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Abstract

An automated method for counting spot-forming units in the ELISpot assay is described that uses a statistical model fit to
training data that is based on counts from one or more experts. The method adapts to variable background intensities and provides
considerable flexibility with respect to what image features can be used to model expert counts. Point estimates of spot counts are
produced together with intervals that reflect the degree of uncertainty in the count. Finally, the approach is completely transparent
and “open source” in contrast to methods embedded in current commercial software. An illustrative application to data from a study
of the reactivity of T-cells from healthy human subjects to a pool of immunodominant peptides from CMV, EBV and flu is
presented.
© 2006 Published by Elsevier B.V.
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E1. Introduction

T-lymphocyte response to vaccination represents the
primary immunogenicity endpoint in Phase I/II trials of
current candidate HIV vaccines (Koup et al., 1994;
Borrow et al., 1994; Rowland-Jones et al., 1995; Mazzoli
et al., 1997;Musey et al., 1997;Ogg et al., 1998;Goh et al.,
1999), and the use of a highly standardized, sensitive assay
to measure these responses is a critical requirement in the
development and evaluation ofHIVvaccines. The ELISA-
spot or ELISpot assay currently represents the primary
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method to detect T-cell responses to HIV vaccines in the
HIVVaccine Trials Network. Considerable effort has been
made to standardize the reagents and laboratory proce-
dures used in these assays. However methods for the
counting of spot-forming units (SFUs), which is used to
obtain the final quantitative result of the ELISpot assay,
have received somewhat less attention.

Historically, SFUs have been hand-counted by
laboratory technicians but such subjective readings
introduce significant variability in the assay outcome
and are time-consuming. Computer algorithms for the
analysis of images of the wells have been employed to
automate the process of spot counting (Hudgens et al.,
2004). Although automated spot counting algorithms can
provide highly standardized assay outcomes, there are
challenges to this approach that call into question the
ultimate accuracy of these methods. Specifically, there is
no “gold standard” for defining an SFU that can explicitly
of spots for the ELISpot assay, Journal of Immunological Methods
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be used in algorithm design. In addition, such algorithms
must integrate an automated method for calibration to
background intensity levels that vary from plate to plate
and distinguish “true SFUs” from various artifacts that
include variable background intensity within wells (e.g.,
edge effects) and contamination. Examples of images
from ELISpot assays that illustrate some aspects of this
variability are given in Fig. 1. Numbering from left to
right and top to bottom, wells 1, 4 and 5 contain clear
artifacts, while there are dark patches close to the edges of
a number of wells.

In this work, we propose an automated approach to
the analysis of images from ELISpot assays that
UN
CO
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EC

Fig. 1. Nine typical wells, showing spot

Please cite this article as: Natalie Hawkins et al., The automated counting
(2006), doi:10.1016/j.jim.2006.08.005.
F

provides accurate and highly standardized counts of
SFUs. In the absence of a gold standard for defining an
SFU, we define the conceptual criterion of success for
the method as a standardized implementation of the
implicit rules for use by a designated expert (or possibly
a panel of such experts) in counting SFUs. Specifically,
the method uses “training data”, composed of SFU
counts by an expert, in order to refine the algorithm to
produce counts that are accurate reflections of the expert
counts but, unlike counts by any human, are uniformly
applied from assay to assay. The model-based approach
we describe allows the uncertainty in the count to be
acknowledged, so that an interval estimate for the
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forming units and various artifacts.

of spots for the ELISpot assay, Journal of Immunological Methods
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number of spots per well is produced. The method is
illustrated using data from a study of the reactivity of T-
cells from healthy human subjects to a pool of
immunodominant peptides from CMV, EBV and flu.

2. Methods

In this section we describe the method of assigning a
spot count to each well, along with an associated
interval estimate. The method has two components.
First, we pre-process the image using a thresholding and
grouping technique to identify interesting areas which
we call “globs”. Second, based on training data, we
formulate a model to predict the number of spots in each
glob, based on glob characteristics such as the size of the
glob. The resulting model is used to predict the number
of spots in a new well, along with an interval estimate.

