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O,  AN  IMPROVISATION  HAS  BEEN  GOING  ON for  some  time,  but  its
impetus is dying out, at first in a good way, all getting more quiet in 

a nice contrast to what has gone before, but soon, in fact now, we need 
a new idea, of course (inescapably) related to what we have been playing 
already, but one that will have a fresh effect and that can carry us into a 
fertile territory that will in some way complement what has gone before. 
I gather up into my mind and intuition some threads that have been 
woven into everything else so far, and form a tentative image of some 
new pattern to weave, and I act. The act is the public manifestation of 
my inner representation of my projection of the music we have played 
onto the screen of the future. The other musicians respond to this new 
musical context with their own representations, projections and actions, 
in a spreading web of new musical relations, represented individually and 
to some extent variously in each musician, and manifested publicly in 
our shared acoustic space, which serves as our blackboard—the space in 
which we communicate to each other.

S
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Is the picture so different for a composer? She is sitting in a room. 
Nice trees wave in the breeze outside. She is digesting her breakfast egg 
over a cup of coffee. On her desk is a pile of pages of musical score, 
some 128 pages of her new piece for orchestra. She is half-way through 
the second of three large sections in the piece. She runs through the 
piece so far composed in her mind, pausing here and there to chew over 
some bit or other and revise her mental representation of the flow of the 
piece. She tries to form an image of a good way to continue further on 
into her second section. She sees the glimmer of an idea. But, it won’t 
work  after  all  that  loudness  30 measures  earlier.  She  puts  down her
coffee and acts: she erases the brass from a 20-bar stretch, leaving only 
the strings. She sketches in an oboe part in the blank score. . . .

I  have referred in an earlier  paper  to this  “wildfire  of  the musical 
swerve and flow” as “a sort of playful path in time through a field of 
temporally invariant relations.”1 David Lewin’s point of departure for 
the  development  of  his  transformational  networks  was  that  “since 
‘music’ is something you  do,  and not just something you  perceive (or 
understand), a theory of music can not be developed fully from a theory 
of musical perception.”2 And again, Lewin says: “‘If I am at s and wish 
to get to t, what characteristic gesture . . . should I perform in order to 
arrive there?’ The question generalizes: ‘If I want to change Gestalt 1 
into Gestalt 2 . . . , what sorts of admissible transformations in my space 
. . . will do the best job?’ This attitude is . . . the attitude of someone 
inside the  music,  as  idealized  dancer  and/or  singer.  No  external 
observer (analyst, listener) is needed.”3

Lewin’s  formulation talks about changing Gestalt  1 into Gestalt  2. 
Recent practice of transformational theory has focused on networks of 
pitch classes, the so-called Klumpenhouwer networks, or Knets, which 
themselves only transform individual pitch classes into other ones, and 
on the isographies that can obtain between such networks. The isogra-
phies are, typically, used analytically in a rather static fashion to associate 
small stretches of music represented as networks of a few pc, much as a 
traditional  motivic  analysis  would  associate  two small  motives  which 
bear some resemblance to each other. 

We could quibble with Lewin’s basic formulation, too, as taking some 
given (or found) thing and changing it into some other like thing. It 
seems altogether too focused on things. It may be an advance to think, 
as Lewin does, in terms of the transformation from one thing to the 
other,  but  the  underlying  granulation is  rather  grating.  We want  to 
think  of  music  as  growing.  The thingness  of  music  might  lie  in the 
magic metamorphosis from one thing, the music up to now as repre-
sented mentally and realized acoustically and in the score by acts, to a 
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new and larger thing which is quite different, voilà, hey presto. Lewin-
things are typically the same size, so they do not grow, and the transfor-
mations are structure-preserving, which means we are not surprised by 
the new thing because it is not really different. Are we convinced by an 
argument that the succession of the two similar things (in time or even 
in some ordered representation space) produces some really new thing, 
the one-then-the-other? It is a kind of repetition, which has its place in 
music for sure, and one can take this pretty far—I have done so myself—
but it can’t be the whole story.4

