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ARTICLE

A Bayesian Measure of the Probability of False Discovery
in Genetic Epidemiology Studies
Jon Wakefield*

In light of the vast amounts of genomic data that are now being generated, we propose a new measure, the Bayesian
false-discovery probability (BFDP), for assessing the noteworthiness of an observed association. BFDP shares the ease of
calculation of the recently proposed false-positive report probability (FPRP) but uses more information, has a noteworthy
threshold defined naturally in terms of the costs of false discovery and nondiscovery, and has a sound methodological
foundation. In addition, in a multiple-testing situation, it is straightforward to estimate the expected numbers of false
discoveries and false nondiscoveries. We provide an in-depth discussion of FPRP, including a comparison with the q
value, and examine the empirical behavior of these measures, along with BFDP, via simulation. Finally, we use BFDP to
assess the association between 131 single-nucleotide polymorphisms and lung cancer in a case-control study.
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With the advent of new genotyping and other molecular
biology technologies, there has been a huge increase in
the quantities of data that are available for analysis; this
has focused attention on the manner by which associa-
tions are reported in the epidemiology literature1–3 and,
in particular, on methods by which the number of false
positives can be controlled without missing too many sci-
entifically interesting associations. Motivated by candi-
date-gene and genomewide association studies,4–7 we con-
sider here the reporting of associations and the problem
of multiple-hypothesis testing.

Despite numerous protestations to the contrary (for a
particularly clear exposition, see the work of Goodman8),
a common error is to view P values as the probability of
the null hypothesis given the observed statistic, when, in
fact, they give the probability of the statistic given the
hypothesis. To assess the probability of the hypothesis
given the data, a Bayesian approach is needed, and this
requires the specification of the prior probability of the
hypothesis and the probability of the data under specified
alternatives.2 This motivates a move away from P values,
and here we suggest an approach based on an approximate
Bayes factor that we call the “Bayesian false-discovery
probability” (BFDP). Recently, Wacholder et al.2 intro-
duced the false-positive reporting probability (FPRP) as a
means to assess whether the strength of an association
was “noteworthy,” a terminology we use here inter-
changeably with “discovery,” the latter term being com-
mon in the literature on multiple-hypothesis testing.9,10

FPRP was introduced as a criteria, “to help investigators,
editors, and readers of research articles to protect them-
selves from overinterpreting statistically significant find-
ings that are not likely to signify a true association”2(p434);
this endeavor seems extremely useful, and we introduce

BFDP to satisfy the same objective. FPRP has generated a
lot of interest, and we discuss its relationship to BFDP and
to the related but subtly different q value.10 The difference
is that FPRP uses the observed significance region, whereas
the q value has a fixed region, which allows the false-dis-
covery rate (FDR) to be controlled, a property not inher-
ited by FPRP, making it difficult to calibrate. We outline
how BFDP may be used for design and, in a multiple-
hypothesis–testing context, how BFDP provides the ex-
pected numbers of false and missed discoveries.

Methods
Reporting a Hypothesis as Noteworthy via Bayesian Decision
Theory

Under frequentist inference, the null hypothesis is viewed asH0

nonrandom; so, to calculate the probability of , one must takeH0

a Bayesian standpoint; alternatives to must also be considered,H0

to define the sample space of hypotheses. Let de-y p (y , … ,y )1 n

note the observed data and the alternative hypothesis. TheH1

application of Bayes’s theorem gives the probability of the hy-
pothesis given data asH y0

p(yFH )Pr (H FH ∪ H )0 0 0 1Pr (H Fy,H ∪ H ) p , (1)0 0 1 p(yFH ∪ H )0 1

where

p(yFH ∪ H ) p0 1

p(yFH )Pr (H FH ∪ H ) � p(yFH )Pr (H FH ∪ H )0 0 0 1 1 1 0 1

is the probability of the data averaged over and ,H H0 1

is the prior probability that is true (given thatPr (H FH ∪ H ) H0 0 1 0

one of and is true), andH H Pr (H FH ∪ H ) p 1 � Pr (H FH ∪0 1 1 0 1 0 0

is the prior on the alternative hypothesis. It is clear fromH )1
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Table 1. Costs Corresponding to
Decision d

Truth

for DecisionC(d,H)

d p 0
(Nonnoteworthy)

d p 1
(Noteworthy)

H p H0 0 Ca

H p H1 Cb 0

NOTE.— is the cost of a false discovery,Ca

and is the cost of a false nondiscovery.Cb

equation (1) that we are calculating the probability of the null
given that either or is true. Hence, we are calculating theH H0 1

“relative truth”; may provide a poor fit to the data, but so mayH0

.H1

Although recognizing that we are conditioning on either orH0

being true is of crucial importance, we now suppress this inH1

our notation, for brevity, and write:

p(yFH )p0 0Pr (H Fy) p , (2)0 p(yFH )p � p(yFH )(1 � p )0 0 1 0

where is the prior on the null. We rewrite equationp p Pr (H )0 0

(2) as

BF # PO
Pr (H Fy) p ,0 BF # PO � 1

where

p(yFH )0BF p (3)
p(yFH )1

is the Bayes factor and

p0PO p
1 � p0

is the prior odds of no association. The use of the Bayes factors
as a summary of the evidence contained in the observed data has
been advocated in both a medical context11 and a genetic epi-
demiology context.12 Often, the alternative hypothesis will be
indexed by a continuous parameter. For example, for the case of

versus , we have , whereH :v p 0 H :v ( 0 p(yFH ) p ∫ p(yFv)p(v)dv0 1 1

is the prior on .p(v) �� ! v ! �

In terms of making a decision as to which one of and toH H0 1

report (given that we will report one of them), the Bayesian de-
cision theoretic solution is to assign costs to the consequences
of making a decision, given the truth of or . Specifically, letH H0 1

be the cost associated with decision d, when the truth isC(d,H)
H. Table 1 gives the four costs, two of which are zero; is theCa

cost of a false discovery (we decide to report an association as
noteworthy when, in fact, the null is true), and is the cost ofCb

a false nondiscovery (we decide to call an association nonnote-
worthy when, in fact, an association exists). Appendix A shows
that, to minimize the posterior expected cost, we should report
an association as noteworthy according to the intuitive condi-
tion:

1
Pr (H Fy) � ,1 1 � C /Cb a

which is equivalent to

C /Cb aPr (H Fy) ! . (4)0 1 � C /Cb a

Hence, we need to consider only the ratio of costs, .C /Cb a

To implement this approach, one must recognize that andp0

are playing quite different roles. The prior probability ofC /Cb a

no association, , is based on the totality of evidence availablep0

before analysis of the data from the current study. The quantity

corresponds to the ratio of costs of false nondiscovery andC /Cb a

false discovery. If, for example, missing a true association is four
times more costly than falsely reporting an association, so that