2.1. Pre-processing

For each well, the raw data originate from a Tagged
Image File Format (TIFF) file and consist of pixel-level
red, green and blue intensities, displayed in Fig. 1. For
processing we use grey scale values by computing a
mean of the red, green, and blue values to get an inten-
sity at each pixel. These values range from 0 to 255 and
are such that high intensities correspond to background,
while low intensities correspond to spots, and to
anomalies of the measurement process, such as an
errant hair in the well.
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Fig. 2. Histogram of intensities from the ninth well in Fig. 1. The
vertical line corresponds to the “threshold”.
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We use a thresholding technique, followed by a set of
grouping rules based on contiguity, to identify interest-
ing areas in the well which we call globs. We start with
globs rather than with SFUs, or spots, because the
thresholding technique easily identifies globs, but not
confluent spots within globs. A glob can contain zero or
one or more spots. We use a statistical model, described
later, to determine the number of spots within each glob.

We are first required to choose a thresholding value
to apply to a well to identify pixels belonging to globs.
Through empirical experimentation we chose, for each
well, the threshold to be the mean intensity of all pixels
in the well minus three standard deviations, the latter
calculated over all pixels in the well. Fig. 2 illustrates,
with the histogram of intensities for the ninth well in
Fig. 1 and the associated threshold.

Globs are identified in the well by first comparing
each well pixel to the threshold. If the pixel intensity is
below the threshold, the pixel is called a glob pixel, and
globs are formed from glob pixels based on contiguity
of those pixels. For one pixel globs, none of the possible
eight pixels surrounding the one glob pixel is a glob
pixel. For multiple-pixel globs, each pixel in the glob
must be touching another glob pixel in, at least, one of
the possible eight positions surrounding the pixel. Once
the globs have been identified, we drop small, light
globs since, in discussion with the lab technicians, these
do not correspond to real spots. “Small” means less than
10 pixels and “light” corresponds to average intensity
greater than 95% of the threshold value used to make the
glob/not-glob pixel assignment (recall that high inten-
sity values mean that the spot is light, not dark). As an
example, the left-hand panel of Fig. 3 reproduces the
ninth well in Fig. 1, with the right-hand panel showing
the globs that have been identified using the threshold-
ing technique.

Next we formulate a statistical model, based on
training data, which can be used to predict the number of
spots within each glob and, as a result, the number of
spots in a new well, along with a confidence interval.

2.2. Training data

We use a set of training data to build a predictive
statistical model, based on glob characteristics, which
can be used to predict the number of SFUs, or spots, in a
well, along with an interval estimate. The statistical
model requires, as input, data from globs identified in
the well.

The training data consist of glob data from 50 wells,
selected from three plates. For each glob we obtained an
“expert” count of the number spots within the glob. The
of spots for the ELISpot assay, Journal of Immunological Methods
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Fig. 3. The image on the right shows the globs identified in the well on the left using the thresholding technique. This well is the ninth well in Fig. 1.
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“expert” count of the number of spots within each glob
was provided by a senior immunologist. We provided
the expert with an Excel spreadsheet which contained
one page per well. On each page we displayed the
original TIFF image of the well, along with numbered,
computer-generated arrows super-imposed on the image
pointing to globs, which we had identified using the
thresholding and grouping technique described above.
In areas of high congestion, outlines were drawn to
separate globs. To the right of the image, a data entry
area was provided with a column displaying the glob
numbers and an empty column for the number of spots
judged to be within each glob. The expert examined
each image, and entered the number of spots for each
glob.

Discussions with the expert revealed a set of rules
that were used when counting spots. True spots are dark
in the center and slightly fuzzy on the edges. False spots
are either: (1) very faint and/or very small, (2) clustered
at the edges of the well, (3) aligned in a hair-like pattern
(indicates a cracked well), or (4) look like debris (very
dark and often not circular). The characteristics of the
globs that we chose to investigate were based on these
rules, and on our empirical observations of what glob
characteristics were important predictors of the number
of spots in each glob.

