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In both behavior and neuroscience research, it is debated whether the processing of identity and location
is closely bound throughout processing. One aspect of this debate is the possibly privileged processing
of identity or location. For example, processing identity may have unlimited capacity, while processing
location does not. The authors have investigated the possibility of such privileged processing by
measuring set-size effects for a variety of identification and localization tasks. In particular, set-size
effects in accuracy visual search are measured with either 1 or 2 possible targets. For 1-target tasks,
set-size effects are smaller for identification than localization; for 2-target tasks, set-size effects are larger
for identification than localization. The observed crossover interaction is inconsistent with a privileged
processing hypothesis for either identity or location. Furthermore, this interaction is predicted by an
independent channel model based on signal detection theory, in which the details of each decision
determine the relative magnitude of the set-size effects. This result is consistent with the similar
processing of identity and location, and it refutes the privileged processing hypothesis for either identity
or location.
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Several lines of research have suggested that “what” and
“where” information may be treated differently by the visual
system. Anatomical and physiological research has suggested that
the ventral pathway specialized for identification and the dorsal
pathway specialized for localization (Haxby et al., 1994; Unger-
leider & Mishkin, 1982; van Essen & Gallant, 1994). In the context
of visual search, the possibility of distinct pathways has motivated
proposals for differential effects of divided attention on the pro-
cessing of identity and location. In one proposal, Treisman and
Gelade (1980; for a review, see Quinlan, 2003) have suggested
unlimited-capacity processing of identity information but not lo-
cation information. Thus identity has a privileged role. In an
opposing proposal, Sagi and Julesz (1985a, 1985b; Donk & Mei-
necke, 2001) have suggested unlimited-capacity processing of
location but not identity. Here location has a privileged role. In this
article, we test predictions of such privileged processing hypoth-
eses as well as the alternative of similar processing of identity and
location information (e.g., Baldassi & Verghese, 2001; Johnston &
Pashler, 1990). In particular, we capitalize on analyses of the
magnitude of set-size effects in psychophysics to make a compar-
ison of set-size effects in identification and localization tasks (e.g.,

Palmer, 1995). This comparison highlights the complexity of ca-
sual task comparisons and thus the need for careful task analyses
and modeling before one accepts claims of privileged processing
for either localization or identity.

Theoretical Background

Below, we summarize three hypotheses in the extant literature
that bear on the relation between identification and localization
and that make predictions for set-size effects in visual search and
related tasks.

Three Hypotheses

Identification without localization. By this hypothesis, identi-
fication is possible without localization in an early stage of pro-
cessing. For example, in feature integration theory (Treisman &
Gelade, 1980; Treisman & Gormican, 1988; for a review, see
Quinlan, 2003), there is a parallel, unlimited-capacity stage that
processes simple feature information followed by a serial stage
necessary for processing relations among features. It is further
assumed that discrimination of simple features is mediated by a
pooled response from the first stage. This pooled response loses
location information but preserves identity. Localization requires
processing by a further serial stage. Thus set-size effects are
predicted to be larger for localization than identification (response
time: Saarinen, 1996; accuracy: Bennett & Jaye, 1995). Variations
of this hypothesis can be found in feature and item perturbations
(Lee & Estes, 1981; Wolford, 1975; Wolford & Shum, 1980) and
in the differential loss of identity and location information in
very-short-term visual memory (Irwin & Brown, 1987; Mewhort,
Campbell, Marchetti, & Campbell, 1981; Mewhort, Huntley, &
Duff-Fraser, 1993).
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Localization without identification. By this hypothesis, local-
ization is possible without identification in an early stage of
processing. Sagi and Julesz (1985b; see also Donk & Meinecke,
2001; Müller & Rabbitt, 1989) have proposed a parallel,
unlimited-capacity stage that allows detection and localization of
targets followed by a serial stage that is necessary to identify
targets. The first stage localizes targets by detecting feature gra-
dients that are made by an “odd” stimulus. Identification requires
a second serial stage. Thus, set-size effects are predicted to be
larger for identification than localization (accuracy search: Sagi &
Julesz, 1985b). Such a feature contrast hypothesis has been inves-
tigated in detail by Nothdurft (1985, 1991, 1992, 1993). He has
demonstrated a variety of conditions where visual search depends
on the local feature contrast rather than the specific values of the
features.

Similar processing of identity and location. By this hypothe-
sis, similar processes mediate identification and localization. For
example, Johnston and Pashler (1990; see also Atkinson & Brad-
dick, 1989; Bloem & van der Heijden, 1995) have suggested that
a two-stage search theory (Hoffman, 1979; Treisman & Gelade,
1980) be modified so that a detection by the first stage calls
attention to the relevant information for that stimulus, which
includes both identity and location information. Thus, set-size
effects are predicted to be similar for identification and localiza-
tion, all else equal (accuracy search: M. Green, 1992). This hy-
pothesis is implicit in signal detection theories of identification and
localization (e.g., Baldassi & Verghese, 2001; Swensson & Judy,
1981). Such similar processing can be implemented by either close
binding and common processing or by similar processing of sep-
arate representations. Thus, while support for privileged process-
ing is consistent with separate representations of identity and
location information, evidence against privileged processing does
not allow one to reject separate representations of identity and
location information. Rather, it removes one line of support for the
hypothesis.

Johnston and Pashler’s Critique

Most of the initial tests of these hypotheses depended on a
theoretic comparisons between identification and localization per-
formance. While these comparisons have motivated this research,
their interpretation depends on three problems nicely described by
Johnston and Pashler (1990).

Different properties problem. Some tasks offer more informa-
tion for one kind of judgment relative to another. Consider an
extreme example: Suppose one is to judge orientation of a line
stimulus as either leaning left or right of vertical. In addition, one
must judge if the line was to the right or left of fixation. Only a
single line is presented at one or the other side of fixation. The
problem arises because different information is sufficient to make
the two judgments. The orientation of the line is necessary for the
orientation judgment, but any detectable attribute is sufficient for
the location judgment. To make the tasks comparable, the target
must be distinguished from the distractors only by an attribute
sufficient for identification. For example, one can place lines on
both sides of fixation that differ only in orientation.

Negative information problem. The next issue is whether
guessing can differentially affect identification and localization.
Suppose one is performing a disjunctive search with a color target

and a shape target (e.g., Treisman & Gelade, 1980). Further,
suppose the color target is easier to detect than the shape target.
Then, on trials in which there is no obvious color target, one can
improve performance by guessing a shape target and never guess-
ing a color target. In this situation, guessing can improve identi-
fication without improving localization. Here, this problem is
addressed by using explicit decision models.

Location-reporting problem. The three hypotheses refer to the
internal representation of location, not the reported location. Errors
may arise in translating the internal representation to a response.
Indeed, if the stimulus locations are close together and confusable,
such mislocalizations are inevitable. Here, we consider explicit
decision models in combination with widely separated locations
and an analysis of mislocalization errors.

These issues have been addressed in several ways. Swensson
and Judy (1981) applied signal detection theory to visual search
tasks that required either identification or localization. Johnston
and Pashler (1990) examined the correlation between identifica-
tion and localization accuracy on a single trial. Marc Green (1992)
used the two-by-two paradigm to compare identification and lo-
calization with carefully matched tasks. Each of these methods
have strengths and weaknesses. In this article, we further pursue
the relative magnitude of set-size effects in accuracy search to test
the privileged processing hypotheses.

Set-Size Effects in Visual Search

By the privileged processing hypothesis, unlimited-capacity
processing is possible for identity or location but not both. To
address this possibility, one must determine how to measure set-
size effects across a variety of tasks and stimuli. For example, how
does one compare the accuracy in a yes–no task with the accuracy
in an eight-alternative localization response? Another key issue is
the interaction between the difficulty of discrimination and set
size: More difficult discriminations result in larger effects of set
size on accuracy and time. We describe two approaches to char-
acterizing set-size effects that are both based on signal detection
theory.

Two Approaches to Measuring Set-Size Effects

The d� approach. Swensson and Judy (1981) were one of the
first to compare set-size effects for identification and localization.
Observers viewed simulated medical images with pixel noise.
Images contained a large ring structure with a superimposed small
disk target. The target could appear in one to eight pre-specified
locations. Performance was measured in several tasks including
yes–no identification and n-alternative localization. For each task,
an appropriate d� measure was estimated for each set size. They
developed the ideas of Tanner (1961) and others in predicting that
uncertainty decreases performance even if the representation of the
multiple stimuli are independent. By using the tailored d� measure,
they showed that the set-size effects were similar for identification
and localization. Swensson and Judy concluded that a simple
model based on signal detection theory and a common perceptual
representation can account for both identification and localization
performance. Examples of similar analyses include Burgess and
Ghandeharian (1984); Cameron, Tai, Eckstein, and Carrasco
(2004); Creelman and Macmillan (1979); and Eckstein and Whit-
ing (1996).
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The threshold approach. An alternative approach was de-
scribed by Palmer, Ames, and Lindsey (1993). First, rather than
compare performance by using a d� measure tailored for each task,
they compared tasks by using a threshold measure that was defined
by a particular proportion correct. This measure makes differences
between the tasks explicit, and they can be compared with the
differences predicted by any theory. Consider next the threshold-
versus-set-size function. This function describes the set of stimuli
and set sizes that yield equivalent performance. Such equivalences
allow tests of general theories of performance (e.g., Loftus, Oberg,
& Dillon, 2004). To reduce the magnitude of the set-size effect to
a single value, one can use a threshold ratio because the underlying
model is essentially multiplicative, and a threshold ratio removes
the unit of the stimulus. Furthermore, one can normalize the
threshold ratio by the ratio of set sizes. In particular, Palmer et al.
(1993) borrowed a measure from studies of light adaptation. The
log–log slope is the log of the threshold ratio relative to the log of
the set-size ratio. This measure allows one to make rough com-
parisons across different combinations of set size. The advantage
of this measure is that, because it is a ratio measure, it is unitless
and does not depend on the sensitivity or overall ability of any
given participant. By using the log–log slope measure, they de-
rived predictions for several search tasks. For yes–no search tasks,
set sizes of two to eight are predicted to have a log–log slope of
0.22. For n-alternative localization, the same set sizes are predicted
to have a log–log slope of 0.34 (Shaw, 1980; see our Appendix for
details). Thus, by this measure, identification is predicted to have
smaller set-size effects than those of localization.