, we should report if is at least 0.2 or, equiv-C /C p 4 H Pr (H Fy)b a 1 1

alently, if is !0.8. In a multiple-hypothesis–testing con-Pr (H Fy)0

text, the choice of will strongly influence the total number ofp0

associations called noteworthy, whereas will determine theC /Cb a

expected number of these that are false discoveries and false non-
discoveries. The ratio of costs, , for candidate-gene studiesC /Cb a

is likely to be lower than that for genomewide association studies,
since, in the latter, we wish to produce a “long list” of candidates
for future investigation, whereas, in the former, the follow-up of
noteworthy candidates is more expensive. If a large study at-
tempts to be definitive, then the cost of a false discovery will be
greater, and a more stringent (i.e., lower) threshold for Pr (H Fy)0

will result. Wacholder et al.2 provide an excellent discussion of
issues regarding the decision process in a variety of contexts.

Simple Null Hypothesis with Composite Alternative and
Adjustment for Confounding

We now consider a specific situation in which disease risk, p, is
modeled via the logistic regression

Tlogit p p x g � zv , (5)

with g, a vector of log relative risks corresponding to con-c # 1
founders, and v, the log relative risk of interest; is a vectorx c # 1
of confounders, and z is the value of an “exposure.” The null and
alternative hypotheses are and , with g unspe-H :v p 0 H :v ( 00 1

cified under each. For concreteness, suppose that the association
between risk and a particular SNP is of interest and assume a
dominant model, so that z is an indicator of being heterozygous
or homozygous for the mutant allele and is the associated rel-ve
ative risk.

The calculation of the Bayes factor in equation (3) requires the
complete specification of both the data-generating mechanism
(the likelihood), the prior distribution for all parameters of the
model, and the calculation of multidimensional integrals. In gen-
eral, each of these steps is difficult (appendix B contains details
of these specifications). Instead, suppose a logistic regression pro-
duces an estimate, , with associated standard error . We thenˆ �v V
(i) summarize the information in the likelihood concerning the
parameter of interest v, using and its asymptotic distributionv̂

, and (ii) consider a prior for v only, rather than a jointN(v,V)
specification for v and g. We assume this prior is ; itv ∼ N(0,W)
is natural to assume that the prior is centered at 0, corresponding
to the null of no association (the probability of any specific value,
in particular the null value , is zero, and the prior on thev p 0
null value is ). Whereas is the prior probability onp p p 1 � p0 1 0



210 The American Journal of Human Genetics Volume 81 August 2007 www.ajhg.org

the existence of an association, W describes the size of the strength
of the association, conditional on the existence of one.

Appendix B shows that, with (i) and (ii), the Bayes factor
is replaced by , and we obtain theˆ ˆp(yFH )/p(yFH ) p(vFH )/p(vFH )0 1 0 1

approximate Bayes factor

2ˆ ˆp(vFH ) V � W v W0 �ABF p p exp � #ˆ [ ]p(vFH ) V 2 V(V � W)1

21 Z
p exp � r ,[ ]� 21 � r

where is the usual Z statistic and the shrinkage factorˆ �Z p v/ V

W
r p (6)

V � W

is the ratio of the prior variance to the total variance. It is im-
portant to note that the Bayes factor depends not only on Z but
also on the power through V, which itself depends on the minor-
allele frequency (MAF) and on the size of the effect. We define
the BFDP as follows:

ABF # PO
BFDP p .

ABF # PO � 1

The name “BFDP” reflects the fact that, if we report an association
as noteworthy, this is the probability of the null, and, therefore,
the probability of a false discovery. The “Bayesian” label empha-
sizes that we are taking a model-based approach, so the proba-
bility is conditional on the model and, in particular, on the as-
sumed . Given that BFDP is an approximation of , wep Pr (H Fy)0 0

should report the association as noteworthy if expression (4) is
satisfied.

In addition to reporting BFDP, it is also informative to give
point and interval estimates for v. Under the model given above,
and given an association, the approximate posterior for the rel-
ative risk is given by

v ˆ ˆe Fv ∼ lognormal(rv,rV) , (7)

so that the posterior median is . Hence, the maximum-ˆexp (rv)
likelihood estimator (MLE) undergoes shrinkage towardˆexp (rv)
the prior mean of 1, with the amount of shrinkage given by
equation (6). As the sample size increases, and , so thatV r 0 r r 1
the posterior concentrates around the MLE. Shrinkage is desirable
in situations in which the power is low (i.e., V is large), since it
reduces the reporting of chance associations based on few data.
Hierarchical models also produce this behavior and have been
advocated in an epidemiological context.13,14 Under expression
(7), a credible interval for the relative risk is given100(1 � a)%
by , where is the distribution function�1ˆ �exp {rv � F (a/2) rV} F(7)
of a standard normal random variable.

Prior Choice

Recall that we assume the prior . It is relatively straight-v ∼ N(0,W)
forward to pick the prior variance W under the alternative by

specifying that the relative risk lies in with probabilityv v ve [1/e ,e ]p p

. This leads to1 � e

2

vpW p . (8)[ ]��1F (1 � )2

For example, we might assume that, with probability 0.95, the
relative risk lies between 2/3 and 3/2; this corresponds to the
choices and , which give, via equation (8),e p 0.05 v p log (1.5)p

. In practice, we can examine the sensitivity to W by2W p 0.21
considering a range of values. We should be wary of setting W
to be very large, however, since as , so that the nullBF r � W r �

is chosen for very large values of the prior variance.15 In practice,
this is not an issue in the context considered here, since one can
choose sensible values as an upper bound for the relative risk a
priori.

