model { for( i in 1 : N ) { for( j in 1 : T ) { Y[i , j] ~ dnorm(mu[i , j],eps.tau) mu[i , j] <- beta[i,1] + beta[i,2] * (x[j]-11) } beta[i,1:2] ~ dmnorm(beta.mu[1:2],iSigma[1:2,1:2]) } beta.mu[1:2] ~ dmnorm(mean[1:2], prec[1:2, 1:2]) iSigma[1:2, 1:2] ~ dwish(R[1:2, 1:2], r) Sigma[1:2, 1:2] <- inverse(iSigma[1:2, 1:2]) eps.tau <- exp(logtau) logtau ~ dflat() sigma <- 1 / sqrt(eps.tau) } list(x = c(8,10,12,14), N = 11, T = 4, Y = structure( .Data = c(21,20,21.5,23, 21,21.5,24,25.5, 20.5,24,24.5,26, 23.5,24.5,25,26.5, 21.5,23,22.5,23.5, 20,21,21,22.5, 21.5,22.5,23,25, 23,23,23.5,24, 20,21,22,21.5, 16.5,19,19,19.5, 24.5,25,28,28), .Dim = c(11,4)),mean = c(0, 0),r=4, R = structure(.Data = c(1, 0, 0, 0.1), .Dim = c(2, 2)), prec = structure(.Data = c(1.0E-6, 0,0,1.0E-6), .Dim = c(2, 2)))) list(beta = structure(.Data = c(18,18,18,18,18,18,18,18,18,18,18, .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5), .Dim=c(11,2)), beta.mu = c(18,.5), iSigma = structure(.Data = c(1, 0, 0, 0.1), .Dim = c(2, 2)), logtau = 0)