SISMID 2020 Spatial Statistics Waller Point Process 1

Lance A. Waller

7/13/2020

e What we have
— Event locations for a strand of 327 myrtle trees in a rectangular plot 170.5 x 213.0 meters.
221 healthy trees.
— 106 diseased trees.
Research question: Is the spatial pattern of diseased trees the same as the spatial pattern of health
trees?

e Reading in the data, basic R commands

Set my working directory (Lance's here for exzample)
setwd("~/0OneDrive - Emory University/meetings/SISMID.2020/SISMID2020.Waller.Rcode")
myrtles.healthy = scan("myrtles.healthy.d",list(x=0,y=0))

e

Let's see what we have. Typing the

name "myrtles.healthy"” and hitting return
prints out the wvalues.

HAHRHH AR R AR RRAAARRAA AR AR R R RRRAHAAAA

Commented out so it doesn't list everything in the handout
#myrtles.healthy

s

The "names" command just give the

names of the vartables inside the data frame.
e T3

names (myrtles.healthy)

[1] llxll llyll
e

To access the wvalue within a data frame

type the mame of the frame, a dollar sign,

then the name of the wvariable.
HHUH R ARG R AR AR RIS

#Commented out so it doesn't list every value in the handout
#myrtles.heal thy$z

e

To find out how many observations are
in myrtles.healty$z, use the "length”
command.

length(myrtles.healthy$x)

[1] 221

e Plotting the data
— Read in data on diseased trees.
— Plot patterns
— Take care to make square plots, covering the same area. ***

myrtles.all = scan("myrtles.d",list(x=0,y=0))
myrtles.diseased = scan('"myrtles.diseased.d",list(x=0,y=0))

HARRAHARHARARRARARRRRAARRARARRARA AR
Let's plot the data
HHUH R ARG R AR RIS

plot(myrtles.healthy$x, myrtles.healthy$y)

e

The "points" command adds points to a plot,

and the "pch" option changes the "plot character”.
Let's add the diseased myrtle locations and plot
them as "D'"s.
B

points(myrtles.diseased$x,myrtles.diseased$y,pch="D")

8 — B CD§ (@]
I3V o
oDo & O~ O
oY Jo 0 Do8 Og of(ﬂibg ra)
3 - % Q D
— o QD %) O@S ©

100
I
00
o
o0
o
U
U
ag
©°0

myrtles.healthy$y

©)
8] Oo DY D
B & Sw CH:D O@@DO »)
Upo © O%Do L °P
I I
0 50 100 150

myrtles.healthy$x

e

Notice that the plot is sort of square, bdbut
that the range of walues for z is different
from that for y. Let's set the limits

so that they are the same. First, we find
min and maxz of the = and y coordinates for
ALL myrtle locations (healthy and diseased).
e

min(myrtles.all$x)

[1] 2.5
max (myrtles.all$x)

[1] 170.5
min(myrtles.all$y)

[1] 2.5
max (myrtles.all$y)

[1] 213

e
We can also use the "range" command
to do this.

e

range (myrtles.all$x)

[1] 2.5 170.5
range (myrtles.all$y)

[1] 2.5 213.0

HARRAAARH AR AR HRAARRARARRARA AR

Looks like if we set the plot boundaries

for (0,215) for = and y, we'll catch all

of the points. We use the "zlim" and

"ylim" parameters in the plot command.

NOTE: we can continue a command onto the next
line 1f we end with a comma and don't include
a closing paranthestis until we are ready.
ALSO NOTE: "c(0,215)" concatenates the walues
0 and 215 into a vector.

HARRAHAABH AR AR AR RRAARRAAARRARA AR

BHOWHOR R R R R

plot(myrtles.healthy$x,myrtles.healthy$y,xlim=c(0,215),
ylim=c(0,215))

B i d

Finally, to make sure R draws the plotting area
as a square, we introduce the "par" command.

"par" sets plotting parameters and is a very,

very, wvery, very, very, very, very important

command with lots of uses. You have to set

"par" before plotting, but the settings stay unttl
the next "par" command resets them.

"pty" = "plot type" and "pty=s" means "set plot type
to square".

e

H R R KRR

par(pty="s")
plot(myrtles.healthy$x,myrtles.healthy$y,xlim=c(0,215),
ylim=c(0,215))

L

We can also use "par" to put put multiple plots
in the same window.

