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SUMMARY

Heterogeneous population densities complicate comparisons of statistical power between hypothesis
tests evaluating spatial clusters or clustering of disease. Speci�cally, the location of a cluster within
a heterogeneously distributed population at risk impacts power properties, complicating comparisons
of tests, and allowing one to map spatial variations in statistical power for di�erent tests. Such maps
provide insight into the overall power of a particular test, and also indicate areas within the study area
where tests are more or less likely to detect the same local increase in relative risk. While such maps are
largely driven by local sample size, we also �nd di�erences due to features of the statistics themselves.
We illustrate these concepts using two tests: Tango’s index of clustering and the spatial scan statistic.
Furthermore, assessments of the accuracy of the ‘most likely cluster’ involve not only statistical power,
but also spatial accuracy in identifying the location of a true underlying cluster. We illustrate these
concepts via induction of arti�cial clusters within the observed incidence of severe cardiac birth defects
in Santa Clara County, CA in 1981. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The geographic distribution of disease is often of interest to epidemiologists and other medical
researchers because the spatial distribution may identify areas of raised incidence requiring
targeted interventions or even suggest causal determinants of disease. In addition, spatial
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patterns in incidence are of interest to the general public, particularly regarding possible
relationships between local disease incidence and local environmental stressors (e.g. hazardous
waste sites, cellular telephone towers, high-voltage electrical lines, or other perceived sources
of hazard).
Assessments of geographical patterns of disease often involve statistical tests to detect

unusual spatial (or spatio-temporal) aggregations of incident cases of disease, or disease ‘clus-
ters’, and the statistical, epidemiological, and geographic literature contain many proposed
methods for identifying clusters and drawing inference on them. Elliott et al. [1], Tango [2],
Wake�eld et al. [3], Kulldor� [4] and Waller and Gotway [5] all provide recent reviews of
many such methods.
Before considering particular tests, we �rst note that not all tests seek to detect the same

sort of deviations from a conceptual null hypothesis of ‘no clustering’. That is, not all tests
consider the same sorts of alternative hypotheses. Besag and Newell [6] and Kulldor� and
Nagarwalla [7] summarize helpful terminology categorizing many of the hypothesis tests pro-
posed in the literature by their associated conceptual alternative hypotheses. To borrow the
terminology of Besag and Newell [6], ‘tests of disease clustering’ examine the overall ten-
dency of disease cases to cluster together across a region, while ‘tests to detect clusters’ seek
to de�ne areas most likely experiencing increased incidence rates. In practice, the distinction
often presents via a single signi�cance value summarizing patterns across the entire data set
for statistics assessing (global) clustering, and cluster-speci�c signi�cance values associated
with particular clusters (e.g. the most suspicious collection of cases) for tests to detect disease
clusters.
The number of tests of clustering and to detect clusters proposed raises the issue of how to

compare performance across methods. In general, one typically compares competing hypothesis
tests via power (the probability of rejecting the null hypothesis when an alternative is true)
or similar measures. The literature contains several power comparisons of proposed tests of
clustering or tests to detect clusters, typically compared as functions of increasing relative risk
within the cluster. Relevant to the discussion below, some comparisons report di�erent power
results for clusters located in di�erent parts of the study area, in particular, both Hill et al. [8]
and Gangnon and Clayton [9] note that the power of the tests considered in their papers varies
across a limited number of locations for a disease cluster within the geographic region under
study.
Based on such previous considerations, we expand the discussion regarding statistical power

and performance to an explicitly spatial setting, mapping power and related quantities based
on the location of a single cluster within an example data set (the Santa Clara county severe
cardiac birth defect considered by Shaw et al. [10] and Hill et al. [8]). The example reveals the
impact of local geography (in particular, population density) on power comparisons between
statistical tests of spatial pattern. While based on a particular data example, the implications
of these illustrations extend beyond the particular data set and tests considered here to any
sort of power comparison of tests to detect clustering or clusters when applied within a
heterogeneously distributed population at risk, and raise important issues regarding assessments
of statistical performance for both tests of clustering and tests to detect clusters.
We consider alternatives de�ned by a single disease cluster associated with a �xed increase