I want to recontextualize toward a representation of music which is 
more temporal, more complex, and located firmly within musical action. 
We can just begin by thinking about mathematical action, which in fact 
does  model  Lewin’s  thing-to-thing  transformational  idea  pretty  well. 
You take one thing and transform it  into another similar  thing. The 
transformations  form  some  algebraic  entity  such  as  a  semigroup, 
monoid, group, etc. There is always an action involved in a Net, the 
action of the arrow labels on the node contents. Lewin, in GMIT, refers 
to the transformations he uses to label his arrows as elements of a semi-
group;  more  properly  they  are  elements  of  a  monoid,  due  to  the 
underlying definition of digraph in GMIT. The whole situation can be 
reconceptualized and redefined as I have in my recent JMM paper “Cool 
Tools,”  to  include  polysemic  and  noncommutative  Nets  as  well  as 
Lewin-nets proper. There is still always at least an action of the arrow 
labels on the node contents.5

Let S be a monoid and A a non-empty set. There is standard mathe-
matical definition of a right [left]  S-act  as a mapping from A × S to A 
where each pair of elements (a, s) maps to as, where a1 = a and a(st) = 
(as)t for all a in A and s, t in S. Where the identity is missing from S, this 
is  called  a  semigroup  act  or  “S-act”;  where  the  identity  element  is 
present in S, one term for the action is unitary S-act, that is, a monoidal 
act.  Since  every  group is  a  monoid,  this  also serves  to  define  group 
action.

Definitions: A right [left] S-act is a mapping from A × S to A where 
each pair of elements (a,  s) maps to as, where  a1 = a and a(st) = 
(as)t for all a in A and s, t in S. Where the identity is missing from 
S,  this  is  called  a  semigroup  act; where  the  identity  element  is 
present  in  S,  one  term for  the  action is  unitary  S-act,  that  is,  a 
monoidal act.

An S-act is also called an S-automaton. It is a machine. A semiautoma-
ton is  an automaton without outputs. It  is modeled as an act over a 
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monoid in a natural way. In this case, A is the set of states, and S is the 
input monoid. In this  way,  in the theory of  S-acts,  we might as  well 
speak of semiautomata instead of S-acts.6

Clearly  then,  Lewin  transformational  networks  are  semiautomata. 
(They do not have output.) When I pointed this out in Rahn (1994), 
David Lewin emailed me that some factory in Japan had in fact used his 
transformational theory to set up the production system.7 One hopes 
that the model was adjusted to produce output. The advantage of semi-
groups and monoids over groups as a general model for machines is that 
not all machines can run backwards. Indeed, if we want to model musi-
cal acts as taking place in irreversible time, we will need to escape groups 
and inhabit monoids.

Let’s review the specific situation for Knets before escaping Knets. Of 
course there is the action of the arrow-label group on the node con-
tents,  but  this  is  relatively  uninteresting  in  Knets  because  the  node 
contents, individual pcs, are so simple, with no internal structure. Can 
you imagine our Composer (let us call  her Isobel) meditating on the 
pitch class Bb? Delving imaginatively into its internal structure so as to 
find a way to move to some other pitch class? I do not speak of its spec-
tral evolution and so on, just its quality as a Bb pitch. As Jimmy Durante 
is reputed to have said of  Bb,  “That’s a  Good Note,” but as a Good 
Note,  it  resides  securely  within itself,  without  necessity  of  change,  a 
model of Parmenidean Being: “Being is without beginning and without 
end, whole, unique, imperturbable, and complete.”8

We need to follow up our idea of how to grow a piece larger from 
some representation of its earlier stage. For this, we need at least a rep-
resentation  that  is  complex  enough  to  characterize  a  moment  of 
music-’til-now.  Approaching  this  ideal,  we  could  try  to  use  as  data 
objects sets of pcs, orderings of pcs, or sets or orderings of more com-
plex  data  sub-objects  such  as  “notes,”  represented  as  n-tuples  of 
dimensional  values such as  start  time, pitch,  and so on,  or yet  more 
complex entities. We will address some of these later on. 

Knets themselves have enough structure within them to begin to be 
interesting as data objects—they are a more specific representation of a 
tune or harmony than the set of pcs that are their node contents, for 
example,  since  they  assert  a  structure  among  the  pcs.  Isobel  might 
revolve in her mind some Knet-representable structure of pcs so as to 
come up with a following or larger compositional motive or harmony—
though the issue remains of what might motivate her choice of some 
particular new motivic instance among all those with similar structures. 
So, given a music-thing represented as a Knet, we need to define a way 
of getting from the initial Knet to another Knet as a mathematical action 
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on Knets. That is, we need to construct a Net whose node-contents are 
Knets,  a  kind  of  recursive  Net,  as  Klumpenhouwer  and  Lewin  have 
themselves discussed.9

I will suppose for Nets in general,10 not just for Knets or Lewin-nets, 
this Principle of Action on Nets:

In order to define an action by some algebraic entity  H on a 
Net as a whole it suffices to define an action on an arbitrary 
edge of the Net, that is, an action of any element h of H on the 
content of the first node x, the content of the second node y, 
and on the label (or color) of the arrow g from the first node 
to the second node (see Example 1).

