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Abstract
Tracking one slow-moving object is easy, but as the number of objects increases, our ability to
track deteriorates. We investigate two competing attentional theories for the limits on tracking
Cevra F

multiple objects. In switching theory, attention is switched from one object to the next during
aN

tracking. We focus on the more specific all-or-none serial model, in which participants tracl; only
one object, and performance is at chance for tracking a second object. Alternatively, mﬂi:;l;ri:é/
theory, an attentional resource is distributed across all tracked objects in parallel; the more
objects one tracks, the less resource for each object. We focus on the more specific fixed-
capacity parallel model, in which the a representation of the stimulus is formed through
samplix;g, ?zd; Iﬁ?rbfe targets means each target is sampled less. The current study distinguished
these tw?'\models using a dual task with sparse displays to control the contribution of visual
crowding. Performance was compared when participants tracked one (single-task) or two (dual-
task) targets moving in separate regions of the visual field. The all-or-none serial model and
fixed-capacity parallel model predicted dual-task deficits of differing magnitudes. Additionally,
the all-or-none serial model predicted a negative correlation between dual-task responses, while
the fixed-capacity parallel model predicted no correlation. Results showed a dual-task deficit that

is consistent with the all-or-none serial model, but no negative correlation. We discuss

alternative models that can account for these results.



Whether driving on a busy street or supervising children on a crowded playground, the
ability to track moving objects is important in a dynamic environment. Despite the importance of
this task, there are limits to how many objects can be tracked at once. Our ability to track moving
objects has often been studied using the multiple object tracking paradigm (Pylyshyn & Storm,
1988). In multiple object tracking, a display is shown with some number of moving objects, and
a subset of those objects are marked as targets. Participants track the targets for some%length
of time, and then are typically asked to either select all target objects, or they are probed with an
object and asked whether the probed object is a target or not. Performance has generally been
found to decrease with the number of objects tracked (Alvarez & Franconeri, 2007; Pylyshyn &
Storm, 1988). The interpretation of this set-size effect is pursued in this article. More
specifically, we test two attentional hypotheses that might account for set-size effects in multiple
object tracking. But first, we introduce an important non-attentional limit on performance in
multiple object tracking.

Crowding Theory

One phenomenon that has been found to influence performance in multiple object
tracking is visual crowding. Visual crowding occurs when objects are close in space interfere and
with one another. Assuming a typical display with fixed width and height, as the number of
objects in a display increases, the spacing between objects decreases, leading to a higher
likelihood of crowding. One measure of the stimulus conditions under which crowding is most
likely to occur is referred to as Bouma’s Law (Bouma, 1970). Under Bouma’s Law, each
stimulus within a display has a crowding window surrounding it, and any additional stimuli
placed within that window result in crowding. The size of the crowding window is roughly equal

to half of the object’s eccentricity. For example, an object at nine degrees eccentricity has a



crowding window surrounding it with a radius of approximately 4.5 degrees of visual angle. This
rule captures the well-known result that crowding increases with eccentricity.

Most studies of visual crowding use tasks involving discrimination to show its effects
(Ester, Clee, & Awh, 2013; Levi & Carney, 2009; Palomares, Pelli, & Majaj, 2001). Crowding
also influences performance in multiple object tracking. In experiments where the spacing
between moving objects has been manipulated, performance has been found to be worse when
spacing is small versus when it is large (Franconeri, Lin, Pylyshyn, Fisher, & Enns, 2008; Shim,
Alvarez, & Jiang, 2008). Thus, it is clear-that crowding influences our ability to track moving
objects, and in experiments where object spacing is not controlled, it is difficult to distinguish
crowding effects from divided attention effects. In a pure crowding theory, uncrowded displays
have no set-size effect on performance in multiple object tracking. Thus, one way to test for
attention effects in multiple object tracking is to use sparse, uncrowded displays, and measure
whether divided attention effects occur.
Serial Switching Theory

The current experiment uses sparse displays to investigate alternative models of attention
in multiple object tracking. Specifically, we test two attentional models for set-size effects in
tracking: serial switching and parallel resource theory. Under the serial switching hypothesis,
participants selectively attend to one object at a time, and must switch attention to track multiple
objects. An example of a serial switching model is one in which the locations of objects are
recorded and updated over time (Holcombe & Chen, 2013). By this model, when a target object
is selectively attended, the location of that target is recorded before attentional selection switches
to a different object. When a participant switches their selective attention back to a given target,

they return to its most recently recorded location. If the target is still near that location,



participants can select it and update their record of that object’s spatial position. However, if the
target has moved far away from its most recently recorded location, or if a distractor has moved
near to the recorded location, the target is lost. By this hypothesis, set-size effects occur because
increasing the number of targets increases the amount of time until selective attention returns to a
given object and updates its. Thus, increasing numbers of targets is associated with worse
performance.