In the context of a genomewide association study, we may wish
to specify the prior variance (and hence the expected effect size)
conditional on the MAF associated with the SNP whose relative
risk we are estimating, although we do not pursue such a spec-
ification here. The allelic spectrum has been discussed by a num-
ber of authors.6

A graphical representation of BFDP is provided in figure 1a.
In this hypothetical situation, we suppose that a logistic regres-
sion has produced an estimate of , along with as-v̂ p log (1.316)
sociated SE of (the latter depending on the estimate�V p 0.102
and on the MAF), and we assume a prior variance of W p

. These values result in the two normal2 2[log (2)/1.96] p 0.35
curves in figure 1, under and un-2 2 2N(0,0.10 ) H N(0,0.10 � 0.35 )0

der ; and are indicated, and the ratio of theseˆ ˆH p(vFH ) p(vFH )1 0 1

values provides an approximate Bayes factor of 0.11, so isv̂

times more likely under than under .1/0.11 p 9 H H1 0

Design by Use of BFDP

We now describe how BFDP may be used to assess whether a
study is likely to provide a noteworthy association. Recall that
the data are entered into the BFDP via the approximate Bayes
factor, which is a simple function of and V, so we need onlyv̂

these quantities to calculate BFDP, along with the prior specifi-
cations W and . For illustration, we consider a dominant modelp1

with h, the probability of being heterozygous or homozygous for
the mutant allele (we refer to this as “exposed”); , the probabilityg0

of disease given two copies of the wild-type (referred to as “unex-
posed”); and , the probability of disease given one orvg p g # e1 0

two mutant alleles. Under this scenario, the expected frequencies
by exposure and disease status are

r p Pr (unexposedFcontrol)00

(1 � g )(1 � h)op ,
(1 � g )(1 � h) � (1 � g )h0 1

g (1 � h)0r p Pr (unexposedFcase) p ,01 g (1 � h) � g h0 1
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Figure 1. Graphical representation of BFDP (a) and FPRP (b). For BFDP, the approximate Bayes factor is the ratio of indicated densities,
whereas, for FPRP, the dark- and light-shaded areas represent and , respectively.ˆa 1 � bˆ

(1 � g )h1r p Pr (exposedFcontrol) p ,10 (1 � g )(1 � h) � (1 � g )h0 1

and

g h1r p Pr (exposedFcase) p ,11 g (1 � h) � g h0 1

and, asymptotically, we have

1 1 1 1 1 1
V p � � � ,( ) ( )n r r n r r0 00 10 1 01 11

where and are the numbers of controls and cases. For anyn n0 1

particular set of design parameters, there is a distribution of BFDP,
since the observed numbers of exposed and unexposed in the
case and control groups vary across simulations. To illustrate,
figure 2 shows the distribution of BFDP for data simulated with

, , , , andp p 0.99 v p log (1.5) n p n p 1,000 g p 0.001 W p0 0 1 0

, for h of 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. For2[log (2)/1.96]
these frequencies, the Bayesian “powers” of achieving a note-
worthy BFDP at a level of 0.8 (which corresponds to a false non-
discovery being four times as costly as a false discovery) are 0%,
13%, 42%, 76%, 88%, 92%, and 92%, respectively.

We next calculate the sample size required to obtain a BFDP
!0.8, with probability 0.8 (the Bayesian power)—that is,

ˆPr {Pr [H Fv(y)] � 0.8} � 0.8 . (9)y 0

Figure 3 shows the sample size required to satisfy expression (9)
as a function of the frequency of one or two copies of the mutant
allele (across the range 0.05–0.50) and . We see that, for rarep1

alleles and unlikely alternatives, very large sample sizes are re-
quired. We emphasize that these calculations were performed as-
suming that the SNP was causative; if the SNP is only in linkage
disequilibrium with the true causal SNP, then the sample sizes
will increase further.

FPRP

Since its introduction in 2004, FPRP has been the subject of great
interest, as evidenced by the 1200 references to the article by
Wacholder et al.,2 according to a Web of Science citation search
performed in March 2007, with the article discussed in both ap-
plied16–20 and methodological7,21,22 contexts.

FPRP is defined as follows:

âp0FPRP p , (10)
ˆâp � (1 � b)(1 � p )0 0

where is the observed significance level of a statisticâ p Pr (TFH )0

( in the logistic regression context); is the prior prob-ˆ ˆT p FvF 1 v p0

ability that is true; and is the “power” eval-ˆH 1 � b p Pr (TFv )0 1

uated at . It is not the conventional power, since it is evaluatedv1

at the observed and hence does not have the usual frequentistv̂

properties (being based on the observed P value, a data-defined
threshold).

For examination of an association between a SNP and a disease,
Wacholder et al.2 recommend the following steps:

1. Preset a noteworthy FPRP for each hypothesis; 0.2 and 0.5
are given as examples.

2. Determine the prior probability of the alternative hypothesis,
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Figure 2. Distribution of BFDP by allele frequency for 1,000 cases
and 1,000 controls with a relative risk of 1.5 and with p p0

. The solid line connects the median BFDP at each frequency.0.99
The dotted line corresponds to a noteworthy threshold of 0.8; the
powers to achieve this level (i.e., for the BFDP to fall below this
threshold) at the given frequencies are 0%, 13%, 42%, 76%, 88%,
92%, and 92%.

Figure 3. Number of cases required to obtain a BFDP of !0.8
with probability 0.8, as a function of the frequency of one or two
mutant allele copies and , with a relative risk of 1.5 (under thep1

assumption of an equal number of cases and controls).

.p p 1 � p1 0

3. Specify the parameter value, , at which the power is to bev1

evaluated; the value is suggested by Wacholderv p log (1.5)1

et al.2 for a detrimental SNP, and for a protec-v p log (2/3)1

tive SNP.
4. Calculate FPRP by use of equation (10), and report the as-

sociation as noteworthy or not by comparing the value with
the cutoff specified in step 1.

Insight into FPRP may be gained by considering a formal Bayesian
approach. Assume that the “data” consist of T as defined above,
and consider the point null and alternative hypotheses H :v p0

and . Then,0 H :v p v1 1

Pr (TFH )p0 0FPRP p Pr (H FT) p0 Pr (TFH )p �Pr (TFH )(1 � p )0 0 1 0

is equal to equation (10). Writing

â p0#ˆ 1�p0 FF # PO1�b
FPRP p p ,

â p0 FF # PO � 1# � 1ˆ 1�p01�b

we see that the “frequentist factor” is taking theˆˆFF p a/(1 � b)
role of the Bayes factor. An alternative derivation of FPRP occurs
if we take versus but assume a point mass priorH :v p 0 H :v ( 00 1

at . In this case, , and we again obtainv p v Pr (TFH ) p Pr (TFv )1 1 1

equation (10).
Figure 1b graphically illustrates the calculation of FPRP for the

same and V used for the calculation of the approximate Bayesv̂

factor. The power is calculated at , and andˆv p log (1.5) a 1 �1

are shown as the dark- and light-shaded areas, respectively. Inb̂

this example, , so that the data, T, are 150 times moreˆâ/(1 � b)
likely under the alternative than under the null, a much stronger
conclusion than that reached using the approximate Bayes factor.

Although FPRP is a Bayesian procedure, when compared with
BFDP, it differs in each of the likelihood, prior, and decision-rule
choices.

The likelihood.—Information is being lost by considering T p
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Table 2. The Four Possibilities When m Tests Are
Performed and k Tests Are Called Noteworthy

Hypothesis

Nonnoteworthy
Tests

( )m � k

Noteworthy
Tests
(k)

All
Tests
(m)

H0 U V m0

H1 T S m � m0

NOTE.—V is the number of false discoveries, and T is the number
of false nondiscoveries.

