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Subnational Estimation

Sustainable Development Goal 3.2: “By 2030, end preventable deaths of
newborns and children under 5 years of age, with all countries aiming to
reduce ... under-5 mortality to at least as low as 25 per 1,000 live births”.

Additionally:

• Paragraph 74.g, with reference to review processes: “They will be
rigorous and based on evidence, informed by country-led evaluations
and data which is high-quality, accessible, timely, reliable and
disaggregated by income, sex, age, race, ethnicity, migration status,
disability and geographic location and other characteristics relevant in
national contexts.”
• Paragraph 17.18, under data, monitoring and accountability: “By 2020,

enhance capacity-building support to developing countries, including for
least developed countries and small island developing States, to
increase significantly the availability of high-quality, timely and reliable
data disaggregated by income, gender, age, race, ethnicity, migratory
status, disability, geographic location and other characteristics relevant in
national contexts.” 2
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Logistics

Website:

http://faculty.washington.edu/jonno/UNICEF-WORKSHOPS.html

Content:

• These notes.

• Datasets and R code.

• Additional materials, including a link to a course on small-area
estimation (SAE) that JW taught with Richard Zehang Li.

This website will stay live, and feel free to share with colleagues.
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Subnational Estimation

Data and Methodology:

• With a civil registration system, one can obtain accurate estimates of
child mortality directly.

• Without such a system, one must combine available data, from surveys
and censuses, for example, to produce the best possible estimates (with
uncertainty).

• To obtain estimates at a useful geographical and temporal scale,
smoothing across space and time is beneficial.

• I will focus on U5MR estimation based on full birth history (FBH) data, in
which birth and death times are known for each child of interviewed
mothers.

• As an example, we will use data from the 2014 Kenya DHS (KDHS).
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2014 Kenya DHS

Study Design:

• In the 2014 KDHS, the
stratification was county (47) and
urban/rural (2).

• Nairobi and Mombasa are entirely
urban, so there are 92 strata in
total.

• In each strata, Enumeration
Areas (EAs ) are selected with
probability proportional to size
using a sampling frame
developed from the 2009 Census.
In each of these clusters,
households are ultimately
selected. Within each household,
women between the ages of 15
and 49 are interviewed.
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Figure 1: Counties of Kenya.

• An example of a stratified cluster
design.

• We have data from a total of 1584
EAs across the 92 strata. In the
second stage, 40,300 households
are sampled.
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Motivation for Smoothing: Temporal Case

• When looking at estimates over space or time, we want to know if the
differences we see are “real”, or simply reflecting sampling variability.

• Temporal setting: Even if the underlying prevalence is the same over
time, we will see estimates in the empirical estimates.

• Figure 2 demonstrates: We sampled binomial data with n = 10, 20, 200
and p = 0.2 (shown in blue) in all cases.

• In the top plot in particular, we might conclude large temporal variation,
but all we are seeing is sampling variation.

• Figure 3 summarizes estimates from a second simulation in which there
is a real temporal pattern – here we would not want to oversmooth and
remove the trend.

• Later we will apply temporal smoothing models to these two sets of data.

• The same principles apply to spatial data, it’s just more difficult to gain
insight, because two dimensions are harder than one!
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Figure 2: Prevalence estimates over time from simulated data with true prevalence of
p = 0.2 (blue solid lines). 8
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Figure 3: Prevalence estimates over time from simulated data, true prevalence
corresponds to curved blue solid line. 9



Motivation for Smoothing: Spatial Case

• We repeat the previous simulation example, but now for spatial data.

• Counts Yi are simulated for each area i from a binomial distribution with
prevalence pi and sample size ni :

Yi | pi ∼ Binomial(ni , pi).

• We look varying sample sizes ni = 50, 100, 500, 1000, so that the
influence of sampling variability can be examined.
• We examine two sets of simulated data:

• Figure 4: Constant prevalence.
• Figure 5: Spatially varying prevalence.
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Figure 4: Prevalence estimates over space for simulated data with sample sizes of
n = 50, 100, 500. True prevalence is 0.2 in all areas.
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Figure 5: Prevalence estimates over space for simulated data with sample sizes of
n = 50, 100, 500. True prevalence is spatially varying.
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Complex Survey Data



Stratified Cluster Sampling

Most national surveys have a stratified cluster sampling design in which:

• The country is partitioned into a set of strata (e.g., province by
urban/rural).