An important variable that influences performance in multiple object tracking is speed.
As speed increases, performance declines. For th? serial switching model, the effect of speed can
be understood by the related idea of ;&;:';l,é:q;ency (Holcombe & Chen, 2013). In this context,
temporal frequency is the rate at which objects pass through a given spatial location. For a
circular trajectory with a fixed number of objects and a fixed object speed, each point along the
trajectory has a frequency at which an object passes through it. More objects along the trajectory
results in a higher temporal frequency. Under the serial switching hypothesis, a higher temporal
frequency leads to a higher likelihood of the target being lost because there is less time until a
distractor occupies the location where the target was most recently selected. Thus, the serial
switching hypothesis predicts that performance decreases with increasing temporal frequency.

The serial switching model is difficult to distinguish from models that assume limited-
capacity parallel processing. Both models predict set-size effects. To make predictions for serial
switching distinct, we study conditions where there is little time to switch attention. Such
conditions might result in a specific version of the serial switching hypothesis, called the all-or-
none serial model. Under the all-or-none serial model, attentional switching is assumed to not be
possible. Instead, participants choose one target to track and stick with it through the duration of

the trial without switching attention. Performance is predicted to be at chance for the unattended



target. Additionally, this model predicts that there is a negative correlation between responses in
the dual-task condition (Sperling & Melchner, 1978). Such correlations have not been studied in
typical MOT experiments (but see Howard & Holcombe, 2008). In other domains, evidence of
all-or-none serial switching has been found in tasks where attention is divided across masked
words separated in space (White, Palmer, & Boynton, 2018; 2019), visual search tasks that
require different stimulus-response mappings (Sperling & Melchner, 1978) and tasks where
attention is divided between different features of different objects (Bonnel & Prinzmetal, 1998).
Parallel Resource Theory

The second general hypotheses for why there are set-size effects in multiple object
tracking is parallel resource theory. Parallel resource theory posits that a limited attentional
resource is shared between attended objects, and the more objects that are tracked, the less of the
resource is dedicated to each object. One way to implement the idea of a limited attentional
resource is to assume that the speed at which objects can be tracked depends on how much of the
resource is allocated to each object (Alvarez & Franconeri, 2007). As set size increases, the

amount of resources allocated to each targ7t decreases, resulting in worse performance.
pavalic

To make the predictions of resource theory more concrete, we focus on a specific version
¢ A

ofaé/s\z-umtheury, called the fixed-capacity, parallel model (Shaw, 1980). Fixed capacity refers
to extracting a constant amount of position information from the display per unit time. When
estimates of a target object’s position become sufficiently noisy, the target is lost. One way to
implement this abstract idea is to assume that each target’s representation is formed through a
process of sampling, and the total number of samples is fixed (the sample size model; Horowitz
& Cohen, 2010; Miller & Bonnel, 1994: Smith, Lilburn, Corbett, Sewell, & Kyllingsbeek, 2016).

For multiple stimuli, equal numbers of samples are drawn from each object in parallel. Each



object representation can be thought of as having an associated sampling distribution, and the
standard deviation of the sampling distribution is smaller with increasing numbers of samples,
yielding a more accurate stimulus representation. The more stimuli that are attended, the fewer
samples that are drawn from each distribution, which results in a sampling distribution with a
larger standard deviation and thus a less accurate representation of the stimulus. Prior work in
multiple object tracking has found set-size effects that are consistent with the fixed-capacity
parallel model (Horowitz & Cohen, 2010), making it a viable account of resource theory.

Predictions for the all-or-none serial model and fixed-capacity, parallel model can be
distinguished using an attentional operating characteristic (AOC; Sperling & Melchner, 1978).
AOCs allow one to compare predictions for our two attentional models and predictions of
crowding theory for the case of sparse displays with no visual crowding. The AOC method has
been commonly used in dual tasks with.iﬁ-displays to measure divided attention effects.
Participant; complete either one task (single-task condition), or two tasks simultaneously (dual-
task condition). If the two tasks are independent, performance in the dual-task condition for each
task is equal to performance in the single-task condition. If the two tasks are dependent in some
way, dual-task performance is worse than single-task performance. AOCs have been used in
prior work to measure dual-task deficits in multiple object tracking (Alvarez, Horowitz, Arsenio,
DiMase, & Wolfe, 2005), however they have not yet been used to distinguish predictions of
attentional theories in a task with sparse displays.
The Current Study

The current study used a dual task in which participants tracked either one or two targets
that appeared above or below fixation. To make distinct the predictions for crowding theory,

discs were widely spaced such that crowding was unlikely (Bouma, 1970). To distinguish the
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predictions for switching, fast disc motion was used so that attentional switching was unlikely,
which leaves one with the all-or-none serial model (Holcombe & Chen, 2013). We also focused
on the fixed-capacity parallel model, a special case of parallel resource theory that has been
found in prior work to account for set-size effects in multiple object tracking (Horowitz &
Cohen, 2010).

The three models described above can be distinguished by measuring the magnitude of
the dual-task deficit and the correlation between accuracy of responses in the dual-task condition.
For any given level of single task performance, the all-or-none serial model predicts a specific
dual-task deficit and a negative correlation between accuracy for the separate responses in the
dual-task condition. The fixed-capacity parallel model predicts a specific dual-task deficit that is
smaller in magnitude than that predicted by the all-or-none serial model, and a zero correlation
between the two responses in the dual-task condition. For sufficiently sparse displays, crowding
thedry predicts little or no dual-task deficit, and a zero correlation for accuracy in the dual-task
condition. The models are defined more formally in the appendix and the specific predictions are
described with the results of the experiment.