The nine glob characteristics were: (1) glob size, (2)
median intensity within glob, (3) ratio of maximum glob
intensity to minimum glob intensity, (4) variance of glob
intensity, (5) ratio of variance of glob intensity to mean
glob intensity, (6) median distance of the glob from the
center of the well, (7) whether or not the glob is located
near the edge of the well, which is defined as whether or
not the median distance of the glob from the center of
the well is greater than 75% of the longest radius in the
well (the well is almost, but not quite a perfect circle),
(8) the percent of the pixels in the box which bounds the
Please cite this article as: Natalie Hawkins et al., The automated counting
(2006), doi:10.1016/j.jim.2006.08.005.
TE
D
PR

Oglob which are glob pixels, (9) the square of the log of
the ratio of the dimensions (height and width) of the box
which bounds the glob.

2.3. Statistical modeling

Based on training data, we aim to form a model,
which entails selecting glob characteristics on the basis
of their ability to predict the number of spots in each
glob. We build all possible models having from just one
to all nine of the glob characteristics as covariates
(29−1=511 models), as well as all possible combina-
tions involving interaction terms with the discrete glob
characteristic edge (an additional 6305 models). A
cross-validating procedure, described later, is used to
select the best model from the complete set of 6816
possible models. The best model can then be used to
predict the number of spots in any future wells, based on
the glob characteristics of those wells.

We select a set of n training wells, pre-processed as
described in Section 2.1, containing a set of globs with
glob characteristics Xij for glob j within training well i;
accompanying each well and glob is a number of spots,
Yij, i=1, ..., n, j=1, …, gi, as counted by the lab
technician.

Since the outcome is discrete, a natural starting point
for analysis is a Poisson model with mean number of
counts E[Yij|Xij]. Unfortunately such a model is
deficient in the sense that the Poisson assumption
constrains the variance to equal the mean. As described
in McCullagh and Nelder (1989), a more flexible
working model assumes that var(Yij|Xij)=κ×E[Yij|Xij],
so that κ allows the variance to deviate from that under
a Poisson model. We also assume that the mean takes
the log-linear form

logE½YijjXij� ¼ Xijb;
of spots for the ELISpot assay, Journal of Immunological Methods
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Table 1t1:1

Summary of parameter estimates from best-fitting modelt1:2

t1:3 Characteristic Estimate Standard
error

p-value

t1:4 Located near edge 1.20 0.859 0.164
t1:5 Height–width ratio −0.0901 0.3186 0.7775
t1:6 Median intensity in glob −0.0325 0.00362 2.0×10−16

t1:7 Variance of intensities in glob 0.00447 0.000427 2.0×10−16

t1:8 Ratio of variance to mean
intensities in glob

−0.606 0.0608 2.0×10−16

t1:9 Glob size 0.000105 0.000313 0.737
t1:10 Median distance of glob from

the center of the well
−0.000308 0.000955 0.747

t1:11 Ratio of max to min intensity
in glob

0.279 0.0867 0.00135

t1:12 Edge×height–width ratio −1.74 0.634 0.00620
t1:13 Edge×size 0.000418 0.000532 0.433
t1:14 Edge×median distance from

center of well
−0.00560 0.00420 0.183

Fig. 4. Number of spots as predicted by the model-based approach and
the current automated lab method, for 50 wells.
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though our method could use any form. For example,
the method we describe could be applied to any
parametric or semi-parametric model including logic
regression, generalized additive models, or splines, see
Hastie, Tibshirani, and Friedman (2000) for more detail
on these methods. A quasi-likelihood method of
inference, as described in McCullagh and Nelder
(1989), is used to estimate the parameters of the
model; this method has the advantage of requiring the
specification of the first two moments of the data,
without making a distributional assumption. The
method we describe can also be used with specific
distributional assumptions, if these appear reasonable in
any particular application. We also use sandwich
estimation (Royall, 1986) to provide empirical esti-
mates of the standard errors. This approach provides a
consistent estimator of the standard errors, given
independent glob counts.