The d� and threshold approaches are based on a common theory.
For fitting a single data set to a single theory, they are essentially
equivalent. Differences between the approaches become evident
when considering the predictions relative to other theories. The
advantage of the threshold approach is to facilitate explicit eval-
uation of alternative theories by using the descriptive threshold
measure rather than building the theory into the measure of per-
formance. In summary, we follow the threshold approach both to
make explicit the task differences and to address the interaction
between discriminability and set size. In the next two sections, we
review the set-size effects found for identification and localization
for two kinds of search tasks: Those with one possible target and
those with two possible targets. This review reveals that set-size
effects are dependent on this aspect of the task.

One-Target Studies

Perhaps the simplest example of identification is a yes–no task.
Several studies have examined a variety of attributes by using the
threshold approach to compare across discriminability (contrast:
Palmer, 1994, and Foley & Schwarz, 1998; color: Monnier &
Nagy, 2001, and Palmer, 1994; size: Palmer et al., 1993, and
Palmer, 1994; orientation: Palmer, 1994; motion speed: Palmer,
Verghese, & Pavel, 2000; motion direction: Dobkins & Bosworth,
2001; shape: Palmer et al., 1993). For set sizes 2 and 8, the log–log
slope for all of these attributes was between 0.2 and 0.3, which
compares well with the 0.22 predicted by a noisy integration model
with unlimited capacity (Palmer et al., 1993; Shaw, 1980).

There are several studies that have directly compared identifi-
cation and localization by using the d� approach (e.g., Swensson &
Judy, 1981). Other studies have closely examined set-size effects

for localization of simple attributes (e.g., Shaw, 1980). Here, we
extend those studies by using the threshold approach to compare
identification and localization. Given the indirect evidence, we
fully expect that for one target the set-size effects for identification
will be smaller than for localization.

Two-Target Studies

Quite different results for the identification–localization com-
parison have been obtained for orientation accuracy search with
two possible targets (only one of which was present on any given
trial). In Baldassi and Burr (2000), the targets were either right
leaning or left leaning with vertical distractors. Observers made
either a choice between left and right leaning (two-target identifi-
cation) or a choice among n-alternative locations. By using the
threshold approach, they found set-size effects for identification
were larger than set-size effects for localization. Specifically, the
log–log slope was 0.5 for identification and was about 0.2 for
localization. This is the opposite pattern observed for one-target
search. Baldassi and Verghese (2001) developed a noisy integra-
tion model specific to the two-target task. They showed that a
model with similar processing of identification and localization
predicts this ordering of set-size effects for two-target identifica-
tion and localization. This result has been replicated and extended
by Solomon and Morgan (2001).

Summary of Prior Research

In summary, Swensson and Judy (1981), Baldassi and Verghese
(2001), and others have argued that models based on signal detec-
tion theory can account for differences in set-size effects between
identification and localization. Unnoticed was that the one-target
and two-target studies produced the opposite pattern of set-size
effects for identification and localization. Such a reversal is not
consistent with the privileged processing hypotheses suggested by
either Treisman and Gelade (1980) or by Sagi and Julesz (1985b).
We pursue this observation with a direct comparison of identifi-
cation and localization for one- and two-target search tasks. We
also include in the Appendix an analysis of the different decision
problems imposed by each task.

General Method

Figure 1 shows an example display. Observers fixate a central
cross, and either two or eight grating patches appear around a
fixation cross. The target in this example is a grating patch tilted
to the left, and depending on the task, the observer identifies the
target or reports its location. We tilt the individual gratings to vary
the angle between the target and distractors. If both angles are
close to vertical, this is a difficult task. However, as both stimuli
are tilted away from vertical in opposite directions, this task
becomes trivially easy. Systematically varying the angular differ-
ence between targets and distractors allows the measurement of a
psychometric function and the estimation of an angle difference
threshold. How much this threshold increases with additional
stimuli is our measure of the set-size effect.

One difficulty that arises during comparisons of identification
and localization is that the details of the task matter. As a result, we
considered a variety of visual search tasks, along with a model of
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each task that embodies the structure of the decision necessary for
that particular task. The most common task involving identifying
a target item is a yes–no judgment of the presence of the target
(yes–no identification). The most common localization task differs
in that the target is always present and the observer indicates its
location (n-alternative localization). We also employed a variation
on localization in which the observer indicates if the target was on
the left side or right side of the display (coarse localization). These
tasks were also investigated with two targets, in which only one
tilted target was present on each trial, but it could be one of two
tilts (left or right leaning). For identification, one of two targets is
always presented among distractors, and the observer indicates the
identity of the target (two-target identification). For localization,
the observer reports the location of the single target (of two
possible) in terms of the n possible locations (two-target,
n-alternative localization) or in terms of the left or right side of the
display (two-target, coarse localization).

Observers

The observers were young adults with normal or corrected-to-
normal vision who received monetary compensation.

Stimuli

An example display is found in Figure 1. The stimuli were 1.5
cycles per degree (cpd) cosine gratings presented in a Gaussian
window with a full width of 1° at half height. For most experi-
ments, targets were tilted and distractors were vertical. The stimuli
were arranged around an iso-eccentric circle about 7° in the
periphery. These locations were modified in two ways. First, each
stimulus was jittered by up to 0.8° to avoid accidental alignments
among the stimuli. Second, for experiments involving coarse lo-
calization as one of the tasks, the stimuli were shifted horizontally
to make it unambiguous which were on the left and right sides of
the displays. The phase of the grating was also randomized across
stimuli.

The gratings were displayed on a 21-inch Macintosh grayscale
monitor with luminance determined by a Video Attenuator and the

VideoToolbox software library (Pelli, 1997). The surround lumi-
nance was 40 cd/m2. The contrast of the gratings was determined
in different ways depending on the experiment. It was always a
value several times the contrast threshold for these peripheral
stimuli. For some experiments, a single fixed level of contrast was
used for all observers and conditions. For other experiments, a
preliminary measurement was conducted for each observer in
which contrast sensitivity was determined for a single grating
displayed in the periphery to the left or right of fixation. The
contrast used for the search experiment was some multiple (e.g., 3)
of the measured threshold contrast. The same value of contrast was
always used for corresponding identification and localization
tasks.

Procedure

The display contained a fixation cross that never disappeared,
and observers were instructed to maintain fixation during a trial.
Each trial began with a warning tone, which was followed by the
onset of the stimulus after 30 ms. Depending on the experiment,
the stimuli were either presented abruptly with a very short dura-
tion (e.g., 100 ms) or were presented with a gradually changing
Gaussian time course (e.g., effective duration � 200 ms). After the
stimulus offset, the observer made an unspeeded response appro-
priate for the task. For yes–no identification, the observer pressed
the 8 key if the target was present and the 9 key if all items were
distractors. For two-target identification, the observer pressed the
5 key for a left-leaning target and the 6 key for a right-leaning
target. For n-alternative localization, the eight keys around the 5
key on a numeric keypad were designated to correspond to the
eight possible stimulus locations. For coarse localization, the ob-
server pressed the 2 key for the target on the left side and the 3 key
for the target on the right side. After response, feedback was given
with high and low tones indicating correct and incorrect, respec-
tively. The next trial occurred after an additional 500 ms.

For all tasks, performance was measured at set size 2 and set
size 8. For set size 2, the two stimuli were always opposite each
other to further minimize possible eye movements. A block of 384
trials served as practice for each observer and allowed the exper-
imenter to watch for eye movements by the observers and provide
verbal feedback if they made eye movements. This practice session
also established an initial angle difference threshold for each
condition by using the QUEST procedure (Watson & Pelli, 1983).
For the two-choice tasks, the procedure varied the difference in the
angle between the target and the distractors so that on average the
observer was 75% correct, which is halfway between chance and
perfect. For the n-alternative localization task, this was modified
because chance was 12.5% in the n-alternative localization task for
set size 8. For this case, the angle was varied to achieve 56.25%
correct, which is halfway between chance and perfect. The actual
experiment measured performance at six logarithmically spaced
angles centered around the initial threshold. Each angle was tested
in a separate block in order to allow observers to adjust their
yes–no criterion to maintain an equal bias. Blocking also allows an
estimate of the hit and false alarms for each angle separately. At
the end of each block of trials, observers were cautioned if their
responses in the yes–no task exhibited a bias. Specifically, they
were warned if their percentage of one response type exceeded
60% and were asked to respond more equally. Observers com-

Figure 1. Example display with set size 8 as used in Experiment 1.

793SET-SIZE EFFECTS FOR IDENTITY VERSUS LOCATION



pleted one task and then the other, but in different orders. Perfor-
mance in the yes–no task was averaged across the target present
and target absent trials, under the assumption of equal bias.

Analysis of Psychometric Functions

The most theoretical approach to the analysis of psychometric
functions is to choose a function for a single stimulus discrimina-
tion (such as the cumulative Gaussian) and then derive how the
function changes with set size (Palmer et al., 2000; Pelli, 1987).
These models predict that increasing set size steepens the slope of
the psychometric function as well as increasing the threshold. We
focus on estimating the threshold because threshold estimates are
more reliable than estimates of the slope. Accordingly, we fit a
standard psychometric function with two parameters. The two
common models in the literature are the Weibull (D. M. Green &
Luce, 1975; Quick, 1974) based on high threshold theory and the
generalized Gaussian based on signal detection theory (Nachmias
& Kocher, 1970; Pelli, 1987). Both models have a threshold and
slope parameter and make virtually identical estimates of the
thresholds for the experiments reported here. We report the Gauss-
ian results only because the Gaussian is more compatible with
signal detection theory. In sum, we focus on predictions of the
effect of set size on thresholds rather than the detailed shape of the
psychometric functions.

Experiment 1

Method

In Experiment 1, set-size effects on the angle difference thresh-
old were measured for four tasks. Two were one-target tasks:
yes–no identification and coarse localization; and two were two-
target tasks: two-target identification and two-target, coarse local-
ization. Targets were tilted and distractors were vertical for all four
tasks. The contrast of the stimuli was defined as C � (L – S) / S,
where L is the maximum luminance of the grating and S is the
mean surround luminance. Contrast was fixed throughout at 48%,
which is the largest contrast without clipping for these stimuli and
several times the contrast threshold in the periphery. After prac-
tice, twelve 1-hour-long sessions resulted in 864 trials per psycho-
metric function. Six observers participated in this experiment.

Results

The results for one observer, MB, are illustrated in Figure 2. The
panels on the left side of the figure show the results for the tasks
with one target. Begin by considering Panel A. The psychometric
functions are shown for yes–no identification with one target. They
plot the proportion correct as a function of the difference in angle
between the target and distractors. The filled circles indicate the
proportion correct for set size 2, and the filled triangles indicate the
proportion correct for set size 8. There is a clear effect of set size
for the entire range of angles. The points are fit with a cumulative
Gaussian raised to a power as described in the general methods
(Pelli, 1987). The dotted grid line marks the proportion correct of
0.75, which is halfway between chance and perfect, and the dotted
drop lines to the x-axis show the estimated difference thresholds
defined by this performance level. For a good first approximation,

the set-size effects can be summarized as a horizontal shift of these
psychometric functions.