Experiment
Method
Participants

There were 11 paid participants. All participants had normal or corrected-to-normal
acuity. All gave written and informed consent in accord with the human subjects Institutional
Review Board at the University of Washington, in adherence with the Declaration of Helsinki.

To determine the number of participants, we used pilot data from an unpublished pilot

study. Participants (N = 6) each completed a multiple object tracking task with similar methods.



A dual-task deficit of 30% was observed with a standard deviation of 6%, and the correlation
between accuracy for each side in the dual-task condition was r = -.05 with a standard deviation
of .12. Our goal was to distinguish the fixed-capacity, parallel model and the all-or-none serial
model. Given single task performance of 80%, we needed to discriminate deficits of 23% and
11%. A power analysis with 80% power suggested a minimum of 4 participants. For the [
response correlation, we need todiscriminate correlations of -.10 and 0. A power analysis using a
one-tailed t-test with 80% power suggested a minimum of 11 participants. Therefore, we used 11
participants.
Apparatus

Displays were presented on a linearized CRT monitor (Sony GDM-FW900) with
resolution 1024 by 640 pixels refreshing at 120 Hz. The monitor was viewed from 60 cm and the
middle-gray background used in the experiment had a mean luminance of 56 cd/m?. Stimuli were
created with MATLAB (MathWorks) and Psychophysics Toolbox (Brainard, 1997). Gaze
position was monitored for all trials using an EyeLink 1000 (SR Research) and the Eyelink
toolbox (Cornelissen, Peters, & Palmer, 2002). Trials containing blinks or broken fixations wereq J¢ k
excluded from analysis. Such excluded trials were infrequent; across participants, blinks s

occurred on only 1.6 + 0.5% of trials, and broken fixations occurred on 2.8 + 0.7% of trials. s /ﬂg
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Stimuli S e v

As illustrated in Figure 1, participants were presented with six black discs that were one
degree of visval angle in diameter. Three discs appeared above fixation, and three appeared
below fixation. The discs were positioned along invisible circular paths that were centered §
degrees above and below fixation. The diameter of the circular path was 6 degrees so that the

furthest point on the path was 9 degrees above fixation, and the closest point on the path was 3



degrees above fixation. Each disc was equally spaced around the circular trajectory at an angle of
120 degrees around the circle. The linear distance between each disc on a given trajectory was

approximately 5.2 degrees in visual angle, which is larger than maximum crowding window as

9 degrees

3 degreesI

Figure 1. Stimulus object spacing. Discs were positioned along invisible circular trajectories,
which are represented here by dashed circles, but were not visible in the experiment,

Discs were evenly spaced along the circular trajectory. The circular trajectories were centered
at six degrees in visual angle above and below fixation. The furthest points along the
trajectory were 9 degrees eccentricity, and the closest points were 3 degrees eccentricity.

10



estimated by Bouma’s law (Bouma, 1970).

The difficulty of the task was manipulated for each participant to maintain average
single-task performance between 70-80% correct. Task difficulty was controlled by changing the
speed of the disc motion. We varied rotational speeds between 1 and 2.2 rps. The maximum
speed was limited to 2.2 rps to maintain the appearance of continuous motion. The average disc
speed needed to obtain single-task performance between 70-80% correct was 1.6 rps (range 1.25

to 1.95 ;_ps). This is equivalent to a linear speed of 29.5 degrees per second, or about 6 pixels per
a

frame$f120 H§
hoc£me

The single- and dual-task conditions are shown schematically in Figure 2A. In the single-
task condition, participants tracked a single target that appeared above or below fixation. Each
trial began with a blank screen for 1.5 seconds, and participants were told that they should use
this blank period to blink as much as necessary and then not blink during the moving display.
Following the blank period, the cue was shown for 1.5 seconds, during which six discs appeared
on the screen, with three above and three below fixation. The single target dysc was displayed in
red, and all other discs were black. As illustrated in Figure 2B, the cue Wa; inifrporated into the
fixation point such that the top half of the stem on the fixation cross appeared in blue when the
top half of the display was cued, and the bottom half of the stem on the fixation cross appeared
blue when the bottom half of the display was cued.

The target then changed to black to appear identical to the distractors, and each set of
three discs immediately began moving along an invisible circular trajectory for 4 seconds,

During the four seconds of disc motion, each set of discs reversed direction three times, and the

timing of those reversals was determined pseudo-randomly and independently for each side of
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fixation. For one set of discs, an opportunity for reversal occurred every 0.5 seconds, and for the
other set of discs, it occurred every 0.6 seconds. This difference in when reversals could occur
made it such that the two sets of discs never reversed at exactly the same time. Which side
reversed at 0.5 or 0.6 seconds was counterbalanced.