In Knets,  arrow-labels  form a  group,  Tn/TnI.  Groups  may act  on 
themselves by left multiplication, by right multiplication, or by conjuga-
tion. However, if we wish to preserve structure in the result, we need 
the action of the group on itself to be an isomorphism, that is, an auto-
morphism. Recall that if H is a normal subgroup of G, it maps into itself 
as a set of elements under conjugation by any element of G. So, if H is 
any normal subgroup of G, then by the definitions, G acts by conjuga-
tion on H as automorphisms of H, permuting the elements of H. If H = 
G  (which is  possible  because  G is  a  normal  subgroup of  itself),  this 
action is called an inner automorphism of G.

Klumpenhouwer himself investigated this situation for structure-pre-
serving actions under the term “network isomorphism,” for the case that 
H = G = the T/I group (isomorphic to D24) and node contents are indi-
vidual pcs. If the action on the node contents is known, the problem to 
be solved in general is finding the action on the arrow-label, as shown in 
the commutative diagram of Example 2. Example 3 shows the solution 
here, where the group H = G = T/I. This case is simply the (inner) auto-
morphisms of the T/I group, so that the action on the arrow-labels is by 
conjugation, and ? = hgh–1. The bottom right corner element of the dia-
gram in Example 2 is then hg(x) =  hgh–1h(x), as shown in Example 3, 
with the action on group elements h ⋅ g collapsing to simple composition 
of group elements.

   g h ⋅ g
h ⋅ [x →  y ]    ⇒   h ⋅ x →  h ⋅ y

EXAMPLE 1: ACTION OF H ON A NET WHOSE ARROWS ARE LABELED IN G
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The calculation of hgh–1 is straightforward if slightly tedious, for the 
four cases. Example 4 shows the four commutative action diagrams for 
the four cases within the “network isomorphism” action set up in Exam-
ple 3.

A more interesting version of this action is the generalization to the 
action  of  the  automorphism group  whose  elements  are  of  the  form 
TaMp(x)  → px +  a, where each  p is coprime to the modulus of some 
equal tempered system of pcs. For the case ETS = 12, I will refer to this 
as the T/M group, the familiar full group of TTOs. Both T/I and T are 
normal subgroups of the full T/M group. Isomorphic action by conju-
gation still works if the group of arrow labels is any normal subgroup of 
the group acting on the Nets. For example, let  H be the T/M group 
and G, the arrow-label group, be the group of transpositions, TnM1, or 
the T/I group, that is, TnM1,11—or alternatively, of course, another full 
T/M group, TnM1,11,5,7. Note that the familiar pcs that are the node-
content of Knets can themselves be construed as the abelian group of 
transpositions, T, which is isomorphic to Z12. 

It  would be  interesting  to explore  T/M for  arbitrary  ETS,  as  the 
group structures alter considerably. For example, when the modulus is 
itself  a  prime,  such as 19 or  53,  every element is  coprime to it  and

EXAMPLE 2: THE NET ACTION COMMUTATIVE DIAGRAM—PROBLEM IN GENERAL

EXAMPLE 3: SOLUTION FOR GROUPS H = G
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generates the entire group cyclically. The number 12 is in fact unusually 
rich—superabundant—in factors, and therefore Z12 is unusually poor in 
cyclic generators.

To define  specifically  the  action of  the  T/M group on Nets  with 
arrow labels in any of its normal subgroups, we have to solve the dia-
gram in Example 2 for the question mark  ? for the case in which  g is 
some TaMp and h is some TnMq, where a and n are elements of Z12 and 
p and q are 1, 5, 7, or 11. We know this will be hgh–1 so we just have to 
calculate what that is. 