in relative risk centred at each of 259 locations, and assess both the power to identify the
cluster and the power to detect clustering generated by this single cluster, as a function of the
location of the cluster. To illustrate the concepts outlined above, we present maps depicting
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the spatial variation in the statistical power based on the Santa Clara County cardiac defect
data for two speci�c hypothesis tests, namely Kulldor�’s [11] spatial scan statistic (a popular
test to detect clusters), and Tango’s [12] statistic (a test of clustering) based on an application
to the Santa Clara County cardiac defect data.
In the following sections we brie�y describe the example data set, de�ne the tests under

consideration, and outline our approach. We conclude with results and discussion of the
spatially varying performance of such tests in both particular and general terms.

2. METHODS

2.1. Data description

The data involve major cardiac anomalies in live births in 1981 for Santa Clara County,
CA and provide an illustrative example of many analytic assessments of disease clusters
and=or clustering. Retrospective data collection followed high rates of adverse pregnancy out-
comes in 1982 reported by citizens in a collection of seven contiguous census tracts serviced
by two drinking water wells contaminated with organic solvents. The data initially included
20 886 live births geocoded to 294 census tracts of residency within the county. We follow
Hill et al. [8] and exclude thirty-�ve of the 294 census tracts from analysis due to mis-
matched identi�cation numbers between the data set and the 1980 United States census tracts.
The thirty-�ve excluded census tracts contain only 87 live births (0.42 per cent of the total)
and no cases of major cardiac anomalies in live births. The 259 census tracts remaining for
analysis contain 20 799 live births, with 71 experiencing severe cardiac defects. For the pur-
poses of our analysis (and similar to many such studies in the literature) we locate all births
and cases at the centroid of the census tract of residence, due to con�dentiality restrictions.

2.2. Hypothesis formulation

We consider a null hypothesis where each birth is equally likely to experience the adverse
outcome, so the expected incidence count of each area varies only due to heterogeneous
population sizes (here, number of births).
To formalize, suppose we have a geographic study region partitioned into I tracts, where ni

denotes the number of persons at risk (live births) in tract i; i=1; : : : ; I , and n+ =
∑I

i=1 ni is
the total number of persons at risk in the study area. Consider the number of incident cases
of disease in tract i as a random variable Ci with observed value ci, and denote the total
number of observed cases by c+ =

∑I
i=1 ci. We de�ne a null hypothesis of no clustering by

H0 : {Ci} are independent Poisson random variables with E(Ci)= �ni; i=1; : : : ; I (1)

where � is the baseline incidence rate. That is, under H0, the expected number of cases in
each tract is the baseline rate of disease multiplied by the number at risk in tract i. When
the baseline incidence rate is unknown, one obtains the null distribution of the {Ci} by
conditioning on the su�cient statistic c+, de�ning a conditional null hypothesis as

H0 : C1; : : : ; CI | c+ ∼multinomial(c+; n1=n+; : : : ; nI =n+) (2)
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The alternative hypothesis depends on the model of clustering the investigator wishes
to detect (Waller and Jacquez [13]). For this study we consider an alternative hypothesis
de�ned by

H1 : E(Ci)= �ni(1 + �i�) (3)

where

�i=

{
1 if tract i is in the cluster

0 otherwise
(4)

�=RR − 1 for i=1; : : : ; I , and RR is the relative risk of disease within the cluster [6]. For
unknown � we consider the conditional alternative hypothesis

H1 : C1; : : : ; CI | c+ ∼multinomial(c+; �1; : : : ; �I) (5)

where

�i=
ni(1 + �i�)∑I
i=1ni(1 + �i�)

; i=1; : : : ; I (6)