The over-dispersion parameter, along with sandwich
estimation, is designed to account for components of
variation that are attributed to well and/or plate.
Although there are methods for improving prediction
error of counts for one well using data from other wells
on the same plate, in our experience working with
laboratory scientists, they prefer to make prediction for
each well independently. We wish to have a general
method and not one which needs retuning in each
different scenario.

Once we have selected the best predictive model of
the type described above, based on the training data, the
model can be used to predict the number of spots in a
new well. Let Xj denote the glob characteristics of a new
well containing j=1, …, nnew, globs, for which we
require an estimate of the number of spots, call this θ̂.
Please cite this article as: Natalie Hawkins et al., The automated counting
(2006), doi:10.1016/j.jim.2006.08.005.
F

Once estimates β̂ and κ̂ are obtained, a prediction is
available via ĥ ¼ Pnnew

j¼1 expðXjb̂Þ, which is an unbiased
estimate.

Using the delta method to obtain the variance of θ̂,
we obtain an approximate 95% interval for the total
number of spots that is given by:

Xnnew
j¼1

expðXjb̂ÞF 1:96

�
Xnnew
j¼1

expðXjb̂ÞXj

( )
V̂

Xnnew
j¼1

XT
j expðXjb̂Þ

( )" #1=2

where V̂ is the sandwich estimate of the variance of β̂.
TE
D
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O3. Results

We wish to use the training data to decide on which
of the 9 glob characteristics are important predictors of
the number of spots that each glob contains, in order to
find the model which would best serve as a predictive
model. Specifically we have a total of K=6816 models,
this set consisting of all possible models containing or
not-containing each of the 9 glob characteristics, as well
as all possible interaction models containing an
interaction with the discrete glob characteristic, edge.
We use a cross-validation technique, in which we use 49
of the training wells to estimate the parameters of model,
Mk , k=1, …, K, and then predict the number of spots in
of spots for the ELISpot assay, Journal of Immunological Methods
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the 50th well; repeating this procedure and leaving out a
different well each time, gives a set of predictions Ŷijk

under model k, so that we can calculate the model
assessment sum of squares criteria

SSk ¼
Xn
i¼1

Xgi
j¼1

ðYij−Ŷij
kÞ2;

k=1, …, K . After training the model with data from
globs from 50 wells, we found the best model, based on
the minimum SSk.

The best model was found to contain eight glob
characteristics and three interaction terms with the glob
characteristic edge: (1) edge, (2) height–width ratio,
defined as the square of the log of the ratio of the
dimensions (height and width) of the box which bounds
the glob, (3) median intensity, (4) variance of the
intensity, (5) variance of the intensity divided by the
mean intensity, (6) size, (7) median distance from the
center of the well, (8) the ratio of the maximum intensity
to the minimum intensity; and interactions of edge with:
(1) height–width ratio, (2) size, and (3) median distance
from the center of the well. Once we have decided upon
this model we re-estimate the coefficients based on all
50 wells. Table 1 contains the resulting estimates, along
with their standard errors.

From the coefficients we see that globs classified as
near the edge are more likely to contain more spots. The
more rectangular the glob is, as measured by the height–
width ratio, the less likely it is to contain more spots.
Darker globs (as measured by lower median intensity)
are more likely to contain more spots, while more
constant intensity within a glob implies fewer spots. As
the ratio of the variance of the intensity to the mean
intensity increases the number of spots decreases. Globs
containing more pixels are more likely to contain more
spots. Globs that are located further from the center of
the well are more likely to contain fewer spots
(reflecting the anomalies that occur towards the outside
of the well, see Fig. 1, wells 4 and 6 in particular).
Finally, greater maximum to minimum intensities
suggest more spots also. Looking at the interaction
terms we see that globs near the edge and more
rectangular (as measured by the height–width ratio) are
likely to contain fewer spots. Larger globs near the edge
are more likely to contain more spots, and globs
classified as near the edge but which are closer to the
edge are likely to contain fewer spots. The non-
significance of four of the variables and two of the
interaction terms, is perhaps surprising but it is the
combination of variables that is important from a
prediction point of view.
Please cite this article as: Natalie Hawkins et al., The automated counting
(2006), doi:10.1016/j.jim.2006.08.005.
TE
D
PR