The first step is to find  h–1. For the left inverse, we set  h–1 TnMq  = 
T0M1 and solve the equation to get h–1 = q –1(x – n) (Example 5). Solv-
ing for the left inverse gets the same, as it should since automorphisms 
form a group. This result only makes sense for q coprime to the modu-
lus. In this case, q –1 = q since q 2 = 1, and the formula reduces as shown 
in Example 5. Written in the form TnMq, the inverse of TnMq is T–qnMq.

EXAMPLE 4: THE FOUR COMMUTATIVE ACTION DIAGRAMS

FOR THE FOUR CASES WITHIN THE T/I GROUP

EXAMPLE 5: INVERSE OF TnMq

h–1 = q–1 (x – n) = q (x – n) = T–qnMq

e.g., inverse of TnM5: T–5nM5(5x + n) = x + 5n – 5n = x,
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The next step is to calculate the conjugation hgh–1. Set h = TnMq and 
g = TaMp. The calculations are shown in Example 6. Written in the form 
of TnMq, the conjugation of TaMp by TnMq = T–pn+n+qa Mp. This solves 
the diagram of Example 2 for ? within the T/M group, TnMp, p = 1, 5, 
7, 11, modulus = 12.

We can arrive at a full 4 by 4 matrix of specific conjugations within 
the T/M group by substituting all the combinations of ps and qs into 
the T–pn+n+qa Mp formula from Example 6. The matrix is given in Exam-
ple 7. Each matrix entry is a solution for the  ?  of Example 2 for one 
combination of values for p and q. All this works for non-commutative 
Nets as well as Lewin-nets.11

In a sense, all of this is just bookkeeping. Isobel may be more focused 
on the node objects, or perhaps on the arrows of the Net. Once Isobel 
decides to act mathematically on some Net representation, acting on the 
objects entails corresponding alterations in the arrows, and vice versa. 

Remember that this is all part of our quest for more complex repre-
sentations  that  might  work  as  part  of  a  model  of  musical actions—
Isobel’s acts. To further this quest, we can generalize this action of the 
T/M group in several ways. First, as noted, it is valid for Knets, and for 
more general Nets which include polysemic and noncommutative Nets, 

EXAMPLE 6: CONJUGATION IN Tn Mp

hgh–1 = TnMq TaMp T–nqMq (x)
= TnMq TaMp (qx – qn)
= TnMq (pqx – pqn + a)
= pq2x – pq2n + qa + n
= px – pn + n + qa 
= T–pn+n+qa Mp

since q2 = 1

p = 1 5 7 11

q = 1 Ta T–4n+aM5 T–6n+aM7 T2n+aM11

5 T5a T–4n+5aM5 T–6n+5aM7 T2n+5aM11

7 T7a T–4n+7aM5 T–6n+7aM7 T2n+7aM11

11 T–a T–4n – aM5 T–6n – aM7 T2n – aM11

EXAMPLE 7: CONJUGATIONS OF THE T/M GROUP

hgh–1 =  TnMq TaMp  T–nqMq
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as discussed in my JMM paper “Cool Tools.” Second, it is valid for any 
modulus,  as  noted—that  is,  any  ETS.  Third,  we  can  generalize  the 
action to more complex node-contents than single pcs, so long as the 
group has an interpretation in which it can act on the node contents. 
We defined such an action for node objects that are themselves Knets, 
above. It is even easier when the node objects have less structure than 
Nets. For example, we are familiar with the notion that an action on a 
set of pcs is defined in terms of the set of images of the individual pcs 
under the action on pcs. Similarly, the action on an ordering of pcs can 
be defined as the ordering of the images of the pcs under that action. 
Therefore there is an action on Lewin-nets proper, and in general on 
Nets, whose node contents are sets of pcs or orderings of pcs rather than 
individual pcs. An action on a set of Nets can be defined in terms of the 
set  of  images of the individual  Nets under that other action. Since a 
chain is a Net, and a chain-hom-set as defined in “Cool Tools” is a set 
of chains that are subnets of some larger Net, that is, a set of Nets, we 
can define a T/M action on chain-hom-sets, so long as the node con-
tents of each chain are themselves the pcs or sets of pcs or orderings of 
pcs, etc., acted on by the T/M group.

These serve also to illustrate a principle that constrains  recursion of 
action  or even more generally,  layered action: there must be a  bottom 
level in which node content is simple in the sense that the action at that 
level is defined on it directly. By definition of action on a Net given in 
Example 1, action on a Net is action on some data set  S which is the 
node contents, and action on the algebraic entities labeling the arrows 
of the Net. At each level, all actors must act directly on the arrow labels 
of the arrows at that level, and at least indirectly on the underlying data 
set S. All the levels must be consistent in that their algebraic entities and 
data objects eventually “fall through” to the same bottom level.