2.3. Kulldor�’s spatial scan statistic

Kulldor� [11] de�nes a spatial scan statistic to detect the most likely cluster based on locally
observed likelihood ratio test statistics. The scan statistic is constructed based on circles of
increasing radii centred at each tract centroid until a maximum radius, selected a priori, is
attained. Kulldor� and Nagarwalla [7] suggest a largest circle containing 50 per cent of the
total at-risk population, and we use this de�nition here. Kulldor� [11] refers to the collection
of tracts having their centroid contained within each circle as a zone, z. The scan statistic
considers each zone as a potential cluster, and identi�es the zones least consistent with the
null hypothesis. We note that for data consisting of regional counts, while the centroids are
contained within a circle, zones actually re�ect an irregular area de�ned by the union of
polygonal regions associated with the tracts. Let nz and cz be the population size and case
count, respectively, in zone z. De�ne pz and p �z as the probability of being a case inside and
outside zone z, respectively. Based on the null hypothesis H0 : pz=p �z versus the alternative
HA : pz ¿p �z, Kulldor� [11] de�nes a likelihood ratio statistic proportional to

Lz=
(
cz
�̂nz

)cz ( c+ − cz
c+ − �̂nz

)c+−cz
1[cz¿�̂nz]

where �̂= c+=n+ is the estimated baseline incidence rate, and 1[cz¿�̂nz] is an indicator func-
tion equal to 1 when the number of observed cases in zone z exceeds that expected under H0,
and is equal to 0 otherwise. The most likely cluster is de�ned by the zone, z̃, maximizing Lz
over all possible zones considered.
The statistical signi�cance of Lmax =Lz̃ is obtained via Monte Carlo simulation. Speci�cally,

the c+ cases are distributed uniformly among the n+ individuals according to (2), and the
maximum value of Lz is calculated for each simulated data set. The p-value associated with
the most likely cluster is the proportion of observed and simulated statistics greater than or
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equal to the value of Lmax observed in the data. Note that the Monte Carlo inference ranks
the observed maximum likelihood ratio statistic Lmax from the data among a set comprised
of the maximum likelihood ratio statistic from each simulated data set, and not among the
statistics observed at the same zone as the maximum in the data set. As a result, inference
is not based on the distribution of a likelihood ratio for a particular zone, but rather on the
distribution of the maximized likelihood ratio under the null hypothesis, regardless of which
zone contains the maximum.

2.4. Tango’s general test

Tango [12] considered assessments of spatial clustering via the statistic

CG=(r− p)tA(r− p) (7)

where rT = (c1; : : : ; cI)=c+ is an I -dimensional vector of case proportions and p=E(r |H0) is an
I -dimensional vector of population proportions pi= ni=n+, expected under the null hypothesis.
The matrix A=(aij) is an I × I matrix de�ning a measure of closeness between any two tracts.
We follow Tango [12] and set aij= exp(−dij=�), where dij is the Euclidean distance between
the centroids of tracts i and j, and � a scale parameter. (We note that in our implementation,
we use great-circle rather than planar distances for comparability with Kulldor�’s [11] spatial
scan statistic.) Although large � will give a test sensitive to large clusters and small � to
small clusters, and Tango [12] claims the choice of � is unlikely to drastically change the
test results, something we investigate with respect to power in the results below. The statistic
CG shows a substantial amount of positive skewness under the null hypothesis, so a normal
approximation based on the standardized statistic

TG=
CG − E(CG)√
var(CG)

(8)

is often inappropriate [12]. Instead, Tango [12] considers the adjusted statistic

C∗
G= �+ TG

√
2v a∼ �2� (9)

where

�=
8√

�1(CG)
2 (10)

and
√
�1(CG) denotes the skewness of CG.

To implement the test of Tango [12], one must �rst de�ne the scale parameter �. For
illustration, we choose � assigning non-negligible weight to centroids in the seven nearest
neighbours. The maximum (great circle) distance between centroids is 7:577km and we choose
a value of �=2:529 to give a weight of 0.05 to this most distant nearest neighbour. To explore
the sensitivity of power to the choice of � we also consider values �=1:25; 5:0, and 7:5.