• Within each strata, clusters are sampled.

• Within each strata, households are sampled.

• Within each household, individuals are selected for interview.

The responses of the individuals provide the sample data with which we try to
infer population characteristics.

When inference on the sample is performed, the design must be
acknowledged:

• Ignoring the stratified sampling gives an estimate susceptible to bias,
and an incorrect variance estimate.

• Ignoring the cluster sampling gives an incorrect variance estimate.
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Weighted Estimation

Suppose we wish to estimate the prevalence P of some condition in an area,
e.g., smoking, attaining an educational level, dying within the first month of
life.

Let y1, . . . , yn be 0/1 variables which indicate absence/presence of the
condition of interest, with wk the accompanying design weight.

The design weight is the reciprocal of the probability of being sampled, i.e.,

wk =
1
πk
,

where πk is the sampling probability and depends on the strata of the person.
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Weighted Estimation

The weight wk can be thought of as the number of people in the population
represented by sampled person k .

Example 1: Simple Random Sampling

Suppose an area contains 1000 people:

• Using simple random sampling (SRS), 100 people are sampled.

• Sampled individuals have weight wk = 1/πk = 1000/100 = 10.

Example 2: Stratified Simple Random Sampling

Suppose an area contains 1000 people, 200 urban and 800 rural.

• Using stratified SRS, 50 urban and 50 rural individuals are sampled.

• Urban sampled individuals have weight wk = 1/πk = 200/50 = 4.

• Rural sampled individuals have weight wk = 1/πk = 800/50 = 16.
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Weighted Estimation

To account for the design we use a weighted estimate of the prevalence:

P̂ =

∑
k wk yk∑

k wk
=

Estimate of Total with Condition
Population Size

A variance estimate V can be obtained, which takes into account the design.

A 95% uncertainty interval for the prevalence is:

P̂ ± 1.96×
√

V

For small samples sizes, this interval will be wide.
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Weighted Estimation

Example 2 Revidited: Stratified Simple Random Sampling

Suppose an area contains 1000 people, 200 urban and 800 rural.

• Urban risk = 0.1.

• Rural risk = 0.2.

• True risk = 0.18.

Take a stratified SRS, 50 urban and 50 rural individuals sampled:

• Urban sampled individuals have weight 4; 5 cases out of 50.

• Rural sampled individuals have weight 16; 10 cases out of 50.

• Simple mean is 15/100 = 0.15 6= 0.18.

• Weighted mean is

4× 5 + 16× 10
4× 50 + 16× 50

=
180

1000
= 0.18.
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ENSANUT-ECU Yearly Estimates of U5MR

• Figure 6 displays a yearly time series of U5MR weighted estimates with
95% confidence intervals, also shown, for comparison, are IGME and
IHME estimates, each of which draw on more data than the KDHS alone.

• IGME estimates obtained using the B3 model.

We would like to sift the signal (true differences) from the noise (sampling
variation) — hierarchical models are suited to this purpose:

• Stage One: Sampling Model for the Data.

• Stage Two: Smoothing Model for the Parameters of Stage One.

• Stage Three: Prior Model for the Parameters of Stage Two.

18



● ●
● ●

● ●
●

●
●

● ●
●

● ●

●

● ●
●

●

●
●

●
● ●

0
20

40
60

80
12

0

Year

U
5M

1990 1993 1996 1999 2002 2005 2008 2011

● Direct Ests (adjusted)
IGME
IHME

Figure 6: Yearly weighted estimates of under-5 mortality in Kenya, along with IGME
and IHME estimates; with 95% uncertainty intervals for each.
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Space-Time Smoothing



Smoothing

When faced with n different estimates of the mortality rate (say over time),
there are two model choices:

• The true underlying mortality rates are ALL THE SAME.
• The true underlying mortality rates are SIMILAR IN SOME SENSE.