Let’s look briefly at the case of an action on linear orderings of pcs. 
This is of interest in that the orderings themselves can be interpreted in 
various useful ways. Of course the orderings may be syntactic, as in seri-
alism, or temporal-linear,  as  in a representation of a motive.  In such 
cases, conventionally, the action on the ordering is uniform—the same 
group element acts  identically on each of the pcs in the ordering, as 
shown in Example 8.

EXAMPLE 8: HOMOGENEOUS UNIFORM ACTION ON ORDERINGS

g(〈pc1, pc2, . . . , pcn 〉) = 〈g(pc1), g(pc2), . . . ,  g(pcn)〉
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This is a simple two-level action. It could form part of more complex 
actions, for example, as the next to the bottom and bottom levels of an 
action on Nets of sets of sets of Nets of orderings of orderings . . . of 
orderings of pcs.

But consider another action on orderings of pcs which is not uniform 
(Example 9). In this case, each pc at the bottom level is subject to a differ-
ent operation within a larger action on the ordering of pcs. Of course, g 
would have  to be  defined  as  having  components  gi which act  in  an 
appropriate fashion. In this case, the component actions are independent, 
so we can use the direct product of the underlying group acting on the 
pcs with itself  n times,  Gn where  n is the number of elements in the 
orderings acted on.

There has been considerable attention paid recently to transitions and 
relations between chords that are sorted into voices in some way, that is, 
abstractly, by register, by instrument, or whatever. Voice-sorted chords 
are properly represented as ordered  n-tuples of pitches or pcs, so that 
(unlike in multisets) you can keep track of the voices.12 For any of these 
problems one can use the action of Example 8, for  G = T or T/I or 
T/M or some restriction of these such as moving at most one or two 
voices by 1 or 2 semitones within group T.13

Examples 8 and 9 are labeled as “homogeneous uniform action” and 
“homogeneous  non-uniform action.”  A  uniform action on  a  complex 
object operates on each element of the complex object by the same ele-
ment of the algebraic entity, e.g., the same group operation. In Example 
8, each pc in the ordering  pci is operated on by  g.  The  non-uniform 
action of Example 9 operates on each element of the ordering pci by a 
different group element gi.

A  homogeneous action is a multilevel action in which the same alge-
braic entity is used at all levels, as is the case in Examples 8 and 9. A 
more complex example would be using the T/M group at each level of 
the “action on Nets of sets of sets of Nets of orderings of orderings . . . 
of  orderings  of  pcs,”  with each  action  of  the  T/M group  homoge-
neously “falling through” to the next level and eventually to the pcs at 

EXAMPLE 9: HOMOGENEOUS NON-UNIFORM ACTION ON ORDERINGS, g ∈ Gn

g = 〈 g1, g2, . . . ,  gn 〉

for f, g, elements of Gn,  fg = 〈 f1g1, f2g2, . . . , fngn 〉

g( 〈 pc1 ,  pc2 ,  .  .  .  ,  pcn 〉 )  =  〈 g1(pc1), g2(pc2), . . . ,  gn(pcn) 〉
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the bottom level. Clearly, a homogeneous action may be either uniform 
or non-uniform.

The idea of a heterogeneous action is a bit more complicated. It is pos-
sible that  at  different  levels  of  a  multilevel  action,  different  algebraic 
entities are used to move to the next level. At each level, the action to 
the next level must be properly defined on the objects and arrows. Note 
that this action may be either uniform or non-uniform.

Let the action from the i-th to the i+1-th level be notated Acti. The 
specification of each Acti proceeds as usual; examples 8 and 9 are exam-
ples  of  such  a  specification  for  uniform  and  non-uniform  actions, 
respectively. See Example 10. Level-hetero actions are layered, but not 
recursive.