Following the disc motion, participants were prompted to select the target with a mouse-
click, and they were given as much time as needed to do so. The response prompt was
incorporated into the fixation cross and was identical to the fixation cue shown at the start of the
trial. Mouse clicks that did not correspond with any of the three discs on the cued side resulted in
a 500 Hz tone being played, after which participants were given another chance to respond.
Following response, feedback was shown at fixation for 2 seconds. As illustrated in Figure 2B,
feedback was incorporated into the fixation cross in the same manner as the cue, with green
indicating a correct response and red indicating an incorrect response.

In the dual-task condition, participants were instructed to track two targets, one above
and one below fixation. The trial sequence for the dual-task condition was similar to that for the
single-task condition. The key differences were that instead of a single target that appeared in red
above or below fixation, there were two targets in red, one above and one below fixation.
Additionally, the cue at the start of the experiment indicated that both sides were relevant, thus
the full stem of the fixation cross was blue. After the 4 second disc motion, participants were

prompted by a response cue to either select the bottom target first and then the
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A. Trial Sequence

Single Task ~ Single-Stimulus -\ .0
Control

Blank

-
] 15s

Pre-Cue
15s

Disc Mation
4s

Respond
Top

B. Cues and Feedback

Single-Task Dual-Task
Pre-Cue Pre-Cue

Single-Task Dual-Task
Feedback Feedback

2s

Figure 2. Trial sequence for the single-task, single-stimulus control, and dual-

Respond
Bottom

Feedback

task conditions. In

this example of the single-task condition, the top half of the display is being cued and & target is
shown above fixation in red. In the dual-task condition, both sides are cued, and two targets are
shown in red, one above fixation and one below fixation. The response order in the dual-task
condition is counterbalanced. Feedback was incorporated into the cue. Green indicated a correct

response, and red indicated an incorrect response.
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top target, or vice versa, and the order of response was counterbalanced, F eedback was shown
simultaneously after both responses for 2 seconds, and was incorporated into the fixation cross in
the same manner as the cue.

In addition to the single- and dual-task conditions, there was a single-stimulus control
condition. For these trials, three discs appeared on the cued side of the display, and the uncued
side of the display was blank. The trial sequence, stimulus, and response were otherwise
identical to that of the single-stimulus condition. This condition was included as a test of
crowding phenomenon.

Prior to the experiment, participants completed 2-3 training sessions, during which they
learned to use the cues and perform the task. Participants then completed 20 experimental
sessions, which took between fifteen to twenty hours, and were completed across several weeks.
Each session consisted of 8 blocks of 12 trials, making 96 trials per session and 1920 trials per
participant. Within a session of 96 trials, there were 24 single-task trials, 24 single-stimulus
control trials, and 48 dual-task trials. A mixed design was used such that the three conditions
were randomly intermixed throughout a session of 96 trials.

Primary Results
Dual-task deficit

Performance in the single-task condition was 73.5 + 2.5%, and performance in the dual-
task condition was 52.5 + 2.0% (chance was 33.3%). The difference is a large dual-task deficit of
21.0 £+ 1.7%. This difference was reliable, A10) = 12.39, p <. 001, 95% CI [17.3, 24.8]. To test
how crowding contributes to this dual-task deficit, we compared performance in our single-task
and single-stimulus control conditions. The mean difference in performance between these two

conditions, which we call the dual-stimulus deficit, was 2.2 + 0.5%. This difference was
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Figure 3. Comparison of the dual-task deficit and the dual-stimulus deficit. The dual-task deficit
is the difference in percent correct for the single-task and dual-task conditions. The dual-stimulus
deficit is the difference in percent correct for the single-stimulus control condition and the
single-task condition. Error bars represent the standard error of the mean.
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reliable 1(10) = 4.17, p = .001, 95% CI [1.0, 3.3]. While this difference suggests a}é
crowding effect, it is small compared to the dual-task deficit. The magnitude of the dual-task and
dual-stimulus deficits are plotted side-by-side in Figure 3. The y-axis represents the difference in
performance between the single-task and dual-task conditions (i.e. the dual-task deficit), and the
difference in performance between the single-stimulus control and single-task conditions (i.e. the
dual-stimulus deficit). The dual-stimulus deficit is a small fraction of the dual-task deficit. Thus,
the crowding effect measured by the dual-stimulus deficits cannot account for the observed dual-
task deficit.

Figure 4 shows the results compared to model predictions using the attentional operating
characteristic (AOC; Sperling & Melchner, 1978). The models are described in the Appendix.
The y-axis shows performance when the target is on the top, and the x-axis shows performance
when the target is on the bottom. Both axes go from chance performance (approximately 33%
correct) to perfect performance (100% correct). The solid lines represent the prediction for
crowding theory given a sufficiently sparse display: if our ability to track multiple objects is only
limited by perceptual crowding, then there should be no divided attention effect for this sparse

T +his cace

displaygaccuracy for each of the two targets in the dual-task condition should be equal to that of
~

the single-task condition.

The dashed diagonal line represents the prediction for the all-or-none serial model: if one
can track only one target object at a time, and must guess on the location of a second target, there
should be a large divided attention effect. The accuracy for the two sides trades off linearly.