(a censored observation), rather than itself. Given that˜ ˆ ˆFvF 1 v v

we are using the observed P value, this does not seem appropriate,
since the observation is not larger than a particular value, it is
exactly that value. An intermediary approach between FPRP and
BFDP, which considers only a single alternative but does not cen-
sor the observation, would be to use

LR # POˆPr (H Fv) p ,0 1 � LR # PO

where

v̂
f ][�V

LR p
ˆ(v � v )1

f[ ]�V

is the likelihood ratio and is the density function of a stan-f(7)
dard normal random variable. Note that

˜ ˆ ˆPr (H FFvF 1 v) ! Pr (H Fv) , (11)0 0

so that taking the censored observation gives a lower bound on
the posterior probability of the null associated with the observed
value of the estimate. In their appendix, Wacholder et al. state,
“the FPRP value is the lowest FPRP value at which a test would
yield a noteworthy finding.”2(p441) Although expression (11) would
suggest that , the inequality in (11) is for a fixed prior,FPRP ! BFDP
and it is possible for FPRP to be larger than BFDP if is close tov1

1 (since, then, the power is low and FPRP is relatively larger).
Finally, the use of a two-sided P value is not consistent with the
evaluation of power at a point (one-sided) alternative.

The prior.—Assuming that as a prior is overly restrictive,v p v1

BFDP averages over all alternatives .v ( 0
The decision rule.—The earlier discussion of decision theory re-

veals that it is helpful to base the definition of “noteworthiness”
on the costs of false discovery and nondiscovery. For FPRP, the
decision is with respect to the specific alternative, , which isv1

more difficult to assess than the cost for the general alternative.
One of the values suggested by Wacholder et al.2 is 0.2, which
corresponds to the belief that the cost of a false declaration that

is four times larger than the cost of calling nonnoteworthyv p v1

a true association of strength . This will often not reflectv p v1

the aims of a genomewide association study, because, as noted,
we would rather have a longer list than a shorter list of SNPs. For
a candidate-gene study, a lower threshold is more plausible.

Multiple-Hypothesis Testing

We now consider how BFRP may be used for multiple-hypothesis
testing, a situation not explicitly considered by Wacholder et al.23

Table 2 gives the possible outcomes when m tests are performed;
is the true number of null hypotheses, and k the number ofm0

tests that are classified as noteworthy. There is now a large body
of literature on how to perform multiple tests.9,10,24–28 It has been
recognized that estimating and characterizing procedures accord-
ing to the expected numbers of false discoveries and nondiscov-
eries (given by and in table 2) or their rates ( andE[V] E[T] E[V/k]

) is far more relevant than controlling familywise er-E[T/(m � k)]
ror rates, as is done, for example, by the Bonferroni method

(which controls the probability that ). The latter producesV � 1
a relatively small k and is therefore conservative, which can lead
to substantial power loss and the missing of many true
associations.

Appendix C shows that, if describes the common ratioC /Cb a

of costs of false nondiscovery to costs of false discovery across
tests, then we should report associations for which

C /Cb aˆPr (H Fv) ! ,0 1 � C /Cb a

so that, as with a single test, we have an intuitive rule that is
defined in terms of the posterior probability of the null. Let k be
the number of such associations. We rank the associations in
order of increasing BFDP, , , so thatˆPr (H Fv ) j p 1, … ,m j p0j j

represent the noteworthy tests. The expected numbers of1, … ,k
true nonnoteworthy, false noteworthy, false nonnoteworthy, and
true noteworthy tests are given in table 3. The expected number
of false discoveries is the sum of the null probabilities over those
hypotheses we report, whereas the expected number of false non-
discoveries is the sum of the probabilities on the alternative over
the nonnoteworthy tests. The expected number of false note-
worthy tests divided by the number of noteworthy tests has been
proposed22 in conjunction with FPRP, to “control the Bayes FDR”;
one can evaluate this quantity with any Bayesian approach, how-
ever, not just with the specific likelihood and prior setup consid-
ered in FPRP.

q Values

Recently, there has been a great deal of interest in the q-value
method,10 which, in a setting of multiple-hypothesis testing and
for a fixed critical region, G, provides an estimate of the FDR (or,
more precisely, the positive FDR, which is the FDR conditioned
on at least one noteworthy test). The q value corresponding to G

is

a(G)p0˜Pr (H Fv � G) p0
a(G)p � [1 � b(G)](1 � p )0 0

p0p a(G) # , (12)˜Pr (v � G)

with the term estimated from the totality of P values.˜p / Pr (v � G)0

If all hypotheses are null, then the distribution of P values is
uniform, so departures from uniformity informs on the fraction
of nulls, , whereas the complete distribution gives an estimatep0

of the denominator in (12).
For a given region, G, the average FDR is controlled at level

. Suppose a SNP has a q value of ; this does not˜Pr (H Fv � G) q0 0
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Table 3. Expected Numbers of Tests That Are True or False
and Nonnoteworthy or Noteworthy When m Tests Are
Performed and k Tests Are Called Noteworthy

Hypothesis
Nonnoteworthy

( )m � k
Noteworthy

(k)
Total
(m)

H0 Expected True
m ˆp � Pr (H Fv )0j jjpk�1

Expected False
k ˆp � Pr (H Fv )0j jjp1

m0

H1 Expected False
m ˆp � Pr (H Fv )1j jjpk�1

Expected True
k ˆp � Pr (H Fv )1j jjp1

m � m0

mean that this SNP is false positive with probability . The false-q0

positive probability for this SNP could be much higher, because
is the average proportion of false-positive SNPs that wouldq0

occur if we call the SNP noteworthy, and this collection contains
SNPs that are more noteworthy. The ranking of P and q values is
identical, since the denominators of all tests are equal (unlike
BFDP and FPRP, which explicitly use the powers of each test in
the calculation of their respective denominators).

In microarray experiments (to which q values have been ex-
tensively applied), the empirical estimation of is reliable be-p0

cause a large number of tests are nonnull. Estimation is more
difficult in genomewide association studies because the true num-
ber of associations is a tiny fraction of the total number of tests
performed. It may also be argued that the false-nondiscovery rate
is more relevant for genomewide association studies, since miss-
ing a true association is more costly than making a false discovery;
however, the false-nondiscovery rate still requires an estimate of

.p0

Summary of FPRP

FPRP is a Bayesian procedure that takes as data the observed tail
area and assumes a point prior under the alternative. FPRP ignores
information by conditioning on a tail area and is difficult to
calibrate from a Bayesian perspective, because the ratio of costs
is with respect to a specific alternative. Because FPRP uses critical
regions defined by the observed P values, the regions are not
constant across tests, so frequentist FDR is not controlled; such
control is provided by the q-value method.