There is one more distinction we can make among complex actions. 
Define a note (we could even use the term “sound,” but this might get 
confused with the aural sensation) as an (ordered) n-tuple (list, vector) 
of dimensional values in a way familiar from computer music; for exam-
ple  <start-time,  duration,  pitch,  loudness,  usw>.  This  representation 
might be quite complex; I have written and used csound instruments 
that take over 40 parameters. However, for easiest mathematical treat-
ment  we  would  want  to  make  sure  that  all  the  parameters  were 
independent  of  one  another.  The  case  of  parameters  that  are  partly 
dependent  on each other,  for  example the usual  treatment of  attack, 
duration, sustain and decay controls in computer music, is more compli-
cated.

Suppose then we have a note with n independent parameters pi, repre-
sented as a list or n-tuple. In general, each parameter may have a different 
perceptual space, which may require a different algebraic object—let’s 
just say, group—to act on the objects in that space. If the parameters are 
independent,  we can define  an action  on the  notes  using  the  direct 
product group of the respective groups for each parameter in the list. 
(See Example 11.) The action in Example 11 is non-uniform because 
each parameter is acted on by a different group element, but in addition, 
the groups  from which the group elements  are  taken also vary  from 
parameter to parameter. Instead of being an exponentiation of some one 

EXAMPLE 10: HETEROGENOUS ACTION

For action at n levels, define a set {Acti} for i = 1, . . . n – 1, 
such that each Acti of the set {Acti} takes level i into level i + 1.
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group G as in Example 9, this is the direct product group of a number 
of different groups. Yet this action remains homogeneous in the sense 
that the same action is applied at all its levels (one transition). We call it 
a “level-homogeneous group-heterogeneous non-uniform action.” 

So actions can be: level-homo or level-hetero, group-homo or group-
hetero. If group hetero, then non-uniform. If group-homo, then either 
uniform  or  non-uniform.  Ignoring  “hard”  dependencies  such  as  “if 
group-hetero then non-uniform,” there would be a total of eight such 
classifications, a sort of Eight-Fold Way. If we bring other entities such 
as rings, fields, and modules into the picture, the scheme exfoliates too 
madly to bother with.

Admittedly,  this  classification  scheme  for  actions  is  rather  compli-
cated.  However,  this  is  one  of  its  virtues,  leading us  away from any 
simplistic tendencies and toward ideas of mathematical actions that are 
complex enough perhaps to begin to model Isobel’s musical acts.

Finally, let’s  take a different approach to Isobel’s representations.14 

We  informally  tie  together  three  notions:  relation,  net,  and  space. 
Define an n-ary relation R in the usual way as any subset of the Carte-
sian product of  n sets. If all the sets in the Cartesian product are the 
same, the product is homogeneous; if not, heterogeneous. If it is homo-
geneous,  we  call  it  a  relation  “on”  its  unique  underlying  set. 
Considering R as a relation, we can ask if it is reflexive, symmetric, tran-
sitive,  connected,  and  so  on.  This  can  also  be  considered  an  n-
dimensional net, or digraph, when a net is defined as Lewin did origi-
nally, identifying arrows with ordered pairs (tuples, in the general case) 
of objects. This is also interpretable under certain conditions as the total 
note-space, with each point in it a note as defined above. Each subspace, 
and in particular each dimension, would have its own metric, defining its 
interval structure, and so on in the familiar development of transposi-
tions and other isometries and isomorphisms.

We can color this net or relation in more or less elaborate ways by giv-
ing  a  formal interpretation of  it,  as  defined  in  Example  12  for 

EXAMPLE 11: LEVEL-HOMOGENEOUS GROUP-HETEROGENEOUS

NON-UNIFORM ACTION ON ORDERINGS

h = 〈 g1,  g2, . . . ,  gn 〉 ,  gi  ∈ Gi

for f,  g elements of H, fg = 〈 f1g1,  f2g2, . . . ,  fngn 〉

h ( 〈 p1,  p2, . . . ,  pn 〉)  = 〈 g1(p1),  g2(p2), . . . ,  gn(pn) 〉

h ∈ direct product of possibly different groups, H = G1 × G2 × . . . × Gn
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homogeneous relations on a set S (the definition for heterogeneous rela-
tions follows mutatis mutandis).

A simplified version of this idea of interpretation can serve to define 
the more general Net idea, by adding a coloring, an n+1th place to each 
n-tuple which is occupied by a list of arrow labels. (There is more to it 
than this, but I am leaving it out to simplify; for a fuller formal seman-
tics,  see  my  article  “Network  Models.”)  Each  such  list  of  arrows  is 
homdirectR(x,  y),  the  list  of  all  arrow-labels  directly  from point  x  to 
point  y (path of length one). This would be an alternative to my con-
struction in “Cool Tools.”