The dotted curved line represents a prediction for the fixed-capacity parallel model,
where processing for the two sides occurs in parallel, but is fixed in capacity. Assuming signal

detection theory and independent samples of the position information, one can calculate the

16



predicted magnitude of the dual-task deficit for this model (for the details of this calculation, se

\Y
the supplemental materials for White et al., 2018)and the Appendix.
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Percent correct for the single-task condition is shown for the top (y-axis) and bottom (x-
axis) responses. Single-task performance on the top was 75.3 + 4.1%, and the bottom was

7/.38 2.6
WML . Dual-task performance is plotted as a point, where the x-value represents dual-

task performance for the%{géet, and the y-value represents dual-task performance for the
&arget. Performance for the top in the dual-task condition was 51.8 + 3.7%, and

performance for the bottom was 53.3 + 3.2%. The magnitude of the dual task deficit is

consistent with the prediction of the all-or-none serial model, and much larger than the

prediction of the fixed-capacity, parallel model.

Correlation between responses in the dual-task condition

Figure 5 shows the observed correlation along with the predictions of the three
hypotheses. When performance is at chance, all three hypotheses predict a correlation of zero in
accuracy between the top and bottom responses. As dual-task performance increases, the all-or-
none serial model predicts a negative correlation in the accuracy between top and bottom targets.
For example, for dual-task percent correct of 50%, this model predicts a negative correlation of »
= -.10. By this model, the maximum dual-task performance is 67% correct for this 3-choice task.
This model assumes that participants can track only one target in the dual-task condition,
meaning that a correct response for the top side is associated with an incorrect response for the
bottom side, and vice versa.

Both crowding theory and the fixed-capacity, parallel model predict no correlation in
dual-task accuracy across all ranges of dual-task performance. Under crowding theory, responses
on each side are independent, and therefore there should not be a correlation. Under the fixed-
capacity parallel model, because the limited resource is shared equally between targets in

parallel, there should be no correlation.

18



0.3 i
02}
01}
c Fixed-Capacity
O Parallel Model
‘ES' Prediction
TJ L
=
O
O
-0.1
-0.2 All-or-none
Serial Model
Prediction
-0.3 ! L | )
40 50 60 70 80

Dual-Task Percent Correct

Figure S. Predicted and observed correlations plotted as a function of dual-task percent
correct. The dashed line represents predicted zero correlations under crowding theory and
the fixed-capacity parallel model. The curve represents predicted negative correlations under
the all-or-none serial model. The closed circle represents the average correlation, and error
bars represent the standard error of the mean.
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The correlation between dugl-task acc acy for the top and bottom was r = -,05 + .04
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for the observed dual-task performance. exely Lef

Secondary Results
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We tested for order effects in response accuracy femmws dual-task condition by comparing
performance for first responses and second responses. The difference in performance for first and
second responses in the dual-task condition was -0.8 + 0.6%, with second responses being
slightly better, however this difference was not reliableé(lO) =¥1.27,p=.12,95% CI [-2.3,

0.6]) Thus, there is no evidence of memory or response interference for the second response. We
also tested for differences in accuracy for the top and bottom locations (collapsing across all
conditions). The difference between the top and bottom location was 1.1 + § .1%6(10) =0.21,p
= .42, CI[-10.2, 12.4} Thus, accuracy was similar for the top and bottom locations.

General Discussion

The results showed a large dual-task deficit, the magnitude of which was consistent with
the all-or-none serial model. This observed dual-task deficit allows one to reject the fixed-
capacity, parallel model. Additionally, this dual-task deficit with our sparse displays provided
evidence against crowding theory, which predicts no set-size effects in multiple object tracking
when displays are uncrowded. Our observed dual-task deficit was consistent with those used in
prior work that measured AOCs using a dual-task multiple object tracking design (Alvarez et al.,
2005). Although the magnitude of the dual-task deficit was consistent with the all-or-none serial
model, in the dual-task condition, there was no correlation between accuracy for responses on the
top and bottom. This is not consistent with the all-or-none serial model. Thus, none of our three
specific models can account for the entire set of results.

Implications for Serial Switching Theory

The key prediction of the all-or-none serial model is that there is a negative correlation
between responses in the dual-task condition. The curgent study is the first to test for negative

1té

/
correlations between dual-task responses using"?nultiple object tracking. Large divided attention
A
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effects with negative correlations have been found for other tasks using a dual-task design
(Bonnel & Prinzmetal, 1998; White et al.,, 2018, 2019), and these results provide strong evidence
consistent with serial processing. In contrast, the results of the current study showed no
significant negative correlation between dual-task responses, which is not consistent with the all- b
or-none serial svigelggeshynathasis. . l/
By the all-or-none serial swiiching-hspaihesis, participants do not switch attention, but
instead track only one target through the duration of the trial. One possibility for the lack of a
negative correlation is that participants tried to switch attention between targets even though it
was advantageous to track only one target. If participants attempt to switch attention in
conditions where switching is difficult (e.g. when fast speeds result in short temporal
frequencies), dual-task performance decreases over time, but no negative correlation is predicted
because both sides get a chance to be tracked. Such a scenario predicts results consistent with
those found in the current study. This scenario is also consistent with the findings of Holcombe
and Chen (2013), where performance was worse than a model that assumes participants can only
track one object, and must guess on a second object.
Some.