In the Panel B, the corresponding psychometric functions are
shown for coarse localization with one target. Here the open
symbols and dashed curves illustrate the psychometric function. In
terms of proportion correct, the set-size effect is clearly larger for
localization than it is for identification. This can be quantified in
terms of the threshold for each set size. As above, the dotted lines
show the estimated difference thresholds. The change in threshold
is clearly larger for localization than for identification.

In the Panel C, the angle difference thresholds are summarized
as a function of set size for both tasks. Thresholds are higher for

Figure 2. The results of Experiment 1 are illustrated for one observer,
MB. The left column of panels shows the results with one target; the right
column of panels shows the results for two targets. The top row of panels
is for identification tasks; the middle row is for localization tasks. For each
of the four top panels, the proportion correct is plotted as a function of the
angle difference. The effect of set size can be summarized by the horizontal
shift of the two functions within each panel. This horizontal shift is larger
for localization with one target and larger for identification for two targets.
The bottom two panels summarize this interaction by plotting the angle
difference threshold as a function of set size. Error bars represent one
standard error. Identification is represented with solid lines and localization
with dashed lines. In Proportion Correct panels, horizontal lines reflect the
threshold performance level (typically midway between chance and perfect
performance), and vertical lines represent the estimated threshold in units
of degrees of angle difference.
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identification than for localization. However, the effect of set size
is smaller for identification than for localization. Specifically, the
log–log slope is 0.37 for identification and 0.81 for localization.

The panels on the right side of Figure 2 show the corresponding
results for tasks with two targets. In Panel D, the set-size effect is
shown for two-target identification. It is clearly larger than found
for one-target identification. In Panel E, the set-size effect is
shown for two-target localization. It is clearly smaller than found
for one-target localization. This reversal in the magnitude of ef-
fects is summarized by the threshold-versus-set-size graph in Panel
F. The log–log slope is 0.59 for two-target identification and is
0.28 for two-target localization. This pattern of results is repeated
for all 6 observers.

The mean thresholds for the 6 observers are illustrated in
Figure 3. Panels A and B show threshold-versus-set-size func-
tions for one versus two targets, respectively. As with the
observer MB, there is a reversal in the magnitude of set-size
effects. For one-target tasks, the log–log slope of 0.40 � 0.05
for identification is smaller than the log–log slope of 0.75 �
0.08 for localization. For two-target tasks, the log–log slope of
0.60 � 0.04 for identification is larger than the log–log slope of
0.32 � 0.06 for localization. This comparison is made explicit
in Panel C of Figure 3. It plots the log–log slope for one- and
two-target conditions. The solid symbols are for identification,
and the open symbols are for localization. For this measure of

set-size effects, there is a crossover interaction between the task
and the number of targets. The interaction measure for the
effect of task with one target minus the effect of task for two
targets yields a value of 0.64 � 0.07, t(5) � 8.8, p � .001.
Moreover, this crossover interaction is found individually for
all 6 of the 6 observers. Thus, this interaction is reliable and
uniform across observers.

Discussion

The privileged processing hypotheses predict that set-size ef-
fects are critically dependent on whether the task is identification
or localization. The results of Experiment 1 show that this is not
the case. The relative magnitude of set-size effects for identifica-
tion and localization is reversed when one compares one-target and
two-target tasks. Thus, on the face of this result, one must reject
the privileged processing hypotheses.

One can question the assumptions of the threshold analysis
rather than the privileged processing hypothesis. Indeed, the use of
thresholds as a summary of performance is imperfect. In particular,
it is only a complete summary of performance if the shape of the
psychometric functions is consistent over all of the conditions of
interest. The slope of these functions do vary with set size (e.g.,
Palmer et al., 2000). This effect is not large, but it introduces a
complication. How can one compare set-size effects more gener-
ally?

To make a more general comparison, one can compare the
observed proportion correct for an appropriately chosen condition.
The trick is to find a way to match conditions across different
tasks. The threshold analysis does this by estimating thresholds for
all set sizes. This uses a common performance level to compare
stimulus conditions. Alternatively, one can estimate a single crit-
ical stimulus value for a particular set size to define a point of
comparison across tasks. For example, find an angle that results in
75% correct for set size 8. Then for that angle, estimate the
proportion correct for the set-size-2 condition. The better the
performance in set size 2, the larger the set-size effect. This
approach is illustrated in Panel A of Figure 4. It is a schematic of
proportion correct as a function of angle for two set sizes. It is
similar to the panels shown in Figure 2 in the analysis of Exper-
iment 1. The critical angle is defined by 75% performance in the
set-size-8 condition. This rule allows one to find stimuli with
equivalent difficulty across tasks. Then, the proportion correct at
this critical angle can be estimated for each task. This estimation
uses the psychometric functions but does not assume anything
about a consistent slope. Indeed, in the analysis of Experiment 1,
each observer was fit with a free parameter for both the 75%
correct threshold and the slope.

The results of this alternative analysis are shown in Panel B of
Figure 4. For example, identification in the one-target task yielded
an estimated proportion correct of 88%, which is shown by the
solid point on the left side of the figure. Similar estimates were
made for all four tasks. For one-target tasks, the estimated pro-
portion correct is higher for localization than for identification.
Thus, the set-size effect is larger for localization than for identi-
fication. This is consistent with the results of Experiment 1 as
summarized by thresholds. For the two-target tasks, the proportion
correct is higher for identification than for localization. Again, this
is consistent with the threshold analysis. Thus, by this method of

Figure 3. The results of Experiment 1 are summarized by the mean of
estimates from all 6 observers. The top two panels show the threshold as
a function of set size. For the mean threshold, the set-size effects are larger
for localization for one target and larger for identification for two targets.
The bottom panel summarizes this crossover interaction by plotting the
log–log slope as a function of the number of targets. Error bars represent
one standard error. Identification is represented with solid lines and local-
ization with dashed lines.
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estimating the proportion correct, there is also a crossover inter-
action. The interaction measure for the effect of task with one-
target minus the effect of task for two-targets yields a value of
13 � 2%, t(5) � 5.8, p � .005. Moreover, this interaction is
evident in 6 of the 6 observers and is a crossover interaction in 5
of the 6. In sum, this more general analysis yields essentially
identical results as the threshold analysis. By both analyses, one
must reject the privileged processing hypotheses.

The complexity of these tasks makes casual comparisons diffi-
cult. However, we offer a straightforward generalization of signal
detection theory as a unifying model that builds in the differences
between the tasks and provides not only a qualitative account of
the ordering of the set-size effects but also provides intuitions
about the surprising differences between the tasks. First, however,
we introduce an n-alternative localization task to demonstrate how
the results are not dependent on our particular choice of localiza-
tion task.

Experiment 2

To generalize the results of Experiment 1, we next consider the
same comparison, but for the more common n-alternative local-
ization task rather than for coarse localization. The special feature
of coarse localization is that it maintains a two-choice response for
all set sizes. In contrast, the n-alternative localization task varies
the number of response alternatives with set size. This dramatically
changes the chance level of performance and without some kind of
theory, one cannot compare proportion correct measures for dif-
ferent set sizes. In the following experiment, we obtain psycho-
metric functions for all four tasks at two set sizes as done with
Experiment 1. To make comparisons, we use a threshold analysis
with the threshold defined as halfway between chance and perfect.
This approach is motivated by both a high threshold “correction
for guessing” and by a signal detection analysis that is described in
the Appendix. With the assumptions, we can attempt to generalize
the results of Experiment 1 to the more common n-alternative
localization task.

Method

Experiment 2 repeats much of the design of Experiment 1. The
new feature was to replace the coarse localization with the more
common n-alternative localization. Other details of the design
differ because some refinements were missing due to conducting
this experiment before Experiment 1. In particular, it was con-
ducted as two separate studies with different observers in the
one-target and two-target conditions. For the one-target conditions,
the target was tilted, and distractors were tilted in the opposite
direction. For the two-target conditions, the target was tilted one
way or the other, and the distractors were vertical. The contrast of
the stimuli was three times the measured contrast threshold for
each observer. On average, this was 16% for the one-target tasks
and 15% for the two-target tasks. The stimuli were presented with
a Gaussian time course that extended for 280 ms in total. This was
done in part because we thought that the abrupt onsets of the
100-ms duration might introduce transients that might favor one
task over another and interact with set size. Because of the long
tails of this Gaussian time course, the effective duration was
approximately 150 ms. Thus, we argue that there was not enough
time for an eye movement before the end of the effective display.
This experiment also had fewer trials than Experiment 1. After
practice, four 1-hour-long sessions resulted in 576 trials per psy-
chometric function. Six observers participated in the one-target
conditions and 5 in the two-target conditions.

Results

The results for one pair of observers (MR and MD) are illus-
trated in Figure 5. In Panel A, the psychometric functions are
shown for yes–no identification with one target (observer MR). As
with Experiment 1, there is a clear effect of set size for the entire
range of angles, and the set-size effect can be summarized by a
horizontal shift of these functions.

In Panel B, the corresponding psychometric functions are shown
for n-alternative localization with one target for the same observer.
In terms of proportion correct, the set-size effect is clearly larger
for localization than it was for identification. Unfortunately, this

Figure 4. The set-size effects of Experiment 1 are measured in a way that
allows for the psychometric functions to vary in steepness. Panel A
illustrates how the proportion correct (PC) is estimated for set size 2 from
the angle difference that is at threshold for set size 8. For this estimate,
larger proportion correct values indicate larger set-size effects. Panel B
shows the estimated proportion correct as a function of the task and the
number of targets. This more general analysis results in the same crossover
interaction as found with the threshold analysis. Error bars represent one
standard error. In Panel A, the horizontal dashed line represents our chosen
threshold performance criterion (75% correct identification or localiza-
tion), and the vertical dashed line reflects the increase in accuracy for set
size 2 relative to set size 8 at the set size 8 threshold angle. In Panel B,
identification is represented with solid lines and localization with dashed
lines.
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comparison is made difficult by the change in the chance level
with changes in set size. A better comparison is in terms of the
threshold for each set size. This assumes that set size causes both
a vertical scaling and a horizontal shift of the psychometric func-
tion. As in Experiment 1, the dotted lines show the estimated
difference thresholds. The change in threshold is larger for local-
ization than for identification.