A coloring can also be viewed as a binary relation, between the  n-
tuple points in the space (or if it is viewed as a graph, arcs) and the col-
ors  in  the  n+1th  place.  In  general  any  n-ary  relation  can  be  built 
recursively  from binary  relations.  The set  of  all  homogeneous  binary 
relations on a set Y, that is, the power set of Y  × Y, with composition of 
binary relations defined in the usual way (see Example 13), is a monoid, 
with the diagonal of all and only 〈x, x 〉 as its identity relation. Monoidal 
acts are defined for it (see the definition of S-act). So we could define a 
Net whose node contents are binary relations, and whose arrow labels 
are also binary relations that act on the node content! This would open 
up quite a new field of inquiry about Nets.

Finally, consider phrase-structure grammars, which have been used as 
models  of  Schenkerian-type theories  of  tonal  music and therefore are 
one kind of plausible candidate for external representations of Isobel’s 

EXAMPLE 12: DEFINITION OF AN INTERPRETATION

An  interpretation of a relation  R on a set  S is a semantic 
function Fsem(xi) → wi assigning each xi in S an object wi in 
the world W in such a way that for every ordered n-tuple 
〈 x i 〉  in  R (for  i ranging from 1 to n), the corresponding
n-tuple  of  images  〈 F sem(x i) 〉  is  in  relation  RW where
RW  is  the  “real  world”  relation  being  modeled  by  R.

EXAMPLE 13: COMPOSITION OF BINARY RELATIONS

{(x, z) in X × X | there exists y in X with x S y and y R z}

For  binary  relations  R,  S on a set  X,  the 
right [left] composition of R and S, R ° S = 



70 Perspectives of New Music

internal representations of piece-’til-now and piece-to-come. Any such 
grammar is a kind of finite-state machine and therefore  can be formal-
ized as an S-act. 

These grammars produce structures that are trees, which are a kind of 
graph or net (or relation!) that is partially ordered in a particular way. 
Note that the grammar does tie together in this way the ideas of mathe-
matical action, relation, and net.

Example 14 is  taken from my 1994 article,  “Network Models.”  It 
shows a little invented phrase-structure grammar for a kind of non-tonal 
music,  purely as  a methodological  illustration,  formalized as a formal 
theory with axioms and with inference rules in the form of Emil-Post 

EXAMPLE 14: GRAMMAR AND METAGRAMMAR
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productions,  along  with one  particular  derivation sequence  modeling 
the structure in this grammar of one of the musical pieces, that is, theo-
rems or sentences, producible by this grammar.

Imagine Isobel imagining her piece in this way, that is, a basic vocab-
ulary of pc sets, a secondary vocabulary emphasizing pc sets of Tn-type 
(0 3 7) and (0 2 5) and emphasizing transformation of any pc set by T1. 
She realizes that one stretch of her music, perhaps even the music-‘til-
now, is the particular production within this grammar shown in Example 
14 as a derivation. Clearly, many other stretches of music can be repre-
sented as sentences within this grammar, but not just any stretch of any 
music. So the grammar as a whole lends a certain flavor to the piece, 
which from Isobel’s standpoint, is good.

But  what  does  Isobel  do  next?  She  would  like  to  move  to  some 
closely related new stretch of  music,  but  it  should not  be so closely 
related that it does not sound like something new. To generate just any 
new stretch from the grammar would probably not constrain the pro-
duction enough, that is, the new thing would not necessarily be close 
enough to the earlier thing.

Isobel realizes that the  particular derivation sequence that produced 
her piece-‘til-now would constrain new production more than the gram-
mar as  a  whole,  but in a way that  need not  produce something too 
close. She can theorize the production sequence, as shown in the “meta-
grammar” in Example 14, as itself a kind of finite-state machine. This 
meta-grammar is the bottom diagram of Example 14. Isobel can operate 
this machine to get a next slice of her piece that is closely, but not too 
closely related, to what has come before. 

We have come to the end of this for now, leaving further develop-
ment  and applications  of  all  these  ideas  to  later  research.  I  will  feel 
successful if this has focused attention on the formal modeling of cre-
ative musical acts, and has illustrated and encouraged thinking in terms 
of models that are not simplistic, but are complex enough to be credible.
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NO TE S

This paper was first presented as a keynote address in Berlin, May 2007, 
at the first meeting of the Society for Mathematics and Computation in 
Music.