2.5. Simulation of cases and power of the tests

Through simulation, we show the power of disease clustering tests is not only a function of
the strength of clustering (i.e. the increase in relative risk within the cluster) but also the
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location of the cluster within the study area. Paralleling the original data setting of a seven-
tract area re�ecting the putative disease cluster [14], we consider 259 clusters, one centred at
each census tract including that tract and its six nearest neighbouring tracts within Santa Clara
County. For each of these 259 clusters, we repeatedly assign the 71 observed cases among the
259 tracts under the alternative hypothesis following the conditional multinomial distribution
of equations (5) and (6), where in equation (4), �i=1 for each of the seven census tracts
de�ning the cluster. We conduct simulations based on a risk three times higher for individuals
inside the cluster compared to those outside the cluster, i.e. we use equation (6) with �=2.
For simplicity, we make no adjustment of the data set for possible confounding factors.
To explore the power of the tests, we simulate 1000 data sets for each of the 259 cluster

locations. For each simulation, we record Kulldor�’s [11] Lmax and Tango’s [12] C∗
G.

The power of Tango’s [12] general statistic is simply the proportion of test statistics C∗
G

for the clustered data exceeding the 95th percentile of the asymptotic chi-square distribution
in (9). We compared results to a Monte Carlo critical value (95th percentile of 1000 data
sets simulated under the null hypothesis) with little appreciable di�erence.
Assessing the power of the spatial scan statistic requires some additional thought. Not only

do we wish to determine the proportion of times the null hypo-
thesis is rejected, we also wish to assess the accuracy of the location of the most likely
cluster. To begin, we �rst use the freely available software SaTScan [15] to generate the crit-
ical value of Lmax for tests conducted at level 0.05. Next, we de�ne power as the proportion of
Lmax values based on simulations under the alternative that exceed the critical value for which
the cluster centre (the tract whose nearest neighbours de�ne the cluster) is identi�ed among
any of the tracts within the most likely cluster. We note that other interesting measures of
the test’s performance include, for example, the proportion of rejections for which the cluster
centre is statistically signi�cant and correctly identi�ed, or the proportion of simulations for
which the cluster centre is identi�ed anywhere within the most likely cluster regardless of
whether or not the null hypothesis was rejected. We explore each of these in Section 3.

3. RESULTS

Figure 1 depicts the number of live births in 1980 for the 259 census tracts of Santa Clara
County included in the analysis. The City of San Jose covers much of the northwestern
quarter of the county, while the coastal mountain range of California extends in a northwest
to southeast direction in a midline through the county. The population of the county is sparsely
distributed east of the mountain range and, as a result, the large eastern tract is among those
omitted from the analysis.
Figure 2 illustrates the observed geographic distribution of cases (top), and an example of

the types of clusters simulated. The next map illustrates one of the 259 clusters considered.
The cluster consists of seven tracts. The bottom row of Figure 2 illustrates three simulated
data sets based on redistributing the 71 cases among the tracts with increased risk in the
cluster tracts. Note that even with the risk approximately tripled in the cluster, the outcome
is rare enough that the resulting increase in incidence is subtle and not detectable through
simple visual assessment. In other words, while the cluster contains an appreciable increase
in multiplicative risk, the outcome is so rare that the additional number of observed cases
within the cluster is quite small.

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:853–865
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Figure 1. Map of census tracts (1980 U.S. Census) for Santa Clara County (top) and choropleth map
of the number of live births per census tract for Santa Clara County, CA in 1981 (bottom).

