
Methods for Subnational Estimation of Child Mortality

Jon Wakefield1,2 and Katie Wilson1

1Department of Biostatistics, University of Washington
2Department of Statistics, University of Washington

Regional Workshop on Child Mortality and Stillbirth Estimation, Quito, Ecuador

April 2–4, 2019

1



Outline

Motivation

Complex Survey Data

Space-Time Smoothing

Child Survival Modeling

The SUMMER Package

Final Thoughts

2



Motivation



Logistics

Website:

http://faculty.washington.edu/jonno/UNICEF-WORKSHOPS.html

Content:

• These notes.

• Datasets and R code.

• Additional materials, including a link to a course on small-area
estimation (SAE) that JW taught with Richard Zehang Li.

This website will stay live, and feel free to share with colleagues.
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Subnational Estimation

Sustainable Development Goal 3.2: “By 2030, end preventable deaths of
newborns and children under 5 years of age, with all countries aiming to
reduce ... under-5 mortality to at least as low as 25 per 1,000 live births”.

Additionally:

• Paragraph 74.g, with reference to review processes: “They will be
rigorous and based on evidence, informed by country-led evaluations
and data which is high-quality, accessible, timely, reliable and
disaggregated by income, sex, age, race, ethnicity, migration status,
disability and geographic location and other characteristics relevant in
national contexts.”
• Paragraph 17.18, under data, monitoring and accountability: “By 2020,

enhance capacity-building support to developing countries, including for
least developed countries and small island developing States, to
increase significantly the availability of high-quality, timely and reliable
data disaggregated by income, gender, age, race, ethnicity, migratory
status, disability, geographic location and other characteristics relevant in
national contexts.” 4



Subnational Estimation

Data and Methodology:

• With a civil registration system, one can obtain accurate estimates of
child mortality directly.

• Without such a system, one must combine available data, from surveys
and censuses, for example, to produce the best possible estimates (with
uncertainty).

• To obtain estimates at a useful geographical and temporal scale,
smoothing across space and time is beneficial.

• I will focus on U5MR estimation based on full birth history (FBH) data, in
which birth and death times are known for each child of interviewed
mothers.

• As an example, we will use data from the 2012 Ecuador National Health
and Nutrition Survey (ENSANUT-ECU).
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ENSANUT Survey

Study Design:

• There are 26 strata (24 provinces
+ Quito + Guayaquil).

• In each strata, 64 clusters are
selected with probability
proportional to size. In each
cluster, 12 households are
ultimately selected. Within each
household, 1 woman of fertile age
was selected via simple random
sampling (SRS).

• An example of a stratified cluster
design.

Region

Azuay

Bolivar

Cañar

Carchi

Chimborazo

Cotopaxi

El Oro

Esmeraldas

Guayas

Imbabura

Loja

Los Rios

Manabi

Morona Santiago

Napo

Orellana

Pastaza

Pichincha

Santa Elena

Santo Domingo de los Tsachilas

Sucumbios

Tungurahua

Zamora Chinchipe

Figure 1: Provinces of Ecuador.

• To simplify the spatial modeling
we remove the Galapagos
Islands, and Quito and Guayaquil
are placed in their provinces
(Pichincha and Guayas,
respectively).
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Motivation for Smoothing: Temporal Case

• When looking at estimates over space or time, we want to know if the
differences we see are “real”, or simply reflecting sampling variability.

• Temporal setting: Even if the underlying prevalence is the same over
time, we will see estimates in the empirical estimates.

• Figure 2 demonstrates: We sampled binomial data with n = 10, 20, 200
and p = 0.2 (shown in blue) in all cases.

• In the top plot in particular, we might conclude large temporal variation,
but all we are seeing is sampling variation.

• Figure 3 summarizes estimates from a second simulation in which there
is a real temporal pattern – here we would not want to oversmooth and
remove the trend.

• Later we will apply temporal smoothing models to these two sets of data.

• The same principles apply to spatial data, it’s just more difficult to gain
insight, because two dimensions are harder than one!
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Figure 2: Prevalence estimates over time from simulated data with true prevalence of
p = 0.2 (blue solid lines). 8
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Figure 3: Prevalence estimates over time from simulated data, true prevalence
corresponds to curved blue solid line. 9



Motivation for Smoothing: Spatial Case

• We repeat the previous simulation example, but now for spatial data.

• Counts Yi are simulated for each area i from a binomial distribution with
prevalence pi and sample size ni :

Yi | pi ∼ Binomial(ni , pi).

• We look varying sample sizes ni = 50, 100, 500, 1000, so that the
influence of sampling variability can be examined.
• We examine two sets of simulated data:

• Figure 4: Constant prevalence.
• Figure 5: Spatially varying prevalence.
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Figure 4: Prevalence estimates over space for simulated data with sample sizes of
n = 50, 100, 500. True prevalence is 0.2 in all areas.
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Figure 5: Prevalence estimates over space for simulated data with sample sizes of
n = 50, 100, 500. True prevalence is spatially varying.
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Complex Survey Data



Stratified Cluster Sampling

Most national surveys have a stratified cluster sampling design in which:

• The country is partitioned into a set of strata (e.g., province by
urban/rural).

• Within each strata, clusters are sampled.

• Within each strata, households are sampled.

• Within each household, individuals are selected for interview.

The responses of the individuals provide the sample data with which we try to
infer population characteristics.

When inference on the sample is performed, the design must be
acknowledged:

• Ignoring the stratified sampling gives an estimate susceptible to bias,
and an incorrect variance estimate.

• Ignoring the cluster sampling gives an incorrect variance estimate.
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Weighted Estimation

Suppose we wish to estimate the prevalence P of some condition in an area,
e.g., smoking, attaining an educational level, dying within the first month of
life.

Let y1, . . . , yn be 0/1 variables which indicate absence/presence of the
condition of interest, with wk the accompanying design weight.

The design weight is the reciprocal of the probability of being sampled, i.e.,

wk =
1
πk
,

where πk is the sampling probability and depends on the strata of the person.
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Weighted Estimation

The weight wk can be thought of as the number of people in the population
represented by sampled person k .

Example 1: Simple Random Sampling

Suppose an area contains 1000 people:

• Using simple random sampling (SRS), 100 people are sampled.

• Sampled individuals have weight wk = 1/πk = 1000/100 = 10.

Example 2: Stratified Simple Random Sampling

Suppose an area contains 1000 people, 200 urban and 800 rural.

• Using stratified SRS, 50 urban and 50 rural people are sampled.

• Urban sampled individuals have weight wk = 1/πk = 200/50 = 4.

• Rural sampled individuals have weight wk = 1/πk = 800/50 = 16.
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Weighted Estimation

To account for the design we use a weighted estimate of the prevalence:

P̂ =

∑
k wk yk∑

k wk
=

Estimate of Total with Condition
Population Size

A variance estimate V can be obtained, which takes into account the design.

A 95% uncertainty interval for the prevalence is:

P̂ ± 1.96×
√

V

For small samples sizes, this interval will be wide.
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ENSANUT-ECU Yearly Estimates of U5MR

Figure 6 displays a yearly time series of U5MR weighted estimates with 95%
confidence intervals, also shown, for comparison, are IGME and IHME
estimates, each of which draw on more data than the ENSANUT-ECU survey
alone.

IGME estimates obtained using the B3 model.

We would like to sift the signal (true differences) from the noise (sampling
variation) — hierarchical models are suited to this purpose.
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Figure 6: Yearly weighted estimates of under-5 mortality in Ecuador, with 95%
uncertainty intervals for Direct and IHME, and 90% for IGME.
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Space-Time Smoothing



Smoothing over Time

Rationale and overview of models for temporal smoothing:

• We often expect that the true underlying mortality in an area will exhibit
some degree of smoothness over time.

• A linear trend in time is unlikely to be suitable for more than a small
number of years, and higher degree polynomials can produce erratic fits.

• Hence, local smoothing is preferred.

• Splines (as used in B3) and random walk models have proved
successful as local smoothers.

• In either approach, the choice of smoothing parameter is crucial.
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Random Walk Models

We use random walk models which encourage the mean responses
(e.g., prevalences) across time to not deviate too greatly from their neighbors.

The true underlying mean of the mortality at time t is modeled as a function
of its neighbors:

µt | µNE(t) ∼ Normal(mt , vt),

where

• µt is the mean mortality (or some function of it such as the logit) at time t .

• µNE(t) is the set of neighboring means – with the number of neighbors
chosen depending on the model used – typically 2 or 4.

• mt is the mean of some set of neighbors – for a first order random walk
or RW1 it is simply 1

2 (µt−1 + µt+1).

• vt is the variance, and depends on the number of neighbors – for the
RW1 model it is σ2/2, where σ2 is a smoothing parameter – small values
give large smoothing.
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Random Walk Models

The smoothing parameter σ2 is estimated from the data, and determines the
extent deviations from the mean are penalized.

The penalty term for the RW1 model is:

p(µt | µt−1, µt+1, σ
2) ∝ exp

{
− 1

2σ2

[
µt − 1

2 (µt−1 + µt+1)
]2}

.

Hence:

• Values of µt that are close to 1
2 (µt−1 + µt+1) are favored (higher density).

• The relative favorability is governed by σ2 – if this variance is small, then
µt can’t stray too far from its neigbors.
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Bayesian Inference

Bayesian inference:

• A Data Model (Likelihood) is probabilistically combined with

• A Penalization (Prior) that expresses beliefs about the parameters θ
encoding the model.

• Combination occurs via Bayes Theorem:

p(θ|y)︸ ︷︷ ︸
Posterior

∝ L(θ)︸︷︷︸
Likelihood

×π(θ)︸︷︷︸
Prior

.

• On the log scale:

log p(θ|y)︸ ︷︷ ︸
Updated Beliefs

= log L(θ)︸ ︷︷ ︸
Data Model

+ log π(θ)︸ ︷︷ ︸
Penalization

.
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Bayesian Inference

• In a Bayesian analysis the complete set of unknowns (parameters) is
summarized via the multivariate posterior distribution.

• The marginal distribution for each parameter may be summarized via its
mean, standard deviation, or quantiles.

• It is common to report the posterior median and a 90% or 95%
posterior range for parameters of interest.

• The range that is reported is known as a credible interval.

• The computations required for Bayesian inference (integrals) is often not
trivial and many be carried out using a variety of analytic, numeric and
simulation based techniques.

• We use the integrated nested Laplace approximation (INLA).
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Bayes Example

Imagine the data model is normal with an unknown mean µ:

y | µ ∼ Normal(µ, σ2/n),

where σ2/n is assumed known (σ/
√

n is the standard error).

We also imagine the prior is normal:

µ ∼ Normal(m, v),

so that values of the mean µ that are (relatively) far from m are penalized.

The log posterior is:

log p(µ | y︸ ︷︷ ︸
Updated Beliefs

) = − n
2σ2 (y − µ)

2︸ ︷︷ ︸
Data Model

− 1
2v

(µ−m)2︸ ︷︷ ︸
Penalization

.
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RW Fitting to Simulated Data

• The second order RW (RW2) model produces smoother trajectories than
the RW1, and has more reasonable short term predictions, which is
desirable for modeling child mortality.

• We illustrate fitting with the RW2 model, using the simulated data seen
earlier.

• The model is:

Yt |pt ∼ Binomial(nt , pt)
pt

1− pt
= exp(α+ φt)

(φ1, . . . , φT ) ∼ RW2(σ2)

σ2 ∼ Prior on Smoothing Parameter

α ∼ Prior on Intercept

• On Figures 10 and 11 the fitted values are shown in red – in both the
constant prevalence and curved prevalence cases, the reconstruction is
reasonable.
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Figure 10: Prevalence estimates over time from simulated data, true prevalence
p = 0.2 (blue solid lines). Smoothed random walk estimates in red. 29
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Figure 11: Prevalence estimates over time from simulated data, true prevalence
corresponds to curved blue solid line. Smoothed random walk estimates in red. 30



Spatial Smoothing of Simulated Data

Data Model: For area i :

Yi︸︷︷︸
Count

| pi︸︷︷︸
Prevalance

∼ Binomial(ni , pi)︸ ︷︷ ︸
Data Model

.

Smoothing Model: For the odds in area i :

pi

1− pi
= exp(α+ φi).

We consider two choices for the smoothing model:

• IID model: Smooth to the overall mean with no spatial structure
φi ∼ Normal(0, σ2) where σ2 controls the amount of smoothing —
small/large corresponds to strong/weak smoothing.

• BYM21 model: Add a spatial component that encourages local similarity
analogously to the random walk model with a suitable choice of
neighbors, sharing a common boundary being the commonest choice.

1named after the paper that introdced the model, Besag, York and Mollié (1991)
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Spatial Smoothing of Simulated Data for n = 50 Case
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Figure 12: Left: raw proportions are on the left, middle: smoothing with IID model,
right: smoothing with BYM2. True prevalence is 0.2.
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Spatial Smoothing of Simulated Data for n = 100 Case
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Figure 13: Left: raw proportions are on the left, middle: smoothing with IID model,
right: smoothing with BYM2. True prevalence is 0.2.

33



Spatial Smoothing of Simulated Data for n = 50 Case
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Figure 14: Top left: Truth, Top right: Raw proportions, Bottom left: smoothing with IID
model, Bottom right: smoothing with BYM2. 34



Spatial Smoothing of Simulated Data for n = 100 Case

−81 −80 −79 −78 −77 −76 −75

−4

−2

0

long

la
t

0.0

0.1

0.2

0.3

Truth

−81 −80 −79 −78 −77 −76 −75

−4

−2

0

long

la
t

0.0

0.1

0.2

0.3

Empirical: n=100

−81 −80 −79 −78 −77 −76 −75

−4

−2

0

long

la
t

0.0

0.1

0.2

0.3

IID: n=100

−81 −80 −79 −78 −77 −76 −75

−4

−2

0

long

la
t

0.0

0.1

0.2

0.3

BYM2: n=100

−81 −80 −79 −78 −77 −76 −75

−4

−2

0

long

la
t

0.0

0.1

0.2

0.3

BYM2: n=100

Figure 15: Top left: Truth, Top right: Raw proportions, Bottom left: smoothing with IID
model, Bottom right: smoothing with BYM2. 35



Spatial Smoothing of Simulated Data for n = 500 Case
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Figure 16: Top left: Truth, Top right: Raw proportions, Bottom left: smoothing with IID
model, Bottom right: smoothing with BYM2. 36



Child Survival Modeling



Discrete Survival Model

We know that infant mortality varies greatly over the first 5 years of life and
two possible approaches to modeling how mortality varies with age:

• A continuous function of age, via a parametric model (e.g., weibull,
gamma,...).
• A discrete function of age, which involves splitting age into intervals.

For flexibility, we follow the latter route and assume a discrete survival
model, with six discrete hazards (probabilities of dying in a particular
interval, given survival to the start of the interval) for each of the age bands:

1. [0, 1),
2. [1, 12),
3. [12, 24),
4. [24, 36),
5. [36, 48),
6. [48, 60].

The first category corresponds to neonatal, the first two, infant mortality, and
all six, under-5 mortality.
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Discrete Survival Model

Each child contributes up to 60 months of observation time, and can
contribute less if censoring.

For a generic calendar period:

Survival to 60 months = Survival in month 1

× Survival in month 2 | survived to end of month 1

· · ·

× Survival in month 60 | survived to end of month 59

Hence, we are following a synthetic cohort approach.

The hazards are estimated using a logistic regression model, with weighting
to account for the survey design.

At the end of this process we have an estimate Û5MR in each area and to
period, along with its variance.
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The SUMMER Package



Spatial Smoothing Model

Key Idea: Take as data the weighted estimator – in large samples this
follows a normal distribution.

Data Model: Specifically, we take as data in area area i , the logit of the
weighted estimates: yi = logit(P̂i)

yi | µi ∼ Normal (µi ,Vi)︸ ︷︷ ︸
Survey design acknowledged here

where Vi is the design variance.

Smoothing Model:

µi = α︸︷︷︸
Intercept

+ Si︸︷︷︸
Spatial

+ εi︸︷︷︸
Independent

The model is implemented in the R package SUMMER:

• A design object being created in the survey package.
• The INLA package is used for Bayesian computation.
• It is computationally inexpensive – country-specific estimates in seconds.
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Space-Time Smoothing Model

Hierarchical Model:

1. The Data Model:
yit | λit ∼ N

(
λit , V̂it

)
︸ ︷︷ ︸

Survey design acknowledged here

.

2. The Space-Time (Random Effects) Prior:

λit = f ( space i , time t)︸ ︷︷ ︸
Smoothing here

.

Different space (e.g., area-based or pixel-based) and time (e.g. random
walks, splines) smoothing models can be slotted into this framework.
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Space-Time Smoothing Model

The data model is
yit |λit ∼ N(λit , V̂it),

where

• yit is the logit of the direct estimator in area i and period t ,
• λit is the logit of the true U5MR in county i and period t , and we

emphasize that V̂it is known.

We decompose λit into temporal, spatial and space-time components:

λit = µ︸︷︷︸
Intercept

+ αt︸︷︷︸
Independent

+ γt︸︷︷︸
Random Walk

Temporal Model

+ θi︸︷︷︸
Independent

+ φi︸︷︷︸
Spatial

Spatial Model

+ δit︸︷︷︸
Interaction

Space-Time Model
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Smoothing of ENSANUT Data

• We calculate 5-year weighted estimates of U5MR using a discrete
survival model for the periods 85–89, 90–94, 95–99, 00–04, 05–09,
10–14.

• We smooth these estimates using the model in the SUMMER package.

• Figures 18 and 19 give the estimates.
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RW2 Model Applied to Ecuador Survey Data
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Figure 18: Yearly RW2 smoothing of weighted estimates of under-5 mortality in
Ecuador, with 95% uncertainty intervals. On the left we apply to data aggregated over
5 years and on the right by 1 year. The dashed lines on the right of each plot are
projections.
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RW2 Model Applied to Ecuador Survey Data
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Figure 19: Yearly smoothed (with RW2) estimates of under-5 mortality in Ecuador, with
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Space-Time Smoothing Model Applied to Ecuador Survey Data

We now turn to space-time smoothing using SUMMER:

• Figure 20 gives the weighted estimates with hatching representing
uncertainty.

• Figure 21 gives the smoothed estimates with hatching representing
uncertainty – these estimates show less spatial variability and reduced
uncertainty.

• Figure 23 clearly shows the drop in U5MR over time, and reduced
between-province variability. The uncertainty in estimates is also
apparent.
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Figure 20: Yearly weighted estimates (from a discrete survival model) of under-5
mortality in Ecuador, with uncertainty indicated by density of hatching; more hatching
→ more uncertainty, with the latter measured though width of 95% uncertainty interval. 47
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Figure 21: Yearly smoothed estimates (from a discrete survival model) of under-5
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Final Thoughts



Continuous Modeling

We are also pursuing the use of continuous spatial models:

• These are routinely used by both WorldPop and IHME, but continuous
modeling is a more hazardous approach to estimation.

• However, it is the way forward to allow multiple data sources at
different spatial resolutions to be combined.

• And reporting can be on a relevant discrete scale.
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An Example of Continuous Surface Modeling

Figure 23: Continuous surface reconstruction of U5MR for Kenya in 2015
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Concluding Comments

Final thoughts:

• SUMMER allows mortality to be examined for different age groups
(e.g., NMR, infant,...) and also by gender.

• Multiple surveys can also be combined.

• Summary Birth History (SBH) data from census may be added using
the same approach – soon to appear in SUMMER.

• Beyond that: Estimate mortality for ages 5–14.

• Work in progress on cause of death.

• Would like to include geographical variables in the model, to
understand spatial inequality.

• Possible to make HIV adjustments, where needed.

Feel free to contact Jon (jonno@uw.edu) or Katie (wilsonkl@uw.edu) with
follow up questions on methods or use of the SUMMER package.
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Background Literature

• Ecuador National Health and Nutrition Survey (ENSANUT-ECU) (Freire
et al., 2015).

• Smoothing of direct estimates (Fay and Herriot, 1979; Chen et al., 2014;
Mercer et al., 2015).

• Comparison of discrete and continuous models (Wakefield et al., 2018).

• Application of space-time smoothing model to 40 African countries (Li
et al., 2019).

• Modeling of SBH data (Brass, 1964; Sullivan, 1972; Brass, 1975;
Trussell, 1975; Feeney, 1976; Coale and Trussell, 1977; Hill et al., 1983;
Rajaratnam et al., 2010; Wilson and Wakefield, 2018a).

• Combining point and area data (Wilson and Wakefield, 2018b).

• INLA (Rue et al., 2009; Lindgren et al., 2011; Blangiardo and Cameletti,
2015; Wang et al., 2018; Krainski et al., 2018).
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Krainski, E. T., Gómez-Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo, D.,
Simpson, D., Lindgren, F., and Rue, H. (2018). Advanced Spatial Modeling
with Stochastic Partial Differential Equations Using R and INLA. Chapman
and Hall/CRC.

Li, Z. R., Hsiao, Y., Godwin, J., Martin, B. D., Wakefield, J., and Clark, S. J.
(2019). Changes in the spatial distribution of the under five mortality rate:
small-area analysis of 122 DHS surveys in 262 subregions of 35 countries
in Africa. PLoS ONE . Published January 22, 2019.

Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between
Gaussian fields and Gaussian Markov random fields: the stochastic

53



differential equation approach (with discussion). Journal of the Royal
Statistical Society, Series B, 73, 423–498.

Mercer, L., Wakefield, J., Pantazis, A., Lutambi, A., Mosanja, H., and Clark,
S. (2015). Small area estimation of childhood mortality in the absence of
vital registration. Annals of Applied Statistics, 9, 1889–1905.

Rajaratnam, J. K., Tran, L. N., Lopez, A. D., and Murray, C. J. (2010).
Measuring under-five mortality: validation of new low-cost methods. PLoS
Medicine, 7, e1000253.

Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference
for latent Gaussian models using integrated nested Laplace
approximations (with discussion). Journal of the Royal Statistical Society,
Series B, 71, 319–392.

Sullivan, J. M. (1972). Models for the estimation of the probability of dying
between birth and exact ages of early childhood. Population Studies, 26,
79–97.

Trussell, T. J. (1975). A re-estimation of the multiplying factors for the Brass
technique for determining childhood survivorship rates. Population Studies,
29, 97–107.

53



Wakefield, J., Fuglstad, G.-A., Riebler, A., Godwin, J., Wilson, K., and Clark,
S. (2018). Estimating under five mortality in space and time in a developing
world context. Statistical Methods in Medical Research. Published online
April 19.

Wang, X., Yue, Y., and Faraway, J. J. (2018). Bayesian Regression Modeling
with INLA. Chapman and Hall/CRC.

Wilson, K. and Wakefield, J. (2018a). Child mortality estimation incorporating
summary birth history data. Under revision, available at arXiv .

Wilson, K. and Wakefield, J. (2018b). Pointless spatial modeling.
Biostatistics. Published online 6 September, 2018.

54



Scaling Up the Smoothed Direct Model

The smoothed direct model has been used for 35 African countries to
estimate U5MR in Admin-1 regions by year.

Includes space-time interactions that cross random walk models in time with
ICAR models in space.

Data:

• 121 DHS in 35 countries
• 1.2 million children
• 192 million child-months

UN have supported this research and these estimates.

Takes around 2.5 hours to obtain estimates for all countries – separate
models for each country.

Spatial and space-time smoothed direct estimates models are available in R,
via the SUMMER package.
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Smoothed Direct Estimates

Figure 24: Predictions of U5MR for 2015, in 35 countries of Africa.
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Smoothed Direct Estimates
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Figure 25: Posterior median estimates for Kenya districts.
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IHME U5MR Estimates

Figure 26: IHME estimates from a continuous space model; summarized at Admin1
level.
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