1. Rahn (2004), p. 136.

2. Lewin (1986), p. 377.

3. Lewin (1987), p. 159.

4. Rahn (1993).

5. Rahn (2007).

6. Kilp, Knauer, and Mikhalev (2000), pp. 43–5.

7. Rahn (1994), p. 232.

8. Parmenides from Rahn (2004), p. 131.

9. Lewin  (1990).  The  discussion  I  develop  below specifically  about 
actions on Knets arrives at results consistent with those in Lewin’s 
Appendix A and B in his article, which lay out the inner automor-
phisms of the T/I and T/M group, but my discussion focuses on 
(dynamic) actions, not (static) isomorphic relations, and uses a dif-
ferent line of argument.

The idea of conjugate action within the T/M group has a com-
plex  history  in  music  theory.  As  far  as  I  know,  the  specifics  on 
conjugation within the T/M group, along with many other useful 
ideas,  were first  published by Daniel  Starr,  in his  excellent article 
“Sets,  Invariance,  and  Partitions”  (Starr  1978).  On  p.  28,  Starr 
develops a formula for conjugation with a result equivalent to my 
Example 6, in a different format. But Starr uses this to discuss the 
invariance of sets of pcs, focusing on the more usual action of the 
group on sets of pcs rather than the action of the group on itself. I 
had forgotten about Starr’s earlier presentation, and am grateful to 
Robert  Morris  for  reminding  me  of  it.  The  demonstration  and 
proofs here are independent. 

Robert  Morris  also  presented  the  inner  automorphisms  of  the 
TTOs in Morris  (1987),  p.  169.  You would have to change  the 
order of operations on Morris’s table heads and rows, flip around 
the  main  diagonal  (so  rows  interchange  with  columns),  change 
names of operators and their arguments, and adjust the arithmetic in 
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the subscripts, to get my Example 7. Again, my development here is 
independent of Morris’s. See also Morris (2001).

It  is  possible  that  Starr’s  article  also  lurked,  half-forgotten,  in 
David Lewin, since the notation for the automorphisms in Lewin 
1990 as “F<u,j>” is so close to the notation Starr uses (Starr 1978, 
p. 11 ff, and Table 4), which is “F = <a, b>” such that the action on 
pcs is F(x) = ax + b, with the multiplier written first and the transpo-
sitional subscript second in the ordered pair, like Lewin’s notation. 
(Lewin cites Morris (1987), but not Starr (1978).) However, Lewin 
does not speak in terms of actions at all, which may have led him 
(seeking to represent a distinction inherent in the notion of action, 
without action) to cast the automorphisms as a different group than 
the group of TTOs, when actually it is all the same group, acting on 
itself by conjugation.

10. Nets generalize Lewin-nets, which generalize Knets. See the defini-
tions in Rahn (2007).

11. For a non-commutative example, just take T1I acting on the Net 
with pcs 0, 9, and 8 as nodes, and arrows T9 from 0 to 9, T11 from 
9 to 8, but T8I from 0 to 8. T9 and T11 do not compose to T8I so 
this is not commutative, and is not properly a Knet at all (perhaps a 
“KNet”).  Using  the  table in Example 7,  T1I  acting  on this  Net 
maps contents 0 to 1, 9 to 4, and 8 to 5, and maps arrows T9 to T3, 
T11 to T1, and T8I to T6I, as it should. Any additional arrows in a 
polysemic version would also check out.

Note that non-commutative Nets are a significant generalization, 
in that they make possible many analytical assertions in the form of 
Nets that are not possible when the Nets are constrained to be com-
mutative,  as  are  Knets.  No longer  are  you restricted to the  few, 
tightly constrained Knet arrangements of three-node Nets, for exam-
ple, if you want to assert three-node Nets at all. 
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12. A multiset  simply  indexes  its  elements  by  their  multiplicities,  so
a given content element can appear more than once, but the ele-
ments are still unordered; it still has no way of tracking a particular
element position from set to set.

13. Brandon Derfler is writing a Ph.D. dissertation at the University of 
Washington on parsimonious voice-leading chord spaces using this 
idea, entitled “Single-Voice Transformations: A Model for Parsimo-
nious Voice Leading.”

14. What follows is indebted to Rahn (1994).
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