The latter seems more reasonable, but how do we model “similarity”?

There are a number of possibilities:

• The mortality rates are drawn from some COMMON probability
distribution, but are not ordered in any way. We refer this as the
independent and identically distributed, or IID model. We could think of
this as saying we think the rates are likely to be of the same order of
magnitude.
• The mortality rates are CORRELATED over time. We refer to this as the

SMOOTHING model.

These are both examples of HIERARCHICAL or RANDOM EFFECTS
MODELS — a key element is estimating the SMOOTHING PARAMETER.
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Smoothing over Time

Rationale and overview of models for temporal smoothing:

• We often expect that the true underlying mortality in an area will exhibit
some degree of smoothness over time.

• A linear trend in time is unlikely to be suitable for more than a small
number of years, and higher degree polynomials can produce erratic fits.

• Hence, local smoothing is preferred.

• Splines (as used in B3) and random walk models have proved
successful as local smoothers.

• And to emphasize again, in either approach, the choice of smoothing
parameter is crucial.
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Random Walk Models

We use random walk models which encourage the mean responses
(e.g., prevalences) across time to not deviate too greatly from their neighbors.

The true underlying mean of the mortality at time t is modeled as a function
of its neighbors:

µt | µNE(t) ∼ Normal(mt , vt),

where

• µt is the mean mortality (or some function of it such as the logit) at time t .

• µNE(t) is the set of neighboring means – with the number of neighbors
chosen depending on the model used – typically 2 or 4.

• mt is the mean of some set of neighbors – for a first order random walk
or RW1 it is simply 1

2 (µt−1 + µt+1).

• vt is the variance, and depends on the number of neighbors – for the
RW1 model it is σ2/2, where σ2 is a smoothing parameter – small values
give large smoothing.
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Random Walk Models

The smoothing parameter σ2 is estimated from the data, and determines the
extent deviations from the mean are penalized.

The penalty term for the RW1 model is:

p(µt | µt−1, µt+1, σ
2) ∝ exp

{
− 1

2σ2

[
µt − 1

2 (µt−1 + µt+1)
]2}

.

Hence:

• Values of µt that are close to 1
2 (µt−1 + µt+1) are favored (higher density).

• The relative favorability is governed by σ2 – if this variance is small, then
µt can’t stray too far from its neighbors.
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RW2 Model

• The second order RW (RW2) model produces smoother trajectories than
the RW1, and has more reasonable short term predictions, which is
desirable for modeling child mortality.

• In terms of second differences:

(µt − µt−1)− (µt−1 − µt−2) ∼ Normal( 0, σ2 ),

showing that deviations from linearity are discouraged.

• Forecasts S steps ahead have a normal distribution with mean:

E[µT+S | µ1, . . . , µT ] = µT + S(µT − µT−1)

which is a linear function of the values at the last two time points.

• The variance is

var(µT+S | µ1, . . . , µT ) =
σ2

6
× S(S + 1)(2S + 1)

which is cubic in the number of periods S, so blows up very quickly.
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Temporal Smoothing Model Summary

We have three models:

IID MODEL:
µt ∼ Normal(0, σ2),

smooth towards zero.

RW1 MODEL:
µt − µt−1 ∼ Normal(0, σ2),

smooth towards the previous value.

RW2 MODEL:
(µt − µt−1)− (µt−1 − µt−2) ∼ Normal(0, σ2),

smooth towards the previous slope.
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Bayesian Inference

Bayesian inference:

• A Data Model (Likelihood) is probabilistically combined with

• A Penalization (Prior) that expresses beliefs about the parameters θ
encoding the model.

• Combination occurs via Bayes Theorem:

p(θ|y)︸ ︷︷ ︸
Posterior

∝ L(θ)︸︷︷︸
Likelihood

×π(θ)︸︷︷︸
Prior

.