Results
Empirical Comparison of FPRP and BFRP

We consider a hypothetical, genomewide association case-
control study in which the association between disease
and SNPs, with alleles A and a at each can-m p 100,000
didate marker, is evaluated for 3,000 cases and 3,000 con-
trols. To simulate data, we assume that the disease risk, p,
is given by the logistic regression model

logit p p a � zv , (13)

where is the baseline risk and , 0.5, andae p 0.002 z p 0
1 corresponds to 0, 1, and 2 copies of the mutant allele,
respectively. Hence, we assume an additive genetic
model,29 with corresponding to the relative risk asso-ve

ciated with two copies of the mutant allele. We take pen-
etrances, from equation (13), to be given by

f p Pr (caseFaa) p 0.002 ,0

v/2f p Pr (caseFaA) p e # f ,1 0

vf p Pr (caseFAA) p e # f ,2 0

and then evaluate the probabilities of aa, Aa, and AA,
given case and control status, by use of Bayes’s theorem.
Across all m SNPs, we randomly generate the MAF from
a uniform distribution on [0.05, 0.50]. We assume that

SNPs are associated with disease and gen-m � m p 1000

erate the log relative risks from a beta distribution with
parameters 1 and 3, scaled to lie between log(1.1) and
log(1.5); hence, we have an L-shaped distribution of effect
sizes, with the relative risks more likely to be closer to 1.1
than to 1.5. The remaining SNPs are not as-m p 99,9000

sociated with disease. We take for FPRP andv p log (1.5)1

for BFDP.2W p [log (1.5)/1.96]
A major conclusion from this simulation is that, even

with 3,000 cases and 3,000 controls, there is very low
power for detection of SNPs with low MAFs and/or log
relative risks close to 0. With ratios of cost of false non-
discovery to cost of false discovery of 4:1, 10:1, 20:1, and
50:1, the BFDP thresholds of noteworthiness are 0.80,
0.91, 0.95, and 0.98 and yield only 9, 11, 15, and 20 true
associations, respectively. Figure 4 plots v against MAF for
the 100 true associations for these four thresholds and
indicates the noteworthy and nonnoteworthy SNPs
(blackened and nonblackened circles, respectively). The
inability to detect SNPs with low MAF and/or relative risks
close to 1 is apparent.

As discussed above, FPRP and BFDP are not directly com-
parable; so, rather than present side-by-side results, we
discuss each in turn. Figure 5 gives the numbers of true
nonnoteworthy, false noteworthy, false nonnoteworthy,
and true noteworthy tests (i.e., the quantities U, V, T, and
S in table 2) for BFDP as a function of the chosen thresh-
old. The expected posterior estimates of each of these
quantities (calculated using the formulas in table 3) are
displayed as dashed lines, and the true numbers of null
and nonnull associations appear as dotted lines. The prob-
lem with nondiscoveries is apparent in figure 5d—even
for thresholds very close to 1, the majority of true nonnull
associations go undetected. Figure 5b shows that the num-
ber of false discoveries increases dramatically as the
threshold approaches 1. The only comfort from this sim-
ulation is that the expected numbers of true and false
noteworthy and nonnoteworthy tests are very accurate,
so at least we have some indication of the reliability of
the results. A caveat, however, is that these numbers were
calculated using the true and are highly sensitive to thisp0

value. The prior on v was , however, which is quiteN(0,W)
different from the distribution from which the effects of
the nonnull SNPs were generated.



Figure 4. Log relative risk versus MAF for the 100 nonnull SNPs in the simulated data. Blackened and nonblackened circles represent
SNPs called noteworthy and nonnoteworthy, respectively, by BFDP at the stated threshold.



Figure 5. Operating characteristics of BFDP. Panels a, b, c, and d correspond to possibilities U, V, T, and S in table 2, respectively.
In each panel, the solid lines represent the numbers of true nonnoteworthy, false nonnoteworthy, false nonnoteworthy, and true
noteworthy tests at each threshold for BFDP. The dashed lines are the posterior expected numbers of tests that are true nonnoteworthy,
false nonnoteworthy, false nonnoteworthy, and true noteworthy. The dotted lines represent the ideal outcome that a perfect test would
achieve.
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Table 4. Summary of q Values for Simulated Data

q k
True and

Nonnoteworthy
False and

Noteworthy
False and

Nonnoteworthy
True and

Noteworthy
Empirical

FDR

.05 2 99,900 0 98 2 .00

.10 4 99,900 0 96 4 .00

.20 4 99,900 0 96 4 .00

.30 8 99,898 2 94 6 .25

.40 8 99,898 2 94 6 .25

.50 8 99,898 2 94 6 .25

.60 23 99,886 14 91 9 .61

.70 28 99,882 18 90 10 .64

.80 37 99,874 26 89 11 .70

.90 160 99,760 140 80 20 .88

.95 199 99,721 179 80 20 .90

NOTE.—Columns 3, 4, 5, and 6 correspond to possibilities U, V, T, and S, in table 2, respectively.

The results for FPRP are displayed in figure 6, on the
same scale as figure 5. The overall behavior of BFDP and
FPRP is the same, as can be seen in figure 7a, in which we
see that the rankings are generally quite similar (with a
few exceptions), but FPRP produces posterior null esti-
mates that are much smaller than those produced by BFDP.
This is because, from expression (11), FPRP is a lower
bound on the posterior probability corresponding to the
observed estimates. This inequality is for a fixed prior, and
the priors for FPRP and BFDP are different, but the dom-
inant difference between the two approaches for the priors
chosen here is because of conditioning on point estimates
(for BFDP) versus conditioning on tail areas (for FPRP).
The estimates of the expected numbers of true and false
noteworthy and nonnoteworthy tests under FPRP (the
dashed lines) are not useful. In the first row of figure 6,
the posterior probabilities of are summarized, and FPRPH0

gives a lower bound on these probabilities; hence, the
dashed lines fall beneath the solid lines. Similarly, in the
second row, the probabilities of are bounded above. InH1

each case, the bounds are not tight and so are not prac-
tically useful.

Using the P values from the tests, we im-m p 100,000
plement the q-value approach that controls FDR; wasp0

estimated as 1, reflecting the difficulty in estimating a pro-
portion very close to 1. Table 4 gives the numbers of true
and false nonnoteworthy and noteworthy results as a
function of the selected FDR level. The final column shows
that the procedure does control FDR, although, as with
BFDP and FPRP, the number of missed true associations is
large. Figure 7d plots the q values versus BFDP; the latter
are always larger, which reflects expression (11) to a large
extent. q values are a lower bound because they are eval-
uated by conditioning on a tail area. Table 5 provides a
tabulation of BFDP values, although we stress that BFDP
and q values are not directly comparable because they are
packaging the information in the totality of tests in a dif-
ferent manner. BFDP does control FDR here, however.