APrior multipie object tracking work has found results consistent with the all-or-none serial
model. Holcombe x Chen (2012) tasked participants with tracking one or two targets that moved
along a circular trajectory that was centered at fixation. Tracking speeds ranged from 0.7 t0 1.9
rps, and psychometric functions were fitted to data for each participant. Speed limits (the speed
at which participants were 68% correct for tracking one or two targets) were estimated for each
participant. The observed ts were much lower for tracking two targets compared to

'y 2 (o v& £ .,4 ygp.;tw

tracking one. speed limit for trackmg two targets was consistent with the all-or-none serial

model.
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In a follow-up study, Holcombe and Chen (2013) tasked participants with tracking one to
three targets among distractors. The main manipulation was of temporal frequency, the rate at
which objects passed through a given spatial location. For a circular trajectory with a fixed
number of objects and a fixed object speed, each point along the trajectory has a frequency at
which an object passes that point. More objects along the trajectory result in a highe: temporal

“
frequency. Faster disc speeds also lead to a higher temporal frequency. Under?h;;\sw;:hing
hypothesis, a higher temporal frequency leads to a higher likelihood of the target being lost
because there is less time until a distractor occupies the location where the target was most
recently selected. Temporal frequency was manipulated by varying the number of objects on a
given trajectory. On each trial, there were either 3,6, 9, or 12 objects per trajectory. Speed
thresholds, the speed at which performance fell midway between ceiling and chance, were
measured for each of the tracking conditions.

The results of Holcombe and Chen (2013) showed that speed thresholds decreased with
increasing numbers of targets. Speed thresholds also decreased with increasing numbers of
objects on each trajectory. Importantly, when speed thresholds were converted to temporal
frequencies, there was no difference in temporal frequencies for the six, nine, and twelve object
conditions. These results indicate that it is not speed that led to a difference in performance
across object conditions, but temporal frequency. These set-size and temporal frequency effects
are consistent with the general serial switching model. Additionally, speed thresholds were worse
than the prediction of an all-or-none-type model that assumes participants can only track one
target and must guess on the location of a second target. The authors proposed that performance
can be worse than the all-or-none serial prediction if participants attempt to switch attention and

track multiple targets, rather than giving up on switching and tracking a single target while
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guessing on additional targets. In summary, the results of this study and our own study can be
described by the genera‘l/g:/;:ciamg model, but it is unclear whether these results rule out parallel
resource theory.

Implications for Parallel Resource Theory

Other prior research in multiple object tracking has attributed set-size effects and speed
limits in multiple object tracking to an attentional resource that is shared across targets in parallel
(Alvarez & Franconeri, 2007; Chen, Howe, & Holcombe, 2013; Holcombe & Chen, 2012). It has
been proposed that fast object speeds exhaust attentional resources, making it more difficult for
participants to track targets. Additionally, with increasing set size, there is a decrease in the
amount of the attentional resource given to each target. Thus, participants require a slower speed
to track larger numbers of targets.

Although prior work has found results that are consistent with a limited attentional
resource, discussions of parallel resource theory are often vague about the specific characteristics
of the resource and the mechanisms that determine performance in multiple object tracking. To
make the predictions of resource theory concrete, we focused on a specific version of parallel
resource theory, the fixed-capacity, parallel model. This model can be conceptualized using the
sample size model (Bonnel & Miller, 1994; Smith et al., 2018), where a fixed number of samples
is shared between targets, and the resolution of each target’s stimulus representation decreases
with decreasing numbers of samples. Set-size effects that are consistent with the sample size
model have been found in prior work using a multiple object tracking task in which participants
reported the direction of motion for target objects (Horowitz & Cohen, 2010). However, the

dual-task deficit observed in the current study was larger than what is predicted by models that

assume continuous, parallel sampling of target position such as the sample size model.
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An interesting alternative to the static models developed here are dynamic models. These
can be developed for either serial or parallel accounts. Here we illustrate the idea with a
particularly simple parallel dynamic model. Assume that tracking depends on maintaining
position information that can be lost with a given probability for each unit of time. Specifically,
assume that maintaining position information depends upon repeated discrete, parallel sampling,
described further in the Appendix. Like the fixed-capacity parallel model, a sampled discrete
parallel model assumes that samples are shared between objects. However, sampled information
is lost over time in a discrete manner, meaning that at a given time, information about targets is
either maintained or completely lost. The loss of information compounds error possibilities over
time and predicts that dual-task performance decreases faster over time than single task
performance. For the 4 second trials used in this experiment, the model can predict a dual-task
deficit that is of a similar magnitude as (or even larger than) that predicted by the all-or-none
serial model. Critically, it also predicts a zero correlation. Thus, this version of parallel resource
theory is consistent with the current results.
Implications for Crowding and Spatial Interference Theory

Although our sparse displays rule out crowding theory, they do not rule out the more
general spatial interference theory (Franconeri, J onathan, & Scimeca, 2010). In spatial
interference theory, attentional selection of multiple targets is influenced by spatial interactions
specifically between targets (Shim et al., 2008). These interactions can occur at spatial distances
larger than those associated with crowding. One way that this idea can be conceptualized is to
assurne that locations selected in space have a suppressive surround similar to the center-
surround receptive fields found in brain areas associated with visual processing. Because object

processing is assumed to occur in higher-level visual processing areas, the size of the suppressive
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surround is thought to span the full visual field in a manner similar to receptive fields for these
brain areas. When there is only a single target, it can be selected and tracked. However, when
there are multiple targets, there is competition between targets that result in interactions between
the selective region for one target and suppressive surround for the other target.