OO
F

Fig. 4 shows the estimated number of spots in each of
the 50 wells from our method, versus those from the
laboratory expert. Also shown are the estimates from the
automated method currently used by the lab. For clarity,
for a small collection of wells we include our confidence
interval, based on the sandwich estimator of the
variance. For plotting, we have jittered the values on
the x-axis slightly to uncover points which might be
overlapping so that all 100 points are visible on the plot.
We see that the model predictions are more accurate
relative to the expert technician, than is the commercial
software being used by the lab. As confirmation of
this we can evaluate the average bias, given by
1=n

Pn
i¼1ðYi−Ŷ iÞ, and the mean squared error (MSE),

given by 1=n
Pn

i¼1ðYi−Ŷ iÞ2, where Yi and Yi are the
observed and predicted number of spots in well i, for
each of the model-based and current automated lab
methods. For the model-based approach we obtain an
average bias and MSE of 0.0336 and 5.68, while for
the current automated lab method we obtained average
bias and MSE of 3.49 and 26.4. Hence we see the
model-based approach provides more accurate pre-
dicted numbers of spots, as measured by both bias and
precision; in particular the commercial software
provides an overcount of the number of spots.

4. Discussion

There is no “gold standard” method of spot counting
to which automated methods can be compared. In the
absence of such a standard, expert opinion with all of its
associated vagaries, represents the standard by which
automated methods must be judged. However expert
opinion must first be operationally defined. We have
operationally defined expert opinion in this work as the
counts made on our training data set by a senior
immunologist with whom we have collaborated. This
has served our purpose of providing a realistic and
pertinent illustration of a specific application of our
proposed method. A broader definition based on a panel
of immunologists might also have been used. We leave
to future work the development of a more extensive set
of training data together with an associated consensus
expert opinion of spot counts that might provide a more
definitive and broadly applicable counting algorithm
based on our methods.

The accuracy of an automated counting method refers
to how faithfully the method replicates the counts from
expert opinion on average (over globs). Our proposed
method is trained directly from expert opinion using
statistical methods that guarantee (in large samples) such
accuracy. We expect that this will provide a more
of spots for the ELISpot assay, Journal of Immunological Methods
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accurate reproduction of counts based on expert opinion
than other methods that are indirectly “calibrated”.

Assessing the precision of automated methods is
challenging because there is innate non-systematic
variability in expert opinion. This variability is reflected
in the fact that expert recounts do not always result in
exactly the same number of spots per well. This
component of random variation will be inherited by
any automated method. The proposed counting method
is based on measurable characteristics of globs and, to
the extent that these characteristics capture all factors
considered systematically by experts in their counts, the
automated methods will faithfully replicate the expert
opinion up to the aforementioned random variability.
We expect that a certain amount of systematic variation
in expert counts will not be captured by readily
measurable glob characteristics so that automated
methods will inevitably be somewhat more variable
than the theoretical minimum variation defined by
recount variability. However, the proposed method is
completely flexible with respect to the set of measurable
glob characteristics that can be considered as possible
predictors with practical limits on this set imposed only
by the size of the training data set. Thus, with an
extensive training data set and careful elicitation of the
glob characteristics and other factors considered by
experts in performing their counts, it is reasonable to
expect that the proposed method will reproduce the
systematic variation in expert counts.