In Panel C, the angle difference thresholds are summarized as a
function of set size for both tasks for observer MR. Identification
thresholds are higher than localization thresholds. However, the

effect of set size is smaller for identification than for localization.
Specifically, the log–log slope is 0.26 for identification and 0.54
for localization. This qualitatively replicates the results for Exper-
iment 1.

The panels on the right side of Figure 5 show the corresponding
results for the tasks with two targets and observer MD. In Panel D,
the set-size effect is shown for two-target identification. It is larger
than found for one-target identification. In Panel E, the set-size
effect is shown for two-target localization. Again the comparison
is made difficult by the changing chance level of performance. By
using the threshold illustrated by the dotted lines, the set-size effect
is smaller for two-target localization than for two-target identifi-
cation. This reversal in the magnitude of effects is summarized by
the threshold-versus-set-size graph in Panel F. The log–log slope is
0.59 for two-target identification and is 0.29 for two-target local-
ization. This pattern of results is repeated for all 6 observers and
replicates that found in Experiment 1.

The mean thresholds for the 6 observers are illustrated in Figure
6. Panels A and B show threshold-versus-set-size functions for one
versus two targets, respectively. As with the example observers,
there is a reversal in the magnitude of set-size effects. For one-
target tasks, the log–log slope of 0.32 � 0.08 for identification is
smaller than the log–log slope of 0.56 � 0.09 for localization. For
two-target tasks, the log–log slope of 0.57 � 0.11 for identification
is larger than the log–log slope of 0.29 � 0.04 for localization.
This comparison is made explicit in Panel C of Figure 6. It plots

Figure 5. The results of Experiment 2 are illustrated for observer MR
with one target and observer MD with two targets. As with Figure 2, the
left and right columns show the results for one and two targets, respec-
tively. The top two rows show the results for identification (solid lines) and
localization (dashed lines). The effect of set size can be summarized by the
horizontal shift of the two functions within each panel but with the
additional provision of different chance levels of performance for different
set sizes in localization. This horizontal shift is larger for localization with
one target and larger for identification with two targets. The bottom two
panels summarize this interaction by plotting the angle difference threshold
as a function of set size. The threshold is defined by the performance level
that is halfway between chance and perfect. Error bars represent one
standard error. In Proportion Correct panels, horizontal lines reflect the
threshold performance level (typically midway between chance and perfect
performance), and vertical lines represent the estimated threshold in units
of degrees of angle difference.

Figure 6. The results of Experiment 2 are summarized by the mean of
estimates from all observers. The top two panels show that the set-size
effects are larger for localization (dashed lines) for one target and larger for
identification (solid lines) for two targets. The bottom panel summarizes
this crossover interaction by plotting the log–log slope as a function of the
number of targets. Error bars represent one standard error.
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the log–log slope for one- and two-target conditions. The solid
symbols are for identification, and the open symbols are for
localization. As with Experiment 1, there is a crossover interaction
between the task and the number of targets. The interaction mea-
sure is 0.51 � 0.11 and is reliable, t(9) � 4.5, p � .01. Thus, the
observed crossover interactions are very similar in Experiments 1
and 2.

Discussion

The privileged processing hypotheses predict that set-size ef-
fects depend on whether the task is identification or localization.
The results of Experiment 1 showed that the ordering of set-size
effects for identification and localization depended on the use of
one versus two targets. The results of Experiment 2 generalize this
result to n-alternative localization tasks. The threshold analysis
yields the same result for both coarse and n-alternative localiza-
tion. Thus, the evidence against the privileged processing hypoth-
esis is not limited to coarse localization.

Analysis 1: An Independent Channels Theory of Set-Size
Effects

The focus of this article is on demonstrating that set-size effects
are not determined by the general distinction between identifica-
tion and localization. Other specific features of the tasks matter.
Here, we sketch a theory of these set-size effects based on signal
detection theory by using independent channels for each stimulus.
Details are in the Appendix. Somewhat to our surprise, the first
theory we considered predicted the observed crossover interaction
between number of targets and identification versus localization.

Signal detection theories of visual search have three kinds of
assumptions. First, we assume that the relevant representations are
noisy and correspond to single, real-valued random variables.
Furthermore, for specific predictions we assume equal-variance
Gaussian distributions. Second, we assume that the representations
for each stimulus are independent. Two aspects of independence
are relevant: unlimited capacity and statistical independence. For
unlimited capacity, the quality of the representation of any one
stimulus is independent of the number of the stimuli. For statistical
independence, the value of the representation of any one stimulus
is uncorrelated with another. Third, the two tasks require different
decision rules. For yes–no identification, the observer is assumed
to set an internal criterion and to respond “yes” if at least one of the
items on the screen is tilted more than the criterion. For
n-alternative localization, the observer is assumed to pick the
location with the most evidence for a tilt to the left. Thus to
compare these two tasks, we need a framework that builds in these
different task demands.

The top panel of Figure 7 shows the representations for the two
stimuli under target absent (left panels) and target present (right
panels) trials. The abscissa specifies the stimulus representation,
which is an internal transformation of angle, with target items
appearing more tilted to the left. Thus, the target on average
appears further to the right in the graphs of Figure 7. The distrac-
tors shown are Gaussian, and the numerical predictions also as-
sume Gaussian distributions. However, the theory can make pre-
dictions from any reasonable distribution.

For the yes–no identification task, we adopt a decision rule in
which the observer makes a “yes” response if at least one stimulus
item in the display exceeds an internal criterion. This rule is not
quite ideal, although it is close. Thus on a target absent trial there
are two samples from the target absent distribution, and a “yes”
response is made if either exceeds the criterion.

The assumptions of unlimited capacity and statistical indepen-
dence imply that as additional items are added to the display the
processing of each individual item does not change. However,
noisy integration can still produce an increase in threshold for
larger set sizes. On a target absent trial for set size 2, the observer
has two chances to make a false alarm. With set size 8, the
observer has eight chances to make a false alarm, as shown in the
lower panels of Figure 7. To compensate and keep equal bias, the
observer must increase the criterion for saying “yes,” at the cost of
reducing the hit rate. Thus this theory predicts a set-size effect
even with unlimited capacity.

The n-alternative localization task differs in that a target is
always present and the observer reports the location that is most
likely to contain a target. Thus there is always one target and one
distractor distribution for the signal detection model of the set-
size-2 condition for localization. For the ideal decision rule, the

Set Size 2: Yes–No

Set Size 8: Yes–No

A

B

Figure 7. An illustration of the signal detection theory of set-size effects
for yes–no identification. For set size 2 as illustrated in the top panels, a
target absent trial has two opportunities to produce a false alarm. For set
size 8 as illustrated by the bottom panels, a target absent trial has eight
opportunities to produce a false alarm. The net result is reduced perfor-
mance for set size 8 relative to set size 2. This noisy integration process
predicts a log–log slope on the threshold-versus-set-size graph of 0.22.
Targets are depicted with solid lines and distractors with dotted lines. The
three vertical dots are placeholders for the five additional target absent
graphs that are not shown due to space limitations.
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observer chooses the location with the most evidence of a target
and reports it. Thus on a trial with set size 2, one samples from the
two distributions and picks the location with the largest value. The
observer makes an error if the distractor value exceeds the target
value. With set size 8, there are seven distractors, each of which
might exceed the target item and lead to an error. There is now
much greater overlap between the relevant distributions, leading to
reduced performance and higher thresholds for set size 8. Thus, the
model for this task also produces set-size effects even with inde-
pendent channels. Similar arguments are described for the two-
target tasks in the Appendix. These tasks introduce variations in
the decision rule because of the need to distinguish the two targets
in identification and the new ways to make an error in localization.

Here are the predictions for all four tasks in terms of the log–log
slope comparing set size 2 with set size 8. For one-target tasks, the
predicted log–log slope is 0.22 for yes–no identification and 0.34
for coarse and n-alternative localization. In words, the set-size
effects are predicted to be smaller for identification than for
localization. For two-target tasks, the predicted log–log slope is
0.42 for two-target identification; 0.17 for two-target, coarse lo-
calization; and 0.14 for two-target, n-alternative localization. This
reverses the order of the set-size effects for two-target tasks: Now,
identification has larger set-size effects than does localization.
Thus, the independent channel model predicts the observed cross-
over interaction. Some intuition for this prediction is developed at
the end of the Appendix, but we offer a few highlights in the next
section.

Intuitions for Task Differences

One of the most surprising aspects of the comparison be-
tween one- and two-target conditions is the difference observed
at set size 2 in terms of performance in the localization task (see
Figures 2C and 2E). At first blush, these two conditions are
quite similar: In both cases, the observer must identify the
location of the tilted item among a number of distractors.
However, at set size 2, adding an additional possible target
increases the angle threshold by a factor of 5, while only
doubling the threshold at set size 8. One way to view these
differences is that the two-target condition can be thought of as
more like a set size 4, since the observer must track two
possible targets. Thus it is handicapped from the start. How-
ever, these effects do not scale linearly, so that the differences
between one- and two-target conditions become smaller at set
size 8.

A second source of the differences is the switch between a
yes–no decision task and a two-alternative identification task. The
latter can be employed with two targets but not one target. The
analysis in the Appendix shows that even with two targets, a
yes–no task yields smaller set-size effects than does a correspond-
ing two-target identification task. One intuition for this effect is
that when viewing a distractor there are more ways to go wrong
with the two possible target choices rather than one “target” choice
of “yes.”

Not all is well. The predicted set-size effects are consistently
smaller than those observed in Experiments 1 and 2, which may
come, for example, from performance in set size 8 that is worse
than the theory predicts based on set size 2. This decreased
performance could result from a number of factors, and in the

following two experiments and one new analysis, we explore the
generality of the observed results and seek possible reasons for the
discrepancy between the observed and predicted set-size effects.

Experiment 3: Sensory Interactions in Space and Time

Our analysis of Experiments 1 and 2 placed all the differences
between the various tasks at the decision process and assumed a
common perceptual representation across tasks. One test of this
assumption is to vary the stimulus to see whether this affects the
localization and identification tasks in different ways. We do this
by manipulating both spatial frequency (by making the width of
the bars in the grating smaller or larger) and temporal frequency
(by flickering the stimuli on and off at several different flicker
rates). If decision processing accounts for the task differences, then
the results observed for one pair of spatial and temporal frequen-
cies must generalize to other frequencies. In contrast, if perceptual
processing differs for identification and localization, then spatial
and temporal frequency manipulations may allow one to vary the
mediating mechanism. In particular, our choice of manipulations is
motivated by the idea that one can selectively stimulate visual
pathways by using different combinations of spatial and temporal
frequencies (e.g., Merigan & Maunsell, 1993). While our manip-
ulation may not isolate a particular pathway completely, it is likely
to vary the contributions of the different pathways.