Figure 7c and 7d plots the q values (which have the same
rankings as the P values) against FPRP and BFDP, respec-
tively, and we see that the rankings can be different be-
cause the power of each test is not used in the q-value

calculation. For example, in figure 7c, there are two SNPs
(highlighted with boxes) with q values of 0.26 but with
quite different FPRP values of 0.02 and 0.21, correspond-
ing to powers of 0.90 and 0.07, respectively. A striking
example of this phenomenon in a candidate-gene study
is presented in the next section.

Lung Cancer Association Study

We now present an illustration of the calculation of BFDP
in the context of a multicenter, case-control study with
2,250 lung cancer cases and 2,899 controls and examine
the association with 131 SNPs. This study is described
more fully by Hung et al.17; the results for the study are
not yet published, so we do not reveal the SNP names
here. To calculate BFDP, we take and,2W p [log (1.5)/1.96]
for FPRP, , with for both BFDP and FPRP,v p 1.5 p p 0.981 0

reflecting that, in this candidate-gene study, we believe
that two or three SNPs might be associated with lung can-
cer. Under both BFDP and FPRP, the priors are such that
we are implicitly assuming that the SNPs are independent
(and, in particular, are not in linkage disequilibrium). In
practice, the effect of ignoring the dependence will be a
loss of efficiency in estimation. One approach to over-
coming this problem is to specify a hierarchical model30,
although this causes loss of the ease of implementation
of BFDP.

We assume an additive genetic model; it would be
straightforward to repeat this experiment with dominant
or recessive genetic models or with a nonadditive model.
Appendix D gives details of how BFDP may be calculated
in the situation in which there are two or more relative
risks. We fit 131 logistic-regression models, controlling for
age, sex, cigarette-pack years, and country, and retain for
the calculation of BFDP the estimates and SEs, ,ˆ �{v , V}jj

.j p 1,…,131
We assume that the cost of a false nondiscovery is three

times as great as the cost of a nondiscovery, which gives
a cutoff value for BFDP of . We list the six most3/4 p 0.75
likely SNP associations under BFDP in table 6, along with
a number of additional summaries. Use of the 0.75 cutoff
gives one noteworthy SNP under BFDP, with ˆPr (H Fv) p0



Figure 6. Operating characteristics of FPRP. Panels a, b, c, and d correspond to possibilities U, V, T, and S in table 2, respectively.
In each panel, the solid lines represent the numbers of true nonnoteworthy, false nonnoteworthy, false nonnoteworthy, and true
noteworthy tests at each threshold for FPRP. The dashed lines are the posterior expected numbers of tests that are true nonnoteworthy,
false nonnoteworthy, false nonnoteworthy, and true noteworthy. The dotted lines represent the ideal outcome that a perfect test would
achieve.



Figure 7. Comparison between BFDP, FPRP, P, and q for the 5,000 SNPs with the lowest values of BFDP. a, BFDP versus FPRP. b, P
values versus FPRP. c, q values versus FPRP. d, q values versus BFDP.
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Table 5. Summary of BFDP Values for Simulated Data

BFDP k
True and

Nonnoteworthy
False and

Noteworthy
False and

Nonnoteworthy
True and

Noteworthy
Empirical

FDR

.05 2 99,900 0 98 2 .00

.10 2 99,900 0 98 2 .00

.20 3 99,900 0 97 3 .00

.30 3 99,900 0 97 3 .00

.40 4 99,900 0 96 4 .00

.50 7 99,899 1 94 6 .14

.60 7 99,899 1 94 6 .14

.70 8 99,898 2 94 6 .25

.80 16 99,893 7 91 9 .44

.90 32 99,879 21 89 11 .67

.95 66 99,848 52 86 14 .79

NOTE.—Columns 3, 4, 5, and 6 correspond to possibilities U, V, T, and S, in table 2, respectively.

Table 6. Six Most Likely SNP Associations
under BFDP (the Posterior Probability
of the Null)

SNP v̂

Z
Statistic P FPRP BFDP

A �.31 �3.15 .0016 .087 .67
B �.34 �2.96 .0031 .17 .78
C .27 2.76 .0057 .23 .83
D �1.61 �4.34 .000014 .55 .86
E .63 2.73 .0063 .65 .93
F .21 2.17 .030 .60 .94

NOTE.—With false nondiscovery three times as costly
as false discovery, a cutoff value of 0.75 provides the
decision threshold; under this threshold, only the top
SNP is deemed noteworthy.

, so that the null is more likely than the alternative.0.67
Notice that SNP D has the smallest P value, but the power
is very low (MAF is 0.02, with power at of just 0.0006),v1

and it is the fourth most noteworthy SNP under FPRP and
BFDP. The noteworthiness of SNP D is reduced because
the observed data are incompatible with the alternative
as well as the null, and the latter is considered only by
the P value. This shows that ranking on the basis of P
values can be misleading because the power associated
with each test is not considered.

For , which corresponds to not reporting any SNPs,k p 0
the expected number of false discoveries is obviously zero,
increasing to 128.0 (the sum of across all tests)ˆPr (H Fv)0

if we choose to report all 131 SNPs as noteworthy. For
, the expected number of false nondiscoveries is 2.96,k p 0

which decreases to zero if we choose to report all 131 SNPs
( ). The weighted combinations of costs is mini-k p 131
mized at —as it has to be, because our cutoff mini-k p 1
mizes this quantity—at which point, we have 2.63 ex-
pected false nondiscoveries, and 0.67 is the probability
that SNP A is a false discovery; the latter is the BFDP value
in table 6.

In figure 8, we examine the sensitivity to the prior by
examining the effect of varying , , the 97.5% point ofp v0 p

the prior for v under BFDP, and , the value at which thev1

power is evaluated for FPRP. Boxplots of BFDP (fig. 8a–8c)
and FPRP (fig. 8d–8f) are shown with , 0.95, andp p 0.980

0.75. Within each plot, we have , 1.88, 2.25,v p v p 1.501 p

2.63, and 3.00. The largest sensitivity is seen when we
assume ; under this choice, there are 31, 26, 22,p p 0.750

21, and 18 noteworthy SNPs under BFDP for the five values
of . Within each choice of , there is relatively littlev pp 0

sensitivity to —for example, with , there are 1,v p p 0.98p 0

3, 2, 2, and 2 noteworthy SNPs under the five choices for
. The ranking of SNPs is unchanged as varies. Sen-v pp 0

sitivity to the ratio of costs is revealed by moving the
dashed line vertically—upwards if missing associations
are thought to be more costly, and downwards if false
discoveries are more costly.