• On the log scale:

log p(θ|y)︸ ︷︷ ︸
Updated Beliefs

= log L(θ)︸ ︷︷ ︸
Data Model

+ log π(θ)︸ ︷︷ ︸
Penalization

.
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Bayesian Inference

• In a Bayesian analysis the complete set of unknowns (parameters) is
summarized via the multivariate posterior distribution.

• The marginal distribution for each parameter may be summarized via its
mean, standard deviation, or quantiles.

• It is common to report the posterior median and a 90% or 95%
posterior range for parameters of interest.

• The range that is reported is known as a credible interval.

• The computations required for Bayesian inference (integrals) is often not
trivial and many be carried out using a variety of analytic, numeric and
simulation based techniques.

• We use the integrated nested Laplace approximation (INLA).
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Bayes Example

Imagine the data model is normal with an unknown mean µ:

y | µ ∼ Normal(µ, σ2/n),

where σ2/n is assumed known (σ/
√

n is the standard error).

We also imagine the prior is normal:

µ ∼ Normal(m, v),

so that values of the mean µ that are (relatively) far from m are penalized.

The log posterior is:

log p(µ | y︸ ︷︷ ︸
Updated Beliefs

) = − n
2σ2 (y − µ)

2︸ ︷︷ ︸
Data Model

− 1
2v

(µ−m)2︸ ︷︷ ︸
Penalization

.
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RW Fitting to Simulated Data

• We illustrate fitting with the RW2 model, using the simulated data seen
earlier.

• The model is:

Yt |pt ∼ Binomial(nt , pt)
pt

1− pt
= exp(α+ φt)

(φ1, . . . , φT ) ∼ RW2(σ2)

σ2 ∼ Prior on Smoothing Parameter

α ∼ Prior on Intercept

• On Figures 10 and 11 the fitted values are shown in red – in both the
constant prevalence and curved prevalence cases, the reconstruction is
reasonable.
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Figure 10: Prevalence estimates over time from simulated data, true prevalence
p = 0.2 (blue solid lines). Smoothed random walk estimates in red. 33
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Figure 11: Prevalence estimates over time from simulated data, true prevalence
corresponds to curved blue solid line. Smoothed random walk estimates in red. 34



Spatial Smoothing of Simulated Data

Data Model: For area i :

Yi︸︷︷︸
Count

| pi︸︷︷︸
Prevalance

∼ Binomial(ni , pi)︸ ︷︷ ︸
Data Model

.

Smoothing Model: For the odds in area i :

pi

1− pi
= exp(α+ φi).

We consider two choices for the smoothing model:

• IID model: Smooth to the overall mean with no spatial structure
φi ∼ Normal(0, σ2) where σ2 controls the amount of smoothing —
small/large corresponds to strong/weak smoothing.

• BYM21 model: Add a spatial component that encourages local similarity
analogously to the random walk model with a suitable choice of
neighbors, sharing a common boundary being the commonest choice.

1named after the paper that introdced the model, Besag, York and Mollié (1991)
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Spatial Modeling of Simulated Data for n = 50 Constant Risk Case
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Figure 12: Results with n = 50 when true prevalence is 0.2. Top Left: Truth. Top Right:
raw proportions. Bottom Left: Estimates with IID model. Bottom Right: smoothing with
BYM2.
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Spatial Modeling of Simulated Data for n = 100 Constant Risk Case
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Figure 13: Results with n = 100 when true prevalence is 0.2. Top Left: Truth. Top
Right: raw proportions. Bottom Left: Estimates with IID model. Bottom Right:
smoothing with BYM2.
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Spatial Modeling of Simulated Data for n = 500 Constant Risk Case
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Figure 14: Results with n = 500 when true prevalence is 0.2. Top Left: Truth. Top
Right: raw proportions. Bottom Left: Estimates with IID model. Bottom Right:
smoothing with BYM2.
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Spatial Modeling of Simulated Data for n = 50 Varying Risk Case
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Figure 15: Results with n = 100 when true prevalence is varying. Top left: Truth. Top
right: Raw proportions, Bottom left: smoothing with IID model. Bottom right: smoothing
with BYM2.
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Spatial Modeling of Simulated Data for n = 100 Varying Risk Case
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Figure 16: Results with n = 100 when true prevalence is varying. Top left: Truth. Top
right: Raw proportions, Bottom left: smoothing with IID model. Bottom right: smoothing
with BYM2.
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Spatial Smoothing of Simulated Data for n = 500 Case
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Figure 17: Results with n = 500 when true prevalence is varying. Top left: Truth. Top
right: Raw proportions. Bottom left: smoothing with IID model. Bottom right: smoothing
with BYM2.
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Child Survival Modeling