To test the spatial and temporal frequency dependencies of the
two tasks, we measured the set-size effects at various combinations
of spatial and temporal frequencies in yes–no identification and
n-alternative localization as used in Experiment 2. In addition, to
assess the dependence on contrast, we included a higher contrast
condition for some combinations of spatial and temporal frequen-
cies.

Method

The methods were similar to Experiment 2, with the manipula-
tion of spatial frequency (1.5 or 3 cpd), and temporal frequency (2
or 18.75 Hz), and contrast (3x contrast threshold or 5x contrast
threshold). The mean contrast value varied across flicker fre-
quency and spatial frequency. For the 2-Hz flicker, the mean
contrasts across observers were 14%, 27%, and 16% for the 1.5
cpd, 1.5 cpd higher contrast, and the 3 cpd conditions, respectively.
For the 18.75-Hz flicker, the values were 35%, 60%, and 76%,
respectively. These values were identical for paired localization
and identification tasks. The procedures were similar to Experi-
ment 2, except that the temporal waveform of the stimulus was
modulated either at 2 Hz or 18.75 Hz. In order to accommodate the
slower frequency, we increased the stimulus duration to 400 ms.
This modulation included the reversal of the grating (rather than
modulating to gray). Four observers participated in the identifica-
tion task first and then the localization task.

Results

Figure 8 shows the results of the various combinations of the
three variables. To assess whether the three types of manipulations
(spatial frequency, temporal frequency, and contrast) had any
effect at all on the set-size effects for the two tasks, we performed
a within-observers one-way analysis of variance for each task. For
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both the yes–no identification and n-alternative localization tasks,
no significant differences were found between any of the six
conditions: identification, F(5, 15) � 1; localization, F(5, 15) �
1.65, p � .05.

Without differences across spatial and temporal frequencies, we
combined across conditions to produce an overall summary mea-
sure for the two tasks. The mean log–log slope is 0.27 � 0.04 for
identification and 0.46 � 0.03 for localization. These results
replicate the one-target results of the Experiment 2. Thus, we can
generalize our results to a range of spatial and temporal frequen-
cies.

Discussion

On the basis of these results, we conclude that the identification
and localization tasks do not show strong spatial and temporal
frequency dependencies in our measure of set-size effects. This is
consistent with similar processing of identification and localiza-
tion. However, see Cameron et al. (2004) for possible limits on this
generalization by using a larger range of spatial frequencies (0.5 to
12.0 cpd).

Experiment 4: Cuing Control

One possible explanation for finding set-size effects larger than
predicted by the independent channel model is that sensory inter-
actions may introduce dependencies for our displays. We deliber-
ately tried to avoid sensory interactions by using widely spaced
items: The nearest neighbor is a distance three times the width of

a single stimulus item and more than half its eccentricity. In
addition, we attempted to disrupt sensory interactions by random-
izing the exact location of each stimulus and the phase of the
gratings. However, it is possible that despite our efforts some kind
of sensory interactions were present in our tasks. To test this, we
conducted Experiment 4 with two conditions. The first was a
control condition identical to the n-alternative localization task
from Experiment 2. The second condition measured set-size ef-
fects by cuing a subset of stimuli in an otherwise identical display
(see Palmer, 1994). For this relevant-set-size-2 case, the display
had two pre-cues prior to the onset of the trial that indicated the
relevant locations. The cues were always followed by eight stim-
uli, and the target appeared in one of the two cued locations. For
relevant set size 8, all eight locations were pre-cued. We ask
whether the set-size effect differs between the control condition
where the number of stimuli vary and the new condition where the
number of stimuli are constant but a subset is cued. Effects of
relevant set size that are smaller than of display set size are
consistent with sensory interactions or ineffective cues. Effects of
relevant set size that are larger than of display set size are consis-
tent with phenomena such as crowding (Bouma, 1970; Pelli,
Palomares, & Majaj, 2004).

Method

The stimuli were identical to those in Experiment 2. The mean
contrast value used across observers was 17% and was identical
for cued and no-cued conditions for each observer. There were two
conditions. One was identical to the n-alternative localization task
of Experiment 2. The other always presented eight items on each
trial, but for pre-cued locations with small plus signs prior to the
start of the trial. The stimulus onset asynchrony between the cue
and the stimuli was 800 ms. The target then appeared in one of the
two cued locations for 280 ms with a Gaussian temporal profile.
The set-size-8 condition used eight pre-cues in this task, with one
target and seven distractors. Five observers participated.

Results

Table 1 contains the thresholds for set size 2 and 8 for the
display-set-size and relevant-set-size conditions. Averaged across
observers, there are no reliable differences. The display-set-size
condition had a log–log slope of 0.47 � 0.07, and the relevant-
set-size condition had a log–log slope of 0.43 � 0.10. The mag-
nitude of these set-size effects are similar to those found in the
corresponding conditions of Experiments 2 and 3. Thus, this
experiment demonstrates a similar set-size effect despite the use of

Figure 8. Set-size effects are summarized by the log–log slope for all
conditions in Experiment 3. Solid symbols represent identification tasks;
open symbols represent localization tasks. The vertical lines show the
means for the identification and localization tasks. Hz � cycles per second;
cpd � cycles per degree; lo-C � low contrast; hi-C � high contrast. Error
bars represent one standard error.

Table 1
Experiment 4: Set-Size Effects Using Cues or Varying the
Number of Stimuli

Condition

Set size

2 8

No Cue 2.5° � 0.3° 4.8° � 0.6°
Cue 2.3° � 0.3° 4.2° � 0.6°

Note. Values are the orientation threshold in degrees.
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identical displays. Sensory interactions cannot be responsible for
these effects of relevant set size.

Analysis 2: Mislocalizations

Mislocalization Errors in Localization Tasks

One possible explanation for the poor fit of the independent
channel model is a failure of independent processing of the indi-
vidual stimuli. Such a dependence can lead to mislocalizations
such as found by Solomon and Morgan (2001). To measure the
degree of mislocalization with set size 8, we computed the errors
for each position conditioned on how far away the position was
from the target. The data for n-alternative localization in Experi-
ments 2, 3, and 4 are shown in Figure 9. To combine across
observers, we divided the six angles that were used to test each
observer by that observer’s threshold angle. This produced a
relative angle, where 1.0 is the angle that produces approximate
threshold performance (56% correct for set size 8), and smaller
angles represent more difficult conditions. The angles used for
each observer were then assigned to one of eight relative angles based
on the angle’s relation to the threshold angle for that observer in that
condition. Performance at each relative angle was then averaged
across observers to produce the graphs shown in Figure 9.

Positions adjacent to the target have systematically more errors
than do locations two and three positions away from the target. The

independent channel model does not predict this effect. One might
propose that these mislocalizations come from confusions when
translating a chosen location into a response on the keypad. How-
ever, two lines of evidence make this explanation implausible: In
all of the set-size-2 conditions, observers can make any of eight
possible responses, but they made virtually no responses that do
not specify one of the two stimuli (such responses are allowed and
recorded as incorrect trials with respect to feedback). In addition,
in the relevant-set-size-2 condition of Experiment 4, observers
almost never made responses other than at one of the two pre-cued
locations. Thus, the basis for the mislocalizations is probably not
response confusion on the part of the observers. Next, we consider
an alternative explanation for mislocalizations.

The Overlapping Channels Model

One account of mislocalizations (Parkes, Lund, Angelucci, So-
lomon, & Morgan, 2001) is that observers pool information from
nearby stimuli. We use this pooling idea as the basis of our
overlapping channel model. In it, we relax the assumption of
stochastic independence and replace it with a weighted pooling
among neighboring stimuli. This is similar to models of crowding
(e.g., Pelli et al., 2004) and the interactive channel model (Estes,
1982). Our approach is to extend the model with one additional
free parameter to account for the mislocalization data and then test
its prediction of the set-size effect.

N-alternative localization:
Experiment 2

Two-target, n-alternative localization:
Experiment 2

N-alternative localization:
Experiment 3

N-alternative localization:
Experiment 4 cuing

N-alternative localization:
Experiment 4 no cuing

Figure 9. Mislocalization data for set size 8 from Experiments 2, 3, and 4 aggregating over observers. The
angle is defined relative to threshold performance for each observer. There are consistently more errors in the
position adjacent to the target. Curves are the predictions of the overlapping channels model with one free
parameter to describe the surplus of nearby mislocalizations. Error bars represent one standard error.
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In the overlapping channels model, one assumes that on a given
trial the representations of the two or eight stimuli are obtained
with unlimited-capacity processing. In other words, increasing the
number of items does not change the quality of the information at
each location. However, the representation is dependent on its
neighbors in another way. The interaction is by pooling, in which
the values of the representations associated with each stimulus
blend together. We call this an overlapping channel model to
distinguish it from the more specific independent channels model
or the more general interactive channel model.

The lack of independence implied by pooling changes the ex-
pected set-size effects. Because the pooling process is only rele-
vant to the set-size-8 condition, the overlapping channel model
predicts an increase of the set-size effect relative to independent
processing (see the Appendix for details).

By using weights estimated from the mislocalization data, we
derived the predicted set-size effects for each task. As before, the
predictions are for the log–log slope comparing set size 2 with set
size 8. For one-target tasks, the predicted log–log slope is 0.28 for
yes–no identification, 0.37 for coarse localization, and 0.40 for
n-alternative localization. For two-target tasks, the predicted log–
log slope is 0.47 for two-target identification; 0.36 for two-target,
coarse localization; and 0.42 for two-target, n-alternative localiza-
tion. Importantly, these predictions maintain the crossover inter-
action and are closer to the effects observed in the experiments.
The point here is that a modest alteration of the independent
channels model can predict the details of the observed crossover
interaction.

Limited Capacity and Overlapping Channels

The overlapping channels model breaks the independence of the
stimuli at the level of the initial sensory representation. This kind
of dependency that produces correlated inputs places limitations
on capacity when the system is considered as a whole, as did both
Broadbent (1958) and Estes (1982). However, others use the term
limited capacity to refer to the dependency of the processing of
individual items on the presence or absence of other items
(Townsend, 1974). By this definition, the overlapping channels
model has unlimited capacity. Note that the presence of set-size
effects alone is not diagnostic for limited-capacity processing (e.g.,
Palmer et al., 1993; Thornton & Gilden, 2007; Townsend, 1974).
In summary, whether one characterizes the overlapping channels
model as having unlimited or limited capacity depends on one’s
taste: specifically, whether one focuses on the processing of indi-
vidual stimuli or the entire system.