We calculate q values for these data, using the default
choice of the smoothing parameter, to give .p̂ p 0.910

With control at an FDR level of 0.05, there is one note-
worthy test, corresponding to SNP D in table 6. At level
0.10, there are two noteworthy tests, corresponding to
SNPs D and A, and, at levels 0.20–0.50, there are five in
total, with SNPs B, C, and E additionally flagged as
noteworthy.

Discussion

In this article, we have suggested a new measure for iden-
tifying noteworthy associations, BFDP, keeping the objec-
tives of but refining the criteria for FPRP in the work of
Wacholder et al.2 Specifically, we advocate BFDP for re-
ducing the number of “discoveries” that are reported but
not replicated in subsequent investigations. Whereas FPRP
is difficult to calibrate, a threshold for BFDP may be chosen
that explicitly considers the costs of false discovery and
false nondiscovery.

BFDP can be applied using an estimate and SE or with
a confidence interval. Published articles that report such
summaries can therefore be critically interpreted. An Excel
spreadsheet and an R function for calculation of BFDP are
available online at J.W.’s Web site.

We have developed BFDP, using the model-based as-
ymptotic distribution of the MLE, but we can replace V
with any estimate that is thought to be appropriate—for
example, a sandwich estimator or one that allows for over-
dispersion to account for population heterogeneity.29



Figure 8. Boxplots of BFDP (a–c) and FPRP (d–f). values are shown above each panel. For panels a–c, each set of boxplotsp0

corresponds to , 1.88, 2.25, 2.63, and 3.00 (the 97.5% point of the prior); for panels d–f, we evaluate the power atv p 1.50 v pp 1

, 1.88, 2.25, 2.63, and 3.00. The dashed lines in panels a–c denote the thresholds that correspond to false nondiscovery being1.50
three times as costly as false discovery, so that SNPs with BFDP values below the line are noteworthy.
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Within a logistic-regression framework, observed race/eth-
nicity may be explicitly modeled with additional param-
eters to control for heterogeneity; simulations have dem-
onstrated that logistic regression can control population
substructure.31 We have concentrated on SNPs, but BFDP
may also be applied to insertions/deletions or copy-num-
ber changes.

Different studies that report the required summaries can
be combined to produce the totality of evidence of a par-
ticular association. For example, for two studies with es-
timates and :ˆ ˆv v1 2

ˆ ˆABF(v ,v ) # p /(1 � p )1 2 0 0ˆ ˆPr (H Fv ,v ) p , (14)0 1 2 ˆ ˆABF(v ,v ) # p /(1 � p ) � 11 2 0 0

where ,ˆ ˆ ˆ ˆ ˆABF(v ,v ) p ABF(v ) # ABF(v dv )1 2 1 2 1

ˆp(v dH )2 0ˆ ˆABF(v dv ) p ,2 1 ˆ ˆp(v dH ,v )2 1 1

and is the density for aver-ˆ ˆ ˆ ˆp(v dH ,v ) p E {p(v dv)} vˆ2 1 1 v d v 2 21

aged over the posterior for v given (and is available inv̂1

closed form). Expression (14) may be used for replication
studies. In such a context, even if two studies provide
small Bayes factors (and therefore strong evidence of an
association), this must still be combined with the prior
odds on the null, ; if the latter is large, then thep /(1 � p )0 0

overall evidence may still be inconclusive.
It is becoming increasingly common to perform ge-

nomewide scans in multiple stages.32 When specifying the
ratio of costs, to determine a cutoff point for BFDP, these
costs may change across stages, since, early on, we do not
wish to lose SNPs that might be associated with disease,
whereas, in the final stage, a more stringent cutoff is de-
sirable. It is straightforward to perform such a procedure
with BFDP. Currently, it is common to rank P values and

then select a set of SNPs for the next phase on the basis
of the smallest P values. We would advocate ranking via
the approximate Bayes factor instead. This will, in general,
provide a different ordering, since the powers are not con-
stant across SNPs (because they depend on the allele fre-
quencies and the strength of the association), which is
not accounted for by the P value. In the lung cancer ex-
ample, we saw a situation in which the smallest P value
did not correspond to a noteworthy SNP.

If one is willing to relax ease of computation in the
multiple-testing scenario, then one may model the totality
of estimates , , as arising from a mixture ofv̂ i p 1,…,mi

two distributions. The proportion of null tests, , mayp0

be estimated from the data, as may the densities of null
and nonnull estimates, although, with a small expected
number of nonnull associations, estimation is likely to be
sensitive to the prior for . A number of models and im-p0

plementation strategies have been suggested for simulta-
neous inference using data from multiple tests. Two of the
easiest to implement are empirical Bayes33 and full Bayes
with importance sampling.34 Each of these procedures
may be used in the context considered here, by replacing
the likelihood with the asymptotic distribution of the
MLE. A great advantage in using the asymptotic distri-
bution is that it results in a model that is very conducive
to analytic examination and provides straightforward
computation. In the lung cancer example, we did not at-
tempt hierarchical modeling because the number of SNPs
was relatively small and the a priori fraction of nonnull
associations was also small, so that reliable estimation of
the nonnull density would not be feasible.
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Appendix A

Minimizing Expected Loss

With respect to table 1, the posterior expected cost associated with decision d is

E[C(d,H)] p C(d,H )Pr (H Fy) � C(d,H )Pr (H Fy) ,0 0 1 1

so that, for the two possible decisions (nonnoteworthy or noteworthy), the expected costs are

E[C(d p 0,H)] p 0 #Pr (H Fy) � C #Pr (H Fy)0 b 1

E[C(d p 1,H)] p C #Pr (H Fy) � 0 #Pr (H Fy) ,a 0 1

and we should choose if —that is, ifd p 1 C #Pr (H Fy) � C #Pr (H Fy)b 1 a 0

C 1aPr (H Fy) � p .1 C � C 1 � C /Ca b b a
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Appendix B

The Approximate Bayes Factor

We derive an approximation of the Bayes factor for logistic-regression model (5) and n individuals.Pr (yFH )/Pr (yFH )0 1

The likelihood under is given byH1

n n

y 1�yi iPr (yFg,v) p Pr (y Fg,v) p p (1 � p ) ,� �i i i
ip1 ip1

whereas, under , we set . We haveH v p 00

n

y 1�yi iPr (yFH ) p p (g,v) [1 � p (g,v)] p(g,v)dgdv (B1)�1 �� i i
ip1g v

and

n

y 1�yi iPr (yFH ) p p (g,v p 0) [1 � p (g,v p 0)] p(g,v p 0)dg , (B2)�0 � i i
ip1g

where is the prior. The integrals in (B1) and (B2) are analytically intractable; thus, some form of approximationp(g,v)
or simulation technique is required.