Discrete Survival Model

We know that infant mortality varies greatly over the first 5 years of life and
two possible approaches to modeling how mortality varies with age:

• A continuous function of age, via a parametric model (e.g., weibull,
gamma,...).
• A discrete function of age, which involves splitting age into intervals.

For flexibility, we follow the latter route and assume a discrete survival
model, with six discrete hazards (probabilities of dying in a particular
interval, given survival to the start of the interval) for each of the age bands:

1. [0, 1),
2. [1, 12),
3. [12, 24),
4. [24, 36),
5. [36, 48),
6. [48, 60].

The first category corresponds to neonatal, the first two, infant mortality, and
all six, under-5 mortality.
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Discrete Survival Model

• Each child contributes up to 60 months of observation time, and can
contribute less if censoring.

• For a generic calendar period:

Survival to 60 months = Survival in month 1

× Survival in month 2 | survived to end of month 1

· · ·

× Survival in month 60 | survived to end of month 59

• Hence, we are following a synthetic cohort approach.

• The hazards are estimated using a logistic regression model, with
weighting to account for the survey design.

• At the end of this process we have an estimate Û5MR in each area and
to period, along with its variance.

• We also apply an HIV adjustment.
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The SUMMER Package



Spatial Smoothing Model

Key Idea: Take as data the weighted estimator – in large samples this
follows a normal distribution.

Hierarchical Model:

1. The Data Model: Specifically, we take as data in area area i , the logit of
the weighted estimates: yi = logit(P̂i)

yi | λi ∼ Normal (λi ,Vi)︸ ︷︷ ︸
Survey design acknowledged here

where Vi is the design variance.
2. The Smoothing Model:

λi = µ︸︷︷︸
Intercept

+ εi︸︷︷︸
Independent

+ Si︸︷︷︸
Spatial

The model is implemented in the R package SUMMER:

• A design object being created in the survey package.
• The INLA package is used for Bayesian computation.
• It is computationally inexpensive – country-specific estimates in seconds.
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Space-Time Smoothing Model

Hierarchical Model:

1. The Data Model:
yit | λit ∼ Normal

(
λit , V̂it

)
︸ ︷︷ ︸

Survey design acknowledged here

,

where
• yit is the logit of the direct estimator in area i and period t ,
• λit is the logit of the true U5MR in county i and period t , with V̂it known.

2. The Smoothing Model: We decompose λit into temporal, spatial and
space-time components:

λit = µ︸︷︷︸
Intercept

+ αt︸︷︷︸
Independent

+ γt︸︷︷︸
Random Walk

Temporal Model

+ εi︸︷︷︸
Independent

+ Si︸︷︷︸
Spatial

Spatial Model

+ δit︸︷︷︸
Interaction

Space-Time Model
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Smoothing of ENSANUT Data

• We calculate 5-year weighted estimates of U5MR using a discrete
survival model for the periods 85–89, 90–94, 95–99, 00–04, 05–09,
10–14.

• We smooth these estimates in time only using the model in the SUMMER

package.

• Figure 19 compares smoothed estimates with IGME and IHME
estimates.

• Figures 20 and 21 give the estimates with projections for U5MR and
NMR, respectively.
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RW2 Model Applied to Kenya Survey Data
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Figure 19: Yearly smoothed (with RW2 and adjusted for HIV bias) estimates of
under-5 mortality in Kenya, along with IGME (B3)and IHME yearly estimates, with 95%
uncertainty intervals. 48



Yearly U5MR Smoothed Estimates for Kenya
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Figure 20: Yearly RW2 smoothing of weighted estimates of under-5 mortality in Kenya,
with 95% uncertainty intervals. The dashed lines on the right are projections.
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Yearly NMR Smoothed Estimates for Kenya
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Figure 21: Yearly RW2 smoothing of weighted estimates of nenonatal mortality in
Kenya, with 95% uncertainty intervals. The dashed lines on the right are projections.
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Space-Time Smoothing Model Applied to Kenya Survey Data

We now turn to space-time smoothing using SUMMER:

• Figure 22 gives the weighted estimates with hatching representing
uncertainty.

• Figure 23 gives the smoothed estimates with hatching representing
uncertainty – these estimates show less spatial variability and reduced
uncertainty.

• Figure 40 clearly shows the drop in U5MR over time, and reduced
between-province variability. The uncertainty in estimates is also
apparent.
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Figure 22: Yearly weighted estimates (from a discrete survival model) of under-5
mortality in Kenya, with uncertainty indicated by density of hatching; more hatching→
more uncertainty, with the latter measured though width of 95% uncertainty interval. 52
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Figure 23: Yearly smoothed estimates (from a discrete survival model) of under-5
mortality in Kenya, with uncertainty indicated by density of hatching; more hatching→
more uncertainty, with the latter measured though width of 95% uncertainty interval. 53
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Figure 24: Five-yearly smoothed estimates (from a discrete survival model) of under-5
mortality in Kenya, by province, with 95% uncertainty intervals

.
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Final Thoughts



Two Approaches to Spatial Smoothing

• Model at the area level using
a discrete spatial model.
These are the models that are
implemented in the SUMMER
package.

• Model at the point level using
a continuous spatial model.
Gaussian Process (GP)
models abound and have
many different
implementations.
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Continuous Modeling

We are also pursuing the use of continuous spatial models:

• These are routinely used by both WorldPop and IHME, but continuous
modeling is a more hazardous approach to estimation.

• However, it is the way forward to allow multiple data sources at
different spatial resolutions to be combined.

• And reporting can be on a relevant discrete scale.
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Surface Reconstructions for U5MR in Kenya

Figure 25: Posterior medians of U5MR for 1990, 1995, 2000, 2005, 2010, 2015, 2020.
Important Point: These are point estimates and the uncertainty at each pixel is in
general very large.
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Estimates for U5MR in Malawi
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Figure 26: Estimates of U5MR for Malawi for 1990, 1995, 2000, 2005, 2010, 2015.

58



Recommended Methods for Routine Work
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Admin Level?
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Direct

Estimation

no

yes

noyes
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Concluding Comments

Final thoughts:

• SUMMER allows mortality to be examined for different age groups
(e.g., NMR, infant,...) and also by gender.

• Multiple surveys can also be combined.

• Summary Birth History (SBH) data from census may be added using
the same approach – soon to appear in SUMMER.

• Beyond that: Estimate mortality for ages 5–14.

• Work in progress on cause of death.
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Concluding Comments

Feel free to contact Jon (jonno@uw.edu) or Katie (wilsonkl@uw.edu) with:

• Follow up questions on methods or use of the SUMMER package.

• On the website is a link to a paper with Admin-1 results for 35 African
countries.

• If you would like to collaborate on subnational estimation please let us
know!
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Figure 27: Admin-1 Estimates for Angola.

62



80−84 85−89 90−94

95−99 00−04 05−09

10−14 15−19

[0.019,0.059]
(0.059,0.104]
(0.104,0.138]
(0.138,0.17]
(0.17,0.201]
(0.201,0.237]
(0.237,0.274]
(0.274,0.338]
(0.338,0.489]

Figure 28: Admin-1 Estimates for Angola.
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Figure 29: Admin-1 Estimates for Burundi.
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Figure 30: Admin-1 Estimates for Burundi.
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Figure 31: Admin-1 Estimates for Ethiopia.
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Figure 32: Admin-1 Estimates for Ethiopia.
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Figure 33: Admin-1 Estimates for Kenya.
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Figure 34: Admin-1 Estimates for Kenya.
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Figure 35: Admin-1 Estimates for Madagascar.
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Figure 36: Admin-1 Estimates for Madagascar.
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Figure 37: Admin-1 Estimates for Malawi.
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Figure 38: Admin-1 Estimates for Malawi.
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Figure 39: Admin-1 Estimates for Zambia.
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Figure 40: Admin-1 Estimates for Zambia.
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Background Literature

• Smoothing of direct estimates (Fay and Herriot, 1979; Chen et al., 2014;
Mercer et al., 2015).