General Discussion

We measured set-size effects for identification and localization
for several different accuracy tasks. For the one-target tasks,
set-size effects were smaller for identification. In contrast, for
two-target tasks, set-size effects were smaller for localization. This
reversal was predicted by an independent channels model based on
signal detection theory. Moreover, the reversal makes clear that
there is nothing about identification or localization per se that
results in smaller set-size effects. The reversal is inconsistent with
the privileged processing hypothesis.

Additional experiments and analyses further constrain theories
of identification and localization. For example, equating the num-
ber of responses using a coarse localization task did not change the
pattern of results. More quantitatively, a closer look at the errors in
localization reveals a pattern of nearby mislocalizations that can be
attributed to pooling between neighboring stimuli (e.g., Morgan,
Ward, & Castet, 1998; Solomon & Morgan, 2001). The indepen-
dent channels model can be modified by including pooling be-
tween channels. This overlapping channels model does better at
predicting the magnitude of the set-size effects reported here.
Thus, these results are consistent with similar processing for iden-
tification and localization.

Current Status of Similar Processing and Close Binding

In this article, we find evidence from set-size effects that is
consistent with similar processing for identification and localiza-
tion. In the next section, we put this result into the context of other
ways to distinguish similar versus privileged processing of identity
versus location. Is our result isolated or common?

Relation to response time studies. Are the results found here
for identification and localization general to response time? Even
if this question is restricted to response time tasks for single-
fixation search, it is difficult to answer. Nothing in the existing
response time studies compares identification and localization with
either the range of tasks (one vs. two targets) of the current study
or the highly controlled two-by-two paradigm of Marc Green
(1992). Moreover, most response time experiments do not control
critical factors that influence the magnitude of set-size effects.
Perhaps the most important of these is target–distractor discrim-
inability (e.g., Duncan & Humphreys, 1989). In the current study,
the interaction of set size and target–distractor discriminability
was measured and characterized for each task by the threshold-
versus-set-size function.

To begin comparing identification and localization with re-
sponse time tasks, at least two things need to be done. First, the
interaction between set size and target–distractor discriminability
must be measured in the context of a response time task. One early
effort to do this was Palmer (1998), which found this interaction to
be quite similar for accuracy and response time if the other details
of the experiment are kept constant (e.g., sparse displays, common
stimulus values, etc.). Second, the theory of signal detection as
applied to visual search must be generalized to response time tasks.
The first part of this generalization is to adapt sequential sampling
theories that can describe both accuracy and response time exper-
iments (for a general review, see Luce, 1986; for a review of the
application to search, see Palmer et al., 2000). A recent article by
Thornton and Gilden (2007) is a nice example of applying these
ideas to the distinction between serial and parallel processes in
visual search. It remains for researchers to use these ideas to
compare identification and localization tasks.

Relative performance of localization and identification. Per-
haps the simplest comparison of identification and localization is a
direct comparison of performance (Atkinson & Braddick, 1989).
Perhaps the best-to-date comparison of this kind is by M. Green
(1992). He used a two-by-two task with two display intervals with
varying orientation. One response was a two-interval forced choice
(2IFC) identification judgment (called detection in the article), and
the other was a coarse left–right localization judgment. With this
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combination of tasks, performance was essentially identical for the
two tasks. M. Green argued that this particular pair of tasks should
result in identical performance, while other parings need not be
identical in performance. Similar analyses can be found in
Solomon and Morgan (2001).

In our experiments, one can also measure the localization–
identification threshold ratio. Consider the set-size-2 conditions to
make the analysis the most distinct from the set-size analysis
already presented. For the one-target tasks, the observed ratio was
0.54 � 0.03 in Experiment 1 and 0.56 � 0.03 in Experiment 2. The
prediction was 0.5. For the two-target tasks, the observed ratio was
1.5 � 0.1 in Experiment 1 and 1.4 � 0.3 in Experiment 2. The
prediction was 1.6. Thus, in all four cases the observed ratios are
near the predictions. Moreover, the ratios reverse between the one-
and two-target tasks just as did the relative magnitude of the
set-size effects. This additional bit of evidence is consistent with
the decision structure of the tasks determining performance rather
than identity versus location, per se.

Conditional performance of identification and localization.
Perhaps the best-known approach to the relation between identi-
fication and localization are estimates of the dependency between
these judgments when they are both made on a single trial. Spe-
cifically, one estimates the probability of identification given no
location information P(I | no L) or the probability of localization
given no identity information P(L | no I). Close binding predicts
both of these conditional probabilities are zero. The localization-
without-identification and identification-without-localization hy-
potheses predict one or the other probability is above chance. In
the extreme, if identification and localization are independent, then
the conditional probability is equal to the unconditional probabil-
ities. Early experiments have found support for identification with-
out localization (e.g., Treisman & Gelade, 1980) and for localiza-
tion without identification (e.g., Müller & Rabbitt, 1989).

Johnston and Pashler (1990) have identified several ways the
conditional probabilities can be influenced by the details of the
tasks. They control for these effects and were able to account for
much if not all of the observed conditional probability. They find
that the P(I | no L) is near zero, which is inconsistent with
identification without localization. In addition, they find that P(L |
no I) was around .1 in the context of correct localization proba-
bilities of .75. Since then, several investigations have further
pursued this approach. For example, van der Heijden and col-
leagues have investigated a single stimulus task with two- or
four-choice judgments of orientation and color paired with two- or
four-choice judgments of location (van der Heijden, Wolters, &
Brouwer, 1995; Bloem & van der Heijden, 1995). In some tasks,
they found P(I | no L) above zero but also found evidence for the
negative information problem. In their best-controlled study, they
found P(I | no L) near zero. They concluded that there is no
evidence of identification without localization. In summary, sev-
eral recent studies have found no evidence for identification with-
out localization and some evidence for localization without iden-
tification. Thus, the bulk of the evidence is consistent with close,
but not perfect, binding of identity and location.

Illusory conjunctions. The identification-without-localization
hypothesis has generated an investigation into relations between
judgments of multiple features. The idea is that if identification of
features can occur without localization, then different features such
as color and orientation can be miscombined. Treisman and

Schmidt (1982) have estimated the probability of such illusions by
comparing the relative frequency of feature errors versus conjunc-
tion errors. Consider a display with a red O and a green X. The
report of a blue X is a feature error while the report of a red X is
a conjunction error. Several experiments have found that conjunc-
tion errors are more frequent than feature errors (Treisman &
Schmidt, 1982; for reviews, see Prinzmetal, 1995; Tsal, 1989a,
1989b).

Interpreting this result requires addressing all of the issues
introduced by Johnston and Pashler (1990). Here, we focus on one
particular issue that has received the most attention: Are the
conjunction errors due to a post-perceptual process such as guess-
ing rather than a conjunction in perception (Ashby, Prinzmetal,
Ivry, & Maddox, 1996; Navon & Ehrlich, 1995)? If conjunction
responses are due to guessing, then they do not support the
hypothesis of identification without localization. For example,
suppose two stimuli are presented; one stimulus is cued with a bar
marker, and the observer reports the color and orientation of that
stimulus. Ashby et al. (1996) have devised a multinomial model to
predict the pattern of errors observed in this task. It includes
parameters for the discrimination of each feature and for the
probability of correctly binding the features in perception. They
find that the results are best described when the binding probability
was high but less than one. Another possibility explored by Donk
(1999) is that target/non-target confusions make up the complete
set of conjunction errors that have been attributed to an illusory
conjunction mechanism. If the cue was mislocalized or in some
other way causes the selection of the wrong stimulus, then such
errors may inflate the estimate of the binding probability. She has
conducted a series of experiments that extended the experiments of
Ashby and colleagues by adding selection criteria that allow one to
distinguish failures of selection from failures of binding. By using
this more general decision model with a parameter for selection
errors, she finds evidence for imperfect selection and perfect
binding. While this interpretation is subject to a continuing debate
(Donk, 2001; Prinzmetal, Diedrichsen, & Ivry, 2001), the analysis
is a step forward and demonstrates the need for formal models to
isolate different processes. It is an open question of whether the
mislocalizations found in the current data are related to processes
that may generate illusory conjunctions.

This review has shown that three additional lines of behavioral
evidence are largely consistent with similar processing and close
binding of identity and location. Interestingly, one can also find
critical treatments of the neuroscience evidence against close bind-
ing of identity and location information (e.g., Ghose & Maunsell,
1999; Reynolds & Desimone, 1999; Rossetti, Pisella, & Vighetto,
2003). Thus, while there are interesting phenomena relevant to
comparisons between identification and localization, the evidence
against similar processing and close binding is not definitive. Our
study further undermines one of the arguments against similar
processing and close binding: Set-size effects do not depend on
identification versus localization per se.

Conclusions

Prior studies have shown large differences in set-size effects for
identification and localization tasks. We show that these effects are
specific to the details of the tasks and not specific to identification
versus localization. Thus, these effects do not support hypotheses
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specifying privileged processing of either identity or location.
Instead, we find that accuracy search tasks yield results consistent
with similar processing of identity or location. We presented an
example theory of such similar processing by using a model that
was tailored to the decision structure of each task and allowed
pooling between nearby channels.
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Appendix

Derivation of Localization and Indentification Models From Signal Detection Theory

In this Appendix, we derive the predictions of the independent
channel model for a variety of tasks. These predictions are devel-
oped for arbitrary set sizes, but the numerical examples use set
sizes 2 and 8. We also describe the predictions of the overlapping
channels model and provide intuitions about why the predictions
differ across task.

Common Notation and Assumptions

We follow the notation commonly used in signal detection
theory (D. M. Green & Swets, 1966; for more detail, see Palmer et
al., 2000). The representation of each stimulus corresponds to a
real-valued random variable. For targets and distractors, these
random variables are designated T and D, respectively. Random
variables for n distractors are subscripted D1, . . . , Dn. We assume
two kinds of independence. First, for all of the models, assume
unlimited capacity in the processing of the relevant representa-
tions. Hence, the mean and variance for any T or D random
variable are independent of the set size. Second, for all but the
overlapping channels model, assume statistical independence be-
tween the random variables. On a particular trial, the value of any
random variable, say D1, is independent of the value of any other
representation on that same trial, say D2.

We further assume that all the distractor random variables Di are
identically distributed with a density function of fi and a cumula-
tive distribution function of Fi. In addition, targets are represented
by a shift family of the same distribution. If the distractor density
is f(x), the target density is f(x – ws), where s is the physical
description of the target distractor difference, and w is a free
parameter relating physical units to the units of the internal rep-
resentation (e.g., d�). Finally, for all specific numerical calcula-
tions, make the further assumption that all random variables are
Gaussian.

Yes–No Identification

The analysis of set-size effects for yes–no tasks dates to Tanner
(1961), and a recent derivation of the effect on threshold can be
found in Palmer et al. (1993). Performance on target present and
target absent trials is characterized by the hits and false alarms,
respectively. Assume that each stimulus engenders an internal
response that is compared with a criterion c. Further assume that
the observer indicates “target present” if at least one stimulus
representation has a value above the criterion c.

First, consider the distributions associated with a single stimulus
item. For a single distractor, the probability of a false alarm is

p�FA� � p�D � c�,

which is equal to

� 1 � F�c�. (A1)

Similarly, the probability of a hit is

p�hit� � p�T � c�,

which is equal to

� 1 � F�c � ws�. (A2)

For n items, where n is greater than 1, one has

p�FA� � p�D1, D2, . . ., or Dn � c�

� 1 � F�c�n. (A3)

With one target and n – 1 distractors, one has

p�hit | 1 target, n � 1 distractors�

� p�“at least one above criterion”�,

which is equal to

� 1 � F�c � ws� F�c�n	1. (A4)

This equation computes the probability of a miss of the target
times the probability of correct rejections for all n – 1 distractors.
One minus this product is the probability of a hit. A correct
response on a target present trial can result from either a target or
a distractor exceeding the criterion. In fact, the distractors contri-
bution occurs more and more as the set size n increases. Of course,
this effect also occurs on target absent trials, and observers must
adjust their criterion accordingly to prevent more and more false
alarms. We assume that observers adjust their criterion in the
set-size-2 and set-size-8 blocks so that they have equal bias,
P(hit) � P(correct rejection).

To solve these equations to find a stimulus threshold, assume
that observers have equal bias, and solve for the unknowns c, w,
and s. The goal is to predict the change in threshold sensitivity as
a function of set size. Thus, although one cannot measure s
directly, one can measure the threshold sensitivity as a function of
set size, which is st(n).

The next step is to solve for st(n). To do this, let the criterion
false alarm probability be k � .25, and the criterion hit probability
for threshold be 1 – k � .75. Setting Equations A3 and A4 equal
to these values and substituting st(n) for s in Equation A4, one
obtains

k � 1 � F�c�n (A5)

and

k � F�c � wst�n��F�c�n	1. (A6)

The parameter w is a free parameter that indicates the sensitivity
scaling for each observer. The next step is to solve for c from
Equation A5,

F�c� � �1 � k�1/n,

c � F	1
�1 � k�1/n�, (A7)

and then use this to solve for st(n) by substitution with Equation
A6 (see Palmer, 1998),

st�n� � �1/w� �F	1
�1 � k�1/n� � F	1
k/�1 � k��n	1�/n�, (A8)
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where F–1 represents the inverse cumulative function. Note that
there still is the free parameter w which represents sensitivity.
Rather than fit this parameter, instead consider the ratio of two set
sizes, which causes both w values to cancel. By convention, we
express this ratio by the log–log slope, which equals

� �
log�st�n2�� � log�st�n1��

log�n2� � log�n1�
, (A9)

where � is the set-size effect expressed as a ratio of log differences
(a ratio of ratios), n1 and n2 are the first and second set-size values
used (e.g., two and eight in the present study), and st(n) is the
stimulus threshold for set-size n.

Assuming Gaussian distributions, a criterion of k � .25 and 1 –
k � .75 for false alarms and hits, the predicted log–log slope is
0.22 for these set sizes.

N-Alternative Localization

Here we follow the analysis of the n-alternative localization task
of Shaw (1980). As with identification, the stimulus is one-
dimensional. For localization, assume that the observer chooses
the location of the stimulus with the largest value in the relevant
dimension (e.g., leans to the left the most). This is equivalent to a
max rule on an appropriately standardized representation. For set
size n, the probability of choosing the correct location is

p�correct� � p
T � max�D1, . . . Dn	1��,

which is equal to

� �
	�

�

f�x � ws�F�x�n	1 dx. (A10)

This equation integrates the product of a shifted density function
representing the target distribution, multiplied by the cumulative
distribution representing the distractor distribution(s).

To find a threshold stimulus, assume w � 1 and use a numerical
procedure to find the s value that produces 75% correct for n � 2
and produces 56.25% correct for n � 8. With the log–log slope
formula (Equation A9) and assuming Gaussian distributions, the
predicted log–log slope is 0.34, which is higher than the 0.22 for
yes–no.

Coarse Localization

In coarse localization, the target item is grouped with n/2 – 1
distractors on one side, and there are n/2 distractors on the other side.
Observers indicate which side of the display contains the target.
Observers can get the right answer accidentally by erroneously be-
lieving that one of the distractors on the target side was the target. If
they choose one of the distractors on the side opposite the target, they
get the wrong answer. The probability of selecting the correct side is

p�correct� � max �T, D1, . . . Dn/ 2	1� � max�Dn/ 2, . . . Dn	1�,

which is equal to

� 1 �
n

2 �
	�

�

f�x�F�x � ws�F�x�n	2 dx. (A11)

As with n-alternative localization, to find a stimulus threshold, a
numerical procedure is used to find the value st that produces 75%
correct for both n � 2 and n � 8. Assuming Gaussian distributions
and set sizes 2 and 8, the predicted log–log slope is 0.34, identical
to the n-alternative localization value and higher than the 0.22
value for yes–no. The identity in predictions for different local-
ization tasks motivates our use of different thresholds in the
localization tasks.

Two-Target Identification

Here, we follow the analyses of Solomon and Morgan (2001)
and Baldassi and Verghese (2001). In our example of two-target
identification, the target item is either a left-leaning or right-
leaning grating, and the distractors are all vertical. Two responses
are possible on each trial, called the “larger” response and the
“smaller” response. Define the target deviating from the distractors
in a positive direction as T and the target deviating in a negative
direction T�. Assume the observer chooses the response corre-
sponding to the evidence that deviates the most from that for the
median distractor, which is defined as zero. Suppose that a larger
target is presented on a trial. Two events lead to a correct response
of “larger.” First, the target item may yield the most evidence of
deviation and deviate in the positive direction. Second, a distractor
item may yield the most evidence of deviation, and deviate in a
positive direction, which also leads to the correct answer (but for
the wrong reason).

Thus the probability of correctly saying “larger” if T is pre-
sented on the trial equals

p�“larger”�T� �

P
max�T, D2, D3, . . . , Dn� � � min�T, D2, D3, . . . , Dn��,

(A12)

which expresses the logic that the correct “larger” response will be
given if the largest deviation from zero is in the positive direction,
regardless of whether it comes from a target or one of the n – 1
distractors.

A similar formulation exists for the “smaller” response:

p�“smaller”�T�� �

P
max�T�, D2, D3, . . . , Dn� � � min�T�, D2, D3, . . . , Dn��.

(A13)

The probability correct is given by

P�correct� � P�“larger” | T�P�T� � P�“smaller” | T�P�T��

which is equal to

P�correct� �

P
max�T, D2, . . . , Dn� � � min�T, D2, . . . , Dn��P�T� �

P
max�T�, D2, . . . , Dn� � � min�T�, D2, . . . , Dn��P�T��.

(A14)

( Appendix continues)
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This is the probability of a correct response for each type of target
times the probability of each target appearing (set by the experi-
menter to .5 in our case).

To simplify this expression, first consider the case in which the
larger target, T, is presented:

P�correct�T� �

P
max�T, D2, . . . , Dn� � � min�T, D2, . . . ,Dn��. (A15)

To solve this equation, we need to consider a density function
equal to the max of the target and n – 1 distractors P[max(T, D2,
. . . , Dn) � x] and determine for how many stimuli this quantity
dominates that are in the opposite direction P[–min(T, D2, . . . ,
Dn) � x] because if one of these dominates our density function of
correct responses, the observer responds incorrectly. This yields
the integral

P�correct�T� � �
0

�

P
max�T, D2, . . . , Dn� � x�

P
 � min�T, D2, . . . , Dn� � x�dx, (A16)

where the first term includes all of the different values of our
density function that lead to a correct response, and the second
term includes all of the negative values. When the maximum of our
positive values exceeds all the negative values, –min(T, D2, . . . ,
Dn), then one makes the correct response.

Equation A16 is equal to

P�correct�T� � �
0

�

P
�max�D2, . . . ,Dn� � x� and

� � min�D2, . . . ,Dn� � x��P�T � x�dx �

�n � 1� �
0

�

P
�max�T, D3, . . . ,Dn� � x� and

� � min�T, D3, . . . ,Dn� � x��P�D � x�dx. (A17)

The first term computes the probability that the target wins, and the
second term computes the probability that one of the n – 1
distractors wins. This reduces to

P�“larger”�T� � �
0

�

f�x � ws�
F�x� � F� � x���n	1�dx �

�n � 1� �
0

�

f�x�
F�x � ws� � F� � �x � ws���


F�x� � F� � x���n	2� dx. (A18)

Assuming Gaussian distributions and set sizes 2 and 8, the pre-
dicted log–log slope is 0.42, which is larger than the 0.22 of
yes–no and 0.34 of the localization tasks.

Two-Target, N-Alternative Localization

Computing the probability of choosing the correct target loca-
tion is chosen is a straightforward modification of the two-target
identification equation (Equation A18).

P�correct� � �
0

�

f�x � ws�
F�x� � F� � x���n	1� dx �

�
	�

0

f�x � ws�
F� � x� � F�x���n	1� dx, (A19)

which computes in the first term the probability that the target item
dominates all distractors on its side. The second term computes the
probability that the target exceeds all distractors on the other side.
Assuming again P(T) � P(T�) � 0.5 and symmetric distributions,
one does not need to include the probabilities for the smaller target
T�. Assuming Gaussian distributions and set sizes of two and eight,
the predicted log–log slope is 0.17 for two-target localization.

2IFC Identification

For comparison with the other models, consider the model for a
two-interval forced choice (2IFC) task (cf. Palmer et al., 1993).
Here n stimuli are presented in two successive intervals and the
observer chooses which interval contains the target. With the max
rule, the probability correct is

p�c� � p
max�T, D2, D3, . . . Dn	1� � max�D1, D2, . . . Dn��

� 1 � �
	�

�

f�x�F�x � ws�F�x�2n	2 dx, (A20)

Assuming Gaussian distributions and set sizes 2 and 8, the pre-
dicted log–log slope is 0.31.

The Overlapping Channels Model

The overlapping channels model differs from the previous mod-
els in that it explicitly breaks the independent processing assump-
tion. Instead, stimuli influence the representations of neighboring
stimuli. This lack of independence proves formidable in terms of
analytic predictions, and thus we resort to Monte Carlo simulations
in order to produce quantitative predictions. Below we describe the
procedures used to estimate the mislocalizations found in the
n-alternative localization experiments. The strategy is to estimate
the degree of pooling and then calculate the predicted set-size
effect for that degree of pooling.

Following the experiments, consider only set sizes 2 and 8. The
overlapping channels model is fit only to the set-size-8 data,
because the set-size-2 data have no mislocalizations. That is, in the
set-size-2 condition two positions are chosen to receive stimuli, but
the observer can make one of eight responses. However, we find
that errors were almost always limited to the position opposite the
target location. This is also true for the relevant set-size-2 condi-
tion in Experiment 4 where eight locations received stimuli but
only two were pre-cued. Thus the source of mislocalizations does
not appear to arise from difficulty translating a location on the
screen to a position on the response keypad.

N-alternative localization. To fit the mislocalization data,
recall that performance is computed as a function of the difference
between targets and distractors. In our experiments, this is the
relative angle as plotted in Figure 9. Localization performance
varies as a function of the weighting parameter in the overlapping
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channels model. Thus to predict the mislocalization data, we
conducted Monte Carlo simulations of 100,000 trials per angle.

Within the Monte Carlo simulation, a single trial with set size 8
is conducted as follows. The values associated with the seven
distractor locations are sampled from a Gaussian distribution with
mean zero and unit variance. The target distribution is sampled
from a distribution with unit variance and mean equal to one of six
target–distractor differences being evaluated. The pooling proce-
dure is then applied to the eight numbers using the weighted sum:

si� �
si � �si	1 � �si�1

1 � 2�
(A21)

where i indexes stimulus location, and si–1 and si�1 are the two
stimulus locations immediately adjacent to location si. This repre-
sentation is circular, such that si–1 equals sn when i �1, and si�1

equals s1 when i � n. The position with the greatest value is then
chosen as the response, and the trial is then characterized as either
correct, a mislocalization on a nearby item, or an error. Perfor-
mance as a function of target–distractor difference is fit by a
psychometric function, and the threshold stimulus is computed.

Once the threshold stimulus is determined, the full psychometric
function is mapped out by selecting six stimulus values at log-
equal steps. Simulations are run by using each of these values, and
these produce a pattern of mislocalizations similar to those found
in Figure 9. For comparison with the actual data, the threshold
stimulus value is set to be the fourth of the six stimulus values in
this series (as was done in the experiments). We simulate one-
million trials per stimulus level, which gives performance predic-
tions that are directly comparable with the data in Figure 9.

This procedure is repeated for different values of �, the weight-
ing parameter in the pooling process, and we used the value that
minimized the root-mean-squared error with the Figure 9 data. For
all one-target tasks, we used � � 0.38. For the two-target,
n-alternative localization task of Experiment 2, we found a larger
degree of mislocalizations and used � � 0.61.

Coarse localization. The procedures used to derive predic-
tions for coarse localization data are very similar to those of
n-alternative localization. The only difference is that the decision
rule varies slightly. The location associated with the largest value
is chosen after applying the pooling procedure, and this location is
used to define the coarse localization response. This produces
set-size effects that differ slightly from the n-alternative localiza-
tion set-size effects for a fixed value of the weighting parameter �,
because the effects of pooling only affect stimuli at the boundary.

Yes–no identification. The yes–no identification task does not
have mislocalization data, and thus we used the same weighting
value as for the n-alternative localization task. Given a weighting
value, the threshold stimulus can be derived by computing hits and
false alarm rates for different values of the target–distractor dif-
ference and finding the stimulus associated with hit rates and
correct rejection rates of 75%. One complication is that yes–no
data involve a decision criterion. We assume that observers place
this criterion to balance the hits and correct rejections. In the
simulation, hits and correct rejections are computed for a variety of
angles and decision criterions in a grid-like fashion, and a plane is
fit to the resulting surface for both the hits and correct rejections.
By using planar interpolation, the combination of angle and crite-
rion is estimated to produce hits and correct rejections of 75%.

This procedure is repeated twice more with increasingly narrow
steps to ensure that our surface approximation procedures do not
underestimate performance for the threshold stimulus.

Two-target localization. Predictions for the two-target,
n-alternative localization are very similar to those of the
n-alternative localization task. The difference is that the value of
the target location must be sampled from one of two distributions
in order to provide the two types of targets. We sampled either
from a Gaussian distribution with the mean equal to the stimulus
value or from a Gaussian distribution with the mean equal to minus
the stimulus value. One distribution was chosen randomly with
probability .5 prior to sampling. Distractors were sampled from a
Gaussian distribution with mean equal to zero.

On each trial, the weighting procedures are the same as de-
scribed above, and Equation A21 is applied to the values sampled
from the various target and distractor distributions. To choose a
response, the model picked the location that had the greatest
absolute deviation from zero. As with n-alternative localization,
the threshold stimulus is computed and then a million trials per
stimulus condition are used to produce predicted mislocalization
and to predict set-size effects for the best-fitting weighting value.

Two-target identification. The two-target identification task
does not have mislocalization data, and so the value for the
weighting parameter found for the two-target localization data is
used. The simulation procedures are similar to those of the two-
target localization task, including the distribution of the target and
distractor values and the weighting function applied to these val-
ues. The only difference resides in the decision rule. For two-target
identification, the Monte Carlo procedures determine whether the
maximum deviation from zero is greater than zero or less than
zero. If the deviation is greater than zero, the model interprets this
as one response, and if it is less than zero, the model interprets this
as the other response and computes accuracy accordingly. The
threshold stimulus is determined by using the Monte Carlo proce-
dures described above, and this threshold stimulus is used in
conjunction with that from set size 2 in order to produce a log–log
slope prediction.

Intuitions About Task Differences

While the signal detection-based models are well defined, more
is needed to develop some intuitions about the various predictions.
In particular, why does two-target identification have such a large
set-size effect compared with that of two-target localization? To
address this question, we next develop some intuitions starting
from what is known as the two-by-two paradigm.

The two-by-two paradigm was designed to match performance
in identification and detection experiments (Graham, 1989; Klein,
1985; Thomas, 1985) and can be adapted to compare identification
and localization. It requires two responses, one for each of the two
judgments of interest. In a typical application, two displays are
presented sequentially. One display has one of two possible tar-
gets, and the other display has a blank stimulus. One must make a
2IFC response as to which display contained a target (detection)
and another forced choice response as to which of the two targets
was present (identification). For a variety of assumptions about the
decision rule used in each task, equal performance is predicted for
detection and identification.

(Appendix continues)
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One can apply this paradigm to identification and localization in
accuracy search by presenting two search displays. One display
contains a target, and the other display contains only distractors.
Observers make two responses: a two-choice identification re-
sponse indicating which display had the target and a two-choice
coarse localization response indicating on which side of the dis-
play was the target.

This design makes the same set-size predictions for localization
and identification. For the set-sizes-2-versus-8 comparison, the
one-target version (e.g., the target is right leaning and distractors
are vertical) has a predicted log–log slope of 0.278, while the
two-target version (where the target could be either right or left
leaning) has a predicted log–log slope of 0.176. Thus, all else
equal, the two-target case produces a smaller set-size effect for
both localization and identification tasks.

The 2IFC paradigm provides a standard against which to com-
pare the other tasks (see Table 2). Consider the n-alternative and
course localization tasks. The predicted log–log slope is 0.34 for
both n-alternative and coarse localization tasks, but the 2IFC has
two intervals and thus twice as many stimuli. If we double the
number of stimuli for the n-alternative and coarse localization
tasks, both tasks have predicted log–log slopes of 0.278, which
matches that of the 2IFC tasks. Thus coarse localization,
n-alternative localization, and 2IFC predictions match if the num-
ber of stimuli is appropriately defined.

Changing the number of potential targets makes the above
relation no longer true, which explains in part why the two-target
case is different. For the two-target case, the 2IFC predicted set
size is 0.176, and the two-target coarse localization matches that if
the set size is doubled. However, the n-alternative localization task
with two targets and twice the number of stimuli as used in

Experiment 2 (doubled for comparisons with the 2IFC task) does
not match. The predicted set-size effect for two-target,
n-alternative localization is 0.17, which is close but not the same
as the 0.176 for 2IFC and two-target coarse localization.

The predictions diverge much more for the identification tasks.
For the one-target case, the 2IFC prediction is 0.28. For yes–no
with double the set size, the prediction is 0.18. Thus there is a large
difference in the set-size effects for 2IFC and yes–no identifica-
tion.

The two-target identification case also has a difference from
2IFC. The two-target version for 2IFC has a log–log slope predic-
tion of 0.176. The two-target identification version with the set
size doubled (for direct comparison with two-target 2IFC) has a
predicted set-size effect of 0.305, which is quite different. The
yes–no, two-target identification task (which we did not study) has
a doubled set-size effect of 0.14. Thus, the difference between
yes–no and the two-choice identification produces the major part
of the interaction seen in Experiments 1 and 2.

To summarize, our analysis using the 2IFC baseline reveals the
following effects:

(a) The two-target task reduces the set-size effect relative to the
one-target task, all else being equal. It does not affect the
identification–localization comparison per se.

(b) Predicted localization set-size effects are in line with the
predictions from the 2IFC task as long as the number of stimuli are
doubled to make comparisons with the two-interval task. The
two-target, n-alternative localization task differs only very slightly
from the course localization and 2IFC two-target predictions.

(c) The yes–no and two-target identification tasks both signifi-
cantly differ from the 2IFC task, and the main reason for these
differences arises from the yes–no and 2IFC identification tasks
being very different for the two-target case. Thus, the major source
of interactions seen in Experiments 1 and 2 arises from the differ-
ence between yes–no and two-choice identification in the two-
target case.

The above discussion highlights the need to consider the details
of the tasks if meaningful comparisons are to be made. This can be
accomplished either through a model-based approach, as we have
done, or through close matching of tasks such as with the two-by-
two paradigm (M. Green, 1992). One way or the other, one must
address the different decision rules required by each task.
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Table 2
Comparison of Predicted Set-Size Effects Across Different Tasks

Task

Set-size effects

One target Two targets

Two-by-two: 2IFC identification 0.28 0.176
Two-by-two: coarse localization 0.28 0.176
N-alternative localization 0.28 0.170
Yes–no identification 0.18 0.14
Two-choice identification 0.31

Note. Specific to set sizes 2 and 8 with values normalized for comparison
with two-interval forced choice (2IFC; see text).
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