One advantage of the proposed method is that
interval estimates of spot counts are naturally produced
that reflect the degree of uncertainty in the count. This
interval estimate can be used as a component of the
assay quality control process to reflect reliability of
counts delivered for each well. The estimated variability
in spot count at the well level can also form the basis for
a similar estimate of variability for summary measures
of response that combine spot counts over multiple
wells (e.g. total response across peptide-treated wells net
of response in negative control wells).

Finally, the proposed method provides a completely
transparent “open-source” approach for spot counting
that is in contrast to proprietary methods embedded in
commercial software that often function as a black-box.
In the current atmosphere that places considerable value
U
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on standardization of reagents and operating procedures
for immunologic assays used in the development and
evaluation of HIV vaccines (Klausner et al., 2003), the
proposed method represents a natural approach to
extending this standardization to the final critical step
of the assay process.

References

Borrow, P., Lewicki, H., Hahn, B.H., Shaw, G.M., Oldstone, M.B.,
1994. Virus-specific CD8-cytotoxic T-lymphocyte activity associ-
ated with control of viremia in primary human immunodeficiency
virus type 1 infection. Journal of Virology 68, 6103.

Goh, W.C., Markee, J., Akridge, R.E., et al., 1999. Protection against
human immunodeficiency virus type 1 infection in persons with
repeated exposure: evidence for T cell immunity in the absence of
inherited CCR5 coreceptor defects. Journal of Infectious Diseases
179, 548.

Hastie, T., Tibshirani, R., Friedman, J., 2000. The Elements of
Statistical Learning, Data Mining, Inference and Prediction.
Springer, Verlag.

Hudgens, M., Self, S., Chiu, Ya-Lin, et al., 2004. Statistical
considerations for the design and analysis of the ELISpot assay
in HIV-1 vaccine trials. Journal of Immunological Methods 288,
19.

Klausner, R.D., Fauci, A.S., Corey, L., 2003. The need for a global
HIV vaccine enterprise. Science 300, 2036.

Koup, R.A., Safrit, J.T., Cao, Y., Andrews, C.A., McLeod, G.,
Borkowsky, W., Farthing, C., Ho, D.D., 1994. Temporal association
of cellular immune responses with the initial control of viremia in
primary human immunodeficiency virus type 1 syndrome. Journal of
Virology 68, 4650.

Mazzoli, S., Trabattoni, D., Lo Caputo, S., et al., 1997. HIV-specific
mucosal and cellular immunity in HIV-seronegative partners of
HIV-seropositive individuals. Nature Medicine 3, 1250.

McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models, Second
edition. Chapman and Hall.

Musey, L., Hughes, J., Schacker, T., Shea, T., Corey, L., McElrath, M.J.,
1997. Cytotoxic-T-cell responses, viral load, and disease progression
in early human immunodeficiency virus type 1 infection. New
England Journal of Medicine 337, 1267.

Ogg, G.S., Jin, X., Bonhoeffer, S., Dunbar, P.R., Nowak, M.A.,
Monard, S., Segal, J.P., Cao, Y., Rowland-Jones, S.L., Cerundolo,
V., Hurley, A., Markowitz, M., Ho, D.D., Nixon, D.F., McMichael,
A.J., 1998. Quantitation of HIV-1-specific cytotoxic T lympho-
cytes and plasma load of viral RNA. Science 279, 2103.

Rowland-Jones, S., Suttone, J., Ariyoshi, K., et al., 1995. HIV-specific
cytotoxic T-cells in HIV-exposed but uninfected Gambian women.
Nature Medicine 1, 59.

Royall, R., 1986. Model robust confidence intervals using maximum
likelihood estimators. International Statistical Review 54, 221.
of spots for the ELISpot assay, Journal of Immunological Methods

http://dx.doi.org/10.1016/j.jim.2006.08.005

	The automated counting of spots for the ELISpot assay
	Introduction
	Methods
	Pre-processing
	Training data
	Statistical modeling

	Results
	Discussion
	References