"mfrow" means "multiple figures by row".
"mfrow=c(1,2)" means "multiple figures, one Tow
containing two figures". Let's try <t.
L

H R R KRR

par(pty="s",mfrow=c(1,2))

plot (myrtles.healthy$x,myrtles.healthy$y,x1lim=c(0,215),
ylim=c(0,215))
title("Healthy")

plot(myrtles.diseased$x,myrtles.diseased$y,xlim=c(0,215),
ylim=c(0,215))
title("Diseased")

Healthy Diseased

o
n o
o ®,_ @g
— O@%@b
n QP 0 c?oggy
©%ﬂ@

o S8p %

myrtles.healthy$y
50 100 150 200
myrtles.diseased$y
50 100 150 200

OOQ)(@O

0
I

0
I

I I I I I I I I I I
0O 50 100 150 200 0O 50 100 150 200

myrtles.healthy$x myrtles.diseased$x

o Let’s test for CSR
o Consider test statistic by Pielou (1959)
o Test statistic P =AY X?/n

e X, = distance from event 7 to its nearest neighbor

o Pielou (1959) suggests P ~ N(1,1/n).\ [link] (http://methodsblog.com/2017/03/10/ec-pielou/)

e Let’s try a Monte Carlo test.

e

To generate realizations from CSR in the range

of values of the data we use "runtif"

command that generates untformly distributed

random numbers.

NOTE: We don't want to gemerate on the interval
(0,215) since we want to limit the range of values
to the range of the data. We extended the region to
get a square plot, but we want to limit simulations
to the area with data.
e

Let's set the number of events to simulate to

match the observed number of events.

H W ORE R R R R KRR

num.events = length(myrtles.healthy$x)

CSR.x <- runif (num.events,min(myrtles.all$x) ,max(myrtles.all$x))
CSR.y <- runif (num.events,min(myrtles.all$y) ,max(myrtles.all$y))

plot(CSR.x,CSR.y)

o 0o o) e} Oy O
S o oo’ 0 O ((; © Q 00
% o 9% 0% O P
o 9 o 9o o. ®° ©o
o © o o) o o)
2 4 o o ©o © @ © o
— o O O QD
0000% © 0 ° ® o 06
> @] 0] @] Cp O
X 9 © ° © © © o o
N o D o o 00 o & 5 °
o o 0 o ° o O
o © o o X o° &
o _| @) o & 08 0] ©)
Lo (@) 0]) o o
o) 00 Op @ 0 e}
O Op o500 (c)) foe?) o Ogp
OO o) o°
o) Q o e} Cﬁ% o O
00 o %) 8
o lo) (p (@] (0)
[[[[
0 50 100 150
CSR.x ok

e Need to reset plot to be in a square

B g

Oops meed to reset "mfrow" and a square plot using "par

B

n

http://methodsblog.com/2017/03/10/ec-pielou/

par (mfrow=c(1,1),pty="s")
plot (CSR.x,CSR.y)

8 1, Oo @OO o OOQ)O %(p
~ } 00 O ® o
0% 0 0.
o Co o O o)
B -4 0 @ © o ©o
i o & o c>o%§ o @ 0.®
> R OO S 00, %o O&O
o o ©o @] 0 o 00
A 9 1. .80 ;0 @®o 85°
oo Oy o & oo® ©
o | 00 o
Oogg) oC° O o) %@
OGD OOO @]
o 3% 8o 0°e B
[[[[
0 50 100 150
CSR.x

For a Monte Carlo test, we will want to make a loop of CSR simulations and calculate the test statistic for
each simulated realization.

Let’s calculate a clustering statistic due to Pielou (1959). This statistic requires us to find the distance from
each event to its nearest neighbor. (This also gives us a chance to try out some other R functions.)

First, for each event, calculate the distance to all other events.
We access individual x or y values by brackets with the index, i.e., x[1] is the first element of x.

We can find the distance between (x[1],y[1]) and all other observations by. ..
distl = sqrt((myrtles.all$x[1] - myrtles.all$x) 2 + (myrtles.all$y[1] - myrtles.all$y) "2)

g

This ©s a little tricky since

"myrtle.all$z[1] - myrtle.all$z" <is a number (z[1])

minus a vector (z). In R this results in subtracting the number from
all elements of the wector.
i

Now we want to find the minimum element of “dist1” that is NOT 0. We can use a nifty feature of R namely
we can put logical expressions inside brackets and get only the elements where that expression is true. For
instance,

Commented out so it doesn't list output
distl[dist1!=0]

gives the elements of distl that are not equal to zero. So

min(dist1[dist1!=0])

#i# [1] 4.472136

gives the nearest neighbor distance! Now we just need it for all values. Let’s use a loop to get this.

S
Set a vector of zeros with length equal to the number of locations in myrtles.all (length(myrtles.all

mindist.all <- O*(l:length(myrtles.all$x))

for (i in 1:length(myrtles.all$x)) {
dist = sqrt((myrtles.all$x[i] - myrtles.all$x) 2 + (myrtles.all$y[i] - myrtles.all$y)~2)
mindist.all[i] = min(dist[dist!=0])

}

Now we need to calculate Pielou’s statistic.

n.all = length(myrtles.all$x)

area.all = (max(myrtles.all$x) - min(myrtles.all$x)) * (max(myrtles.all$y)-min(myrtles.all$y))
lambda.all = n.all/area.all

pielou.all = pixlambda.all*sum(mindist.all”2)/mn.all

HAHRHHARRHRRