratigraphic reference (dashed vertical lines). Cold
reversals of 3° to 5°C occur during the onset of (B) IS-8 and (C) IS-12 in less than 250 years. (D)
High instantaneous rates of sedimentation (black line) of 100 to 1000 cm/ky characterize cold
stadial periods and the transitions into interstadials, and interstadial periods are characterized by
lower sedimentation rates of 3 to 10 cm/ky. The sampling interval was 2 cm before 47.2 ky B.P.
(dashed vertical line) and 1 cm afterward. The interval of time represented by each sample (green
crosses) varies from ;1 to 20 years during stadial periods to 100 to 300 years during interstadials.
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Our results demonstrate that large millenni-
um- to century-scale changes in SST were not
restricted to the polar and subpolar North At-
lantic, but extended well into the subtropics.
Indeed, rapid SST changes in the northern and
southwestern Sargasso Sea (2° to 5°C and 1° to
2.5°C, respectively) were as large or larger than
full glacial-Holocene mean annual SST differ-
ences reconstructed by the CLIMAP (Climate:
Long-Range Investigation, Mapping, and Pre-
diction) project (23) with foraminiferal transfer
functions. They are also comparable to alk-
enone-derived SSTs from Bermuda Rise core
KNR31-GPC5, indicating a deglacial tempera-
ture increase of 5.4°C (from 16.5° to 21.9°C)
(33). Amplitudes of the largest MIS 3 SST
events in the subtropical North Atlantic have a
distribution similar to that observed in a number
of coupled atmosphere-ocean models simulat-
ing SSTs for Last Glacial Maximum versus
modern boundary conditions (24). The pres-
ence of such large SST variations over the
warm ocean may help to explain observations
of abrupt climate events at locations distant
from the subpolar North Atlantic and
Greenland [for example, (6, 34 )] through
direct thermal forcing and the temperature–
water vapor feedback.
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