Since the de�nition of power is streamlined in the case of a test of clustering, we begin
with the results from Tango’s [12] test. Figure 3 depicts power maps of Tango’s [12] test
for �=1:25; 2:529; 5:0, and 7:5. Each tract is shaded according to the power of the test to
detect general clustering based on a cluster centred at that particular tract and including its six
nearest neighbours. Several patterns emerge. First, we note a general lack of power to detect
a single cluster of tripled relative risk as evidence of overall clustering, partially due to the
rarity of the outcome as noted above. Second, we note considerable spatial variation in power
and di�erent geographic variations for di�erent levels of the scale parameter �. Figure 3 also
includes two concentric circles for each map. The inner circle represents the radius within
which the measure of closeness is aij greater than 0.5, and the outer circle represents the
radius within which aij greater than 0.05. The circles illustrate the range of highest values for
the proximity weights de�ning Tango’s statistic and we see an impact on patterns of power.
Comparing to Figure 1, we see some impact of the geographic distribution of the population
at risk (live births) but this in�uence is tempered by the choice of the scale parameter. For
instance, setting �=1:25 provides su�cient spatial weighting to capture clusters de�ned on
small tracts (the central portion of the county) with power comparable to the local sample

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:853–865
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Figure 2. Map of the observed numbers of severe cardiac defects among reported live births in 1981
(top), an example ‘cluster’ comprised of a single tract and its six nearest neighbours (middle row), and
three simulated data sets based on a tripling of disease risk in the indicated cluster (bottom row).

size. For larger tracts in the south or near the edges of the map, larger radii are needed
to ‘capture’ the cluster of 7 neighbouring tracts. Also note that as � increases, the highest
observed power value decreases. This is most likely due to higher spatial weights assigned
to tracts outside the smaller clusters, e�ectively diluting the observed impact of the generated
clusters on Tango’s statistic.
Figure 4 maps power quintiles for Kulldor�’s [11] spatial scan statistic, with a maximum

power of 36.5 per cent where we estimate power as the proportion of times the null hypoth-
esis is rejected and the centre of the most likely cluster is among the 7 tracts de�ning the
‘true’ underlying cluster (middle map, right-hand side). Other related performance measures
also appear in Figure 4. In general, patterns mirror a smoothed version of the geographic
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Figure 3. Choropleth maps of the statistical power of Tango’s [8] test of clustering for various values
of �. Shading within each map is according to the quantiles of power values. Circles represent distance

radii associated with neighbourhood weights of 0.5 (inner circle) and 0.05 (outer circle).

distribution of the population at risk (bottom map, Figure 1), with higher performance in
areas with more reported live births. The lowest power values (near the 5 per cent level of
the test) occur in the northwestern corner of the county. Comparing the middle and bottom
row of maps contrasts local statistical performance (middle row) with ‘location accuracy’
(bottom row). Di�erences in these two types of performance include reduced probabilities of
detection in areas with low numbers of live births such as tracts along the central western
and northern borders.
The examples illustrate that adequate power summaries of tests to detect clusters and evalu-

ate clustering depend on local characteristics of the geographic region under study, particularly
the location of any real or suspected cluster or clusters.
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Figure 4. Choropleth map of the statistical power of Kulldor�’s spatial scan statistic. Each tract is
shaded according to the power of the test to detect clustering induced by a single cluster, centred at
that particular tract, de�ned by tripling the relative risk of severe cardiac birth defects within the tract

and its six nearest neighbouring tracts (see text).

4. DISCUSSION

In traditional power analysis, the two primary factors in�uencing power are sample size and
e�ect size (the true di�erence in parameters between the null and alternative hypotheses).
Not surprisingly, we observe the impact of the same two factors here, but with a geographic
dimension. By comparing the performance of the tests in Figures 3 and 4 to the census
tract populations at risk in Figure 1, we observe the power of the tests depends upon the
size of the local population at risk (i.e. local sample size) for the tracts near the simulated
disease cluster, however the local sample size does not provide the entire story. The examples
relating to Tango’s statistic in Figure 3, suggest that power is also dependent on the scale
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parameter weighting collections of tracts. Pinpointing the separate and interacting impacts of
local sample size and test parameters merits further investigation.
Kulldor� et al. [16] provide related discussion on the interplay between local e�ect sizes and