• Comparison of discrete and continuous models (Wakefield et al., 2018).

• Application of space-time smoothing model to 40 African countries (Li
et al., 2019).

• Modeling of SBH data (Brass, 1964; Sullivan, 1972; Brass, 1975;
Trussell, 1975; Feeney, 1976; Coale and Trussell, 1977; Hill et al., 1983;
Rajaratnam et al., 2010; Wilson and Wakefield, 2018a).

• Combining point and area data (Wilson and Wakefield, 2018b).

• INLA (Rue et al., 2009; Lindgren et al., 2011; Blangiardo and Cameletti,
2015; Wang et al., 2018; Krainski et al., 2018).
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Scaling Up the Smoothed Direct Model

The smoothed direct model has been used for 35 African countries to
estimate U5MR in Admin-1 regions by year.

Includes space-time interactions that cross random walk models in time with
ICAR models in space.

Data:

• 121 DHS in 35 countries
• 1.2 million children
• 192 million child-months

UN have supported this research and these estimates.

Takes around 2.5 hours to obtain estimates for all countries – separate
models for each country.

Spatial and space-time smoothed direct estimates models are available in R,
via the SUMMER package.
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Smoothed Direct Estimates

Figure 41: Predictions of U5MR for 2015, in 35 countries of Africa.
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Smoothed Direct Estimates
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Figure 42: Posterior median estimates for Kenya districts.
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Modeling Summary Birth History Data



The Brass Method

• SBH data consist of mother’s age m and the number of child born and
who have died, call this ratio rm.
• The proportion of children who have died is:

E[rm] =

∫ Am

0
cm(a)︸ ︷︷ ︸

Fertility

× q(a)︸︷︷︸
Mortality

da

where
• Am is the relevant reproductive period for the mother’s age group.
• cm(a) is the proportion of births to women who are m at the time of the

survey, a years prior to the survey,
• q(a) is the probability that a child born a years before the survey dies.

• By the mean value theorem this is equal to q(a?) for some 0 < a? < Am.
Age Group Mortality q(a?)

15–19 q(1)
20–24 q(2)
25–29 q(3)
30–34 q(5)
35–39 q(10)
40–44 q(15)
45–49 q(20)

• The idea of the Brass Method is to find a? and then adjust q(a?) to q(5).
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Combining Direct and Brass Estimates

• We can using the Mercer et al. (2015) smoothing model to combine
direct and Brass estimates:

logit(p̂DIR
it ) ∼ Normal(λit , V̂ DIR

it )

λit = µ+ αt + γt + Si + εi + δit

logit(p̂BR
it′ ) ∼ Normal(λ′it′ , V̂

BR
it′ )

λ′it′ = µ′ + αt′ + γt′ + Si + εi + δit′

where V̂ BR
it′ is obtained via the jackknife.

• Direct estimate enters as a 5-year summary, and Brass in a single year,
hence the time scales are different, but they both depend on the same
underlying temporal process.

• Brass uncertainty estimates from the jackknife.

• Sources of bias are modeled in µ′.

• Full study reported in Godwin and Wakefield (2019).
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Results for Bungoma County in Kenya
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Figure 43: Five yearly estimates for Bungoma county, with different data sources.
Circles are proportional to precision of estimates.
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Results for Kenya
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Figure 44: Subnational posterior medians for U5MR for 2010–2014.
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Results for Kenya
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Figure 45: Subnational widths of 95% credible intervals for U5MR for 2010–2014.
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IHME U5MR Estimates

Figure 46: IHME estimates from a continuous space model; summarized at Admin1
level.
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