The influence of target-target interactions on multiple object tracking performance can be
measured by varying the spatial distance between targets. Shim et al. (2008) conducted a series
of experiments to test the influence of target-target spacing on tracking performance. In the first
experiment, they used translational disc motion and varied target-target and target-distractor
spacing. Target-target spacing ranged from 0.45 to 2.91 degrees of visual angle, and target-
distractor spacing ranged from 0.5 to 3 degrees of visual angle. Both target-target and target-
distractor spacing influenced performance, with larger spacing being associated with better
performance.

In a second experiment, a quadrant design was used to control target-target spacing @
W. Participants tracked either one or two targets. In the two-target condition, the targets
appeared either in the same quadrant, or in different quadrants. Performance was better for trials
with targets in different quadrants compared to those in the same quadrant, indicating that greater
target-to-target distances were associated with better performance. In a third experiment, they
used a circular display that was divided into 8 sections, and again, performance was better when
the two targets were presented in separate sections versus when they were presented in the same
section. Additionally, in trials where targets were presented in separate sections, larger distances
between sections was associated with better performance.
The long-range spatial interactions described by spatial interference theory can account

for dual-task deficits for targets that are widely spaced. Therefore, such a model cannot be ruled
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out using sparse displays such as those in the current study. One possible way to investigate such
a model is to manipulate the perceptual organization of the stimulus. This can be done using
grouping. Grouping occurs when individual objects are made to appear as though they are
components of a larger perceptual object. Grouping has been found to influence performance in
multiple object tracking (Erlikhman, Keane, Mettler, Horowitz, & Kellman, 2014; Keane,
Mettler, Tsoi, & Kellman, 2011; Yantis, 1992). If the selection mechanism described by spatial
interference theory is object-based, grouping two targets together would allow both targets to fall
within the selective region and neither target would fall within the suppressive surround, tl}u

Choe
reducing the amount of competition between them. Therefore, the dual-task deficits ZEitd be

L~
smaller for targets that are grouped versus those that are not grouped.
Conclusion

The current study investigated two broad hypotheses for set-size effects in multiple object
tracking: serial switching and parallel resource theory. We focused on specific versions of each
hypothesis: the all-or-none serial model and the fixed-capacity, parallel model. Sparse displays
were used to minimize contributions from visual crowding. Results of the current study showed
large dual-task deficits for a tracking task in which participants tracked either one or two targets.
In addition, the correlation between responses was near zero. These results were not consistent
with either the all-or-none serial model or the fixed-capacity parallel model. Instead, these results

can be accounted for by other models that fall within in the more general categories of serial

switching and parallel resource theory.
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Appendix

In this appendix, we describe three models. The first two are static models adopted from
the prior literature on dual tasks with brief displays. The third is a dynamic model adopted from
the memory literature to illustrate an alternative approach to multiple object tracking that lasts
many seconds. All of the models are defined for the specific task used in this article.
Specifically, two sets of stimuli are presented in a circular configuration either above or below
fixation. Each set contains » equally spaced stimuli (here #=3) with one target and the rest
distractors. In the single task, only one set of stimuli is relevant and has a target (either above or
below fixation). In the dual task, both sets of stimuli are relevant and each has a target.
Static models

All-or-none serial model

( In serial models, one can attend and process only a single stimulus at a time. For typical /
Se'v;zritching models, one can switch attention from stimulus to stimulus. But there is a special case
in which there is no switching. Instead, one attends to only one stimulus throughout the tracking
task. In such an all-or-none serial model, no information is obtained about the other target or the
distractor stimuli. If tested on the unattended target one must guess.
To formalize this model, denote the probability of error for an attended stimulus by gs.
Then for the single task condition S, the probability correct is simply
ps=1-gs
For the dual task condition D, label the two tasks by A and B. For this case, we need to add an
attention parameter « for the fraction of trials for which task A is attended. This parameter is

used to sweep out the AOC curve. For task A, the dual task performance is

poa = a(l-qg + (1-a)(1/n).
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And performance for task B is

pos = (I-a)(1-q9) + a (i/n).

For equally attended tasks, these equations simplify to

pp = (1-q9/2 + (1/n)/2.

In summary, gs is the free parameter, a is used to sweep out the AOC function, and » is
determined by the experiment. To provide a numerical example, if g2, ¢=.5, and n=3, then ps
= .8 and pp = .567.