To calculate an approximation of the Bayes factor, we first replace the likelihood by the asymptotic distri-Pr (yFg,v)
bution , where is the MLE. This approximation will be accurate given the sample sizes in typical ge-ˆ ˆˆ ˆp(g,vFg,v) g,v
nomewide-association and candidate-gene studies, unless the MAF is very small. We write and assume normalb p (g,v)
priors for g and v:

b̂Fb ∼ N(b,V), b ∼ N(m,W) .

Straightforward algebra yields the predictive distribution . A similar derivation is available underb̂FH ∼ N(m,V � W)1

, allowing a closed form for the Bayes factor. This approach requires specification of the joint prior ; we adoptH p(g,v)0

a simpler strategy here.
Suppose that and are independent—that is,ˆĝ v

ĝ g I 0g∼ N , , (B3)c�1 [ ][ ] Tˆ [ ]( )v Iv 0 v

where is the expected information associated with g, is the expected information associated with v, andI c # c I 0g v

is a vector containing zeros. Further, suppose that the prior factorizes as . Under these cir-c # 1 p(g,v) p p(g) # p(v)
cumstances, it is straightforward to show that, under ,H1

ˆ ˆˆ ˆp(g,vFH ) p p(gFH ) # p(vFH ) ,1 1 1

where and, under ,ˆ ˆp(gFH ) p ∫p(gFg)p(g)dg H1 0

ˆ ˆˆ ˆp(g,vFH ) p p(gFH ) # p(vFH ) .0 0 0

An approximate Bayes factor is given by the ratio of these quantities and depends on only v:

ˆ ˆp(vFH ) p(vFH )0 0ABF p p . (B4)ˆ ˆ∫p(vFv)p(v)dv p(vFH )1

In genome association studies, the independence assumption in (B3) is likely to be reasonable, since genetic information
will often be at least approximately independent of environmental information.

The above derivation means that, effectively, we need to consider only the sampling distribution of the MLE,
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, and the prior for , where we have assumed the prior mean is zero. These choices result in thev̂Fv ∼ N(v,V) v ∼ N(0,W)
approximate Bayes factor (B4) being the ratio of the prior predictive densities:

ˆ ˆvFH ∼ N(0,V � W) , vFH ∼ N(0,V) ,1 0

to give

1/2 2 2ˆV � W v W 1 Z
ABF p exp � p exp � r ,( )( )( ) �V 2 V(V � W) 21 � r

where is the usual Z statistic and is a shrinkage factor. This form is used within BFDP throughoutˆ �Z p v/ V r p W/(V � W)
this article.

To investigate the accuracy of the approximation, we simulated case-control data with varying numbers of cases and
controls, MAFs, and relative risks. In all cases, we placed an prior on the intercept. The exact Bayes factor wasN(0,1)
calculated using both a rejection algorithm and importance sampling.35 Figure B1 displays the approximate Bayes
factors plotted against the exact Bayes factors for a subset of the simulations. In each of the scenarios, 50 data sets
were generated, and, in all cases, the approximation is accurate.

Appendix C

Multiple Testing

Suppose we wish to perform m tests with common costs and for each test. The aim is to define a rule forC Cb a

deciding which of the m null hypotheses we will flag as noteworthy and to determine the operating characteristics,
in terms of false discovery and false nondiscovery, for this rule. The cost associated with a particular set of decisions

isd ,…,d1 m

m m

E{[L(d ,…,d ),(H ,…,H )]} p C d Pr (H Fy ) � C (1 � d )Pr (H Fy ) ,� �1 m 1 m a j 0j j b j 1j j
jp1 jp1

where or 1, according to whether we call test j nonnoteworthy or noteworthy. In this case, Muller et al.27 showd p 0j

that we should report association j as noteworthy if

1
Pr (H Fy ) � . (C1)1j j 1 � C /Cb a

Without loss of generality, assume the tests are ranked from smallest to largest in terms of , , andPr (H Fy ) j p 1,…,m0j j

that the first k tests, , are deemed worthy of reporting as noteworthy according to rule (C1). The posterior0 � k � m
expected numbers of true and false nonnoteworthy tests are given in table 3; note that the sum of these two quantities
is , the number of tests not deemed noteworthy. Similarly, the expected numbers of false and true noteworthym � k
tests are given in table 3, and the sum of these two quantities is k, the number of tests called noteworthy.

Appendix D

General BFDP

Suppose we have the logistic regression model

Tlogit p p x g � z v � z v ,1 1 2 2

where, for example, and may be indicators of one or two copies of a mutant allele, with and representingv v1 2z z e e1 2

the associated relative risks. A classical testing procedure would compare and , by useH :v p v p 0 H :v ( 0, v ( 00 1 2 1 1 2

of a likelihood-ratio statistic with 2 df. The approximate Bayes factor is only slightly more complicated than in the
single exposure case and is based on

v̂Fv ∼ N (v,V), v ∼ N (0 ,W) ,2 2 2



Figure B1. Approximate Bayes factor versus exact Bayes factor as a function of the number of controls, ; the number of cases,n0

; and the log relative risk, v. The MAF is 0.05, and there are 50 simulated data sets in each plot. In panel a, andn n p n p 2501 0 1

. In panel b, and . In panel c, and . In panel d,v p log (1.0) n p n p 250 v p log (1.3) n p n p 500 v p log (1.0) n p n p 5000 1 0 1 0 1

and .v p log (1.3)
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where , is the asymptotic variance-covariance matrix of the estimate , and is the variance-ˆv p (v ,v ) V v W 2 # 21 2

covariance matrix of the prior. This leads to

T �1ˆ ˆv V v
�1 �1/2v̂FH ∼ (2p) FVF exp �0 ( )2

T �1ˆ ˆv (V � W) v
�1 �1/2v̂FH ∼ (2p) FV � WF exp � ,1 ( )2

to give the approximate Bayes factor

T �1 �1ˆ ˆ ˆp(vFH ) v [V � (V � W) ]v0 �1/2 1/2ABF p p FVF FV � WF exp .ˆ [ ]p(vFH ) 21

In specifying

W W11 12W p ,[ ]W W21 11

it is sensible to choose , since we expect the effect of a single copy of the mutant allele to be no greater thanW � W11 22

the effect of two copies: , and r may be specified on the basis of linkage-disequilibrium�W p W p r W W12 21 11 22

information.

Web Resource

The URL for data presented herein is as follows:

J.W.’s Web site, http://faculty.washington.edu/jonno/cv.html
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