local sample size. While we choose a constant relative risk and explore variations in power,
Kulldor� et al. [16] consider varying local relative risk (local e�ect sizes) to equalize local
power (at a 99.9 per cent level) in their discussion of power comparisons for disease clustering
tests and development of benchmark data sets for comparison of tests. The goal of benchmark
data is to provide a common test bed for detection methods which allows comparison to any
past tests evaluated on the same benchmark data. Removing local power variations (through
local variations in the e�ect size) makes sense in this setting, allowing one to calculate a
single, overall power value for comparing tests with those evaluated on the same data in the
past. It is worth noting that some local e�ect size variations reported in Kulldor� et al. [16]
are quite extreme (ranging from relative risks within clusters of approximately 1.5 in some
highly populated urban counties to over 190.0 in some sparsely populated rural counties).
Hence, we feel there is also value in measuring and mapping variations in power associated
with a �xed relative risk increase at a variety of locations, re�ecting, for instance, variations in
disease risk associated with an identical release of an environmental contaminant at a variety
of di�erent locations.
In hindsight, the conclusion that the power of a test to detect geographically local departures

from the null hypothesis depends on the local sample size may seem natural (or even obvious).
However, we �nd the maps of power informative (and often sobering), indicating areas in
which clusters of a given e�ect size are more likely to be detected than others. Noting
the distribution of disease cases under the null and alternative hypotheses of (2) and (5),
we observe that in a study region of over 20 000 births, a local three-fold increase in the
incidence rate of a very rare outcome (severe cardiac defects) in tracts with few births would
be di�cult to assess visually in Figure 2 or to detect using either of the tests considered. In
census tracts with more births, detecting such an increase in cases is more likely.
While others report power studies based on clusters in varying locations with a study

area [9, 16, 17] we are not aware of any previously published maps of power such as those
shown here. We believe the example e�ectively illustrates the impact of geographic hetero-
geneity (in this case, of the population density) and test parameters on the statistical perfor-
mance of hypothesis tests. In particular, the power of any test to detect departures from the
null hypothesis can vary depending on where such departures might occur within the study
area. Thus comparisons between tests of spatial pattern in heterogeneous populations depend
not only on the strength and type of clustering [17, 18], but also depend on the locations
where clusters occur within the data set at hand.
This analysis encompasses a ‘post hoc’ theoretical power analysis as discussed by Waller

and Poquette [17] who note the di�culty in interpretation of signi�cant or non-signi�cant
statistical test results in a speci�c data setting without some notion of the power of the test
over the study area. This is most revealing for a test with low power, where non-signi�cant
results allow a relatively large probability of failure to reject the null hypothesis when the
speci�ed alternative is true. Perhaps the phrase ‘conditional power analysis’ is more accurate
than ‘post hoc power analysis’ since the power analyses by Waller and Poquette [17] and
above are conditional on the distribution of the population at risk but not on the observed
distribution of disease cases. That is, the simulations above provide Monte Carlo estimates
of the theoretical power of tests to detect the simulated clusters, and di�er from the truly

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:853–865



864 L. A. WALLER, E. G. HILL AND R. A. RUDD

post hoc notion of ‘observed power’ which is entirely dependent on the observed p-value of
the test for the observed data [19].
The results above also illustrate that there is unlikely to be a single, omnibus test covering

all alternatives of interest and performing equally well for clusters in any location. We intend
the analyses above as an illustration of the impact of the location of a hypothesized cluster on
statistical power and not as a comprehensive comparison of the tests considered. In fact, one
could argue that the simulations above are poor assessments of performance of Tango’s [12]
test of clustering since we simulate only a single cluster. One often conceptualizes ‘clustering’
as a feature of the disease process acting over all cases, rather than a local anomalous region
of increased risk better detected by tests to detect particular clusters. To be fair, the reduced
power of Tango’s [12] statistic in our example is partially due to the fact that the majority
of the 259 census tracts do follow the null hypothesis, only 7 of these experience increased
relative risk.
In summary, the example above illustrates the dependence between the statistical power of

tests of disease clustering and the strength, type, and location of suspected disease clusters.
The example also suggests the observed spatial distribution of the population at risk often
provides a necessary context for interpreting power comparisons between di�erent methods of
assessing the spatial patterns of disease.
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