Fixed-Capacity, Continuous Parallel Model

The parallel model considered here processes the separate targets independently and in
parallel. For our continuous version, tracking is based on a continuous noisy estimate of the
position of the target. When that estimate of position becomes sufficiently noisy, tracking is lost
and a distractor is selected.

For this fixed-capacity model, a constant amount of information is maintained about
multiple targets. Thus with two targets, half as much information can be maintained about each
target. This can be implemented for a continuous representation by the sample size model
(Shaw, 1980). The idea is that there are a fixed number of independent samples of position
information and more samples yield a better estimate. With multiple stimuli, the samples must
be distributed across the stimuli.

To be specific, assume the target's position in a single task is represented by the one-
dimensional random variable U, For simplicity, let it be normally distributed in units of position
around the circle of possible stimuli with mean zero and standard deviation s for the single task.

erediild W pevhyiecs ol
Strictly speaking, this application needs a circular dishibution but th; differencs\ is trivial.

Further assume the tracking becomes inaccurate when the perceived position is greater than d or
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less than minus d. This value is assumed to be half the distance between the target and the

distractors on either side. With these assumptions, the probability correct for the single task S is

ps = Prob(|U] <d). L shel Kevifo ©

Denoting the cumulative distribution of the random variable (;‘ by F, this can be rewritten as

ps =F(d) - F(-d).

For the dual task D, the standard deviation of the representation of position depends on the
fraction of trials each task is attended. Let g be the fraction of trials when task A is attended.
Using the sample size model, the number of samples are proportional to the attention parameter
a. By this model, the standard deviation of the random variable for position is s/va . With these
assumptions, the probability correct in the dual task condition for task A is

Ppa = F(d/Va) - F(-d/va)
and for task B is

" Poe = F(d/V1-a) - F(-d/V1-a).
Assuming equal attention to the two task, this becomes

Po = F(d/\/1/2)- F(-d/{1/2).

In summary, s is the free parameter, g is used to sweep out the AOC function, d and » are
determined by the experiment, To provide a numerical example, if 5=46.8°, a=.5, d = 60°and
n=3, then ps =800 and pp = .635.

Discrete Parallel Model

Next we introduce a parallel dynamic model. One could construct a similar serial model
or a continuous model but we do not pursue them here. This model processes the separate targets
independently and in parallel. Unlike the continuous model, tracking is either maintained or lost

completely on each time step. There is no partial information, The dynamic part of the model is
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to update tracking over time expressed in time steps i = 0,...., Infinity. For each time step, there is
a probability of losing the target. For the single task condition S, this probability is given by gs
Over each time step, 7, the probability of successfully tracking the target is given by Vs(i):

Vs(i+1) = (1-q5) Vs(i)
where Vs(0) = 1. Combining this probability with guessing when a target is not tracked
successfully yields a probability correct for the single task at time i:

ps(i) = Vs(i) + (1-Vs(i)/n.

For the dual task condition D, we implement fixed capacity using a variation on the
sample size model but now applying it to a discrete representation (for a related model see the
appendix in Popovkina, et al, 2021). The idea is that there is a sampling process that can be
applied to cither single stimulus or distributed across multiple stimuli. For each sample, there is a
chance of losing track denoted g;. For multiple samples of the same stimulus, one loses track
only if it is lost for all of the samples. So for 7 of m independent samples, the probability of
losing track g(¥/m) is

q(r/m) = qr.

Defining the fraction of samples directed to task A by a=r/m, we can rewrite this equation as

9(a) = q1*". (1)

Using this equation, for a single task condition with all of the samples allocated to one target we

have
gs=qr".
Expressed in terms of g;,
g1 = g™

This can be substituted into Equation 1 to yield
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q(a) = (g,
which simplifies to

9(@) = g5
This formulation eliminates the need to specify the number of samples m or the probability of an
error for single sample g:. Only g is needed and it becomes the free parameter in this model.

For the dual task condition with task A, the probability of maintaining tracking is

Voa(i+1) = (1-q*) Vpa(i)
and for task B is

Voa(i+1) = (1-q5"%)Vpa(i).

Similar to before, let Vp4(0) = Vop(0) = 1. Adding in guessing, the probability of a correct
response is

poa(i) = Voa(i) + (1-Vpa(i))/n, and

pos(i) = Vpa(i) + (1-Vpa(i))/n.

For equal attention (a=.3), these equations become

Vo(i+1) = (1-g”*)Vp(i), and

po(i) = Vp(i) + (1-Vb(i))/n.

For this model, the AOC changes shape with time. It starts with a small dual-task deficit
and a convex AOC, passes through a linear AOC, and with enough time, performance in the dual
task approaches chance faster than the single task resulting in a concave AOC. The much worse
performance for the dual task compared to the single task is due to compounding the unequal
error probabilities over time.

In summary, gs is the free parameter, a is used to sweep out the AOC function, 7 is used

to represent time, and # is determined by the experiment. To provide a numerical example, if gs
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=163, a=.5, and n=3, then at time 2, ps=.800 and pp = .570 and at time 6, ps=.563 and pp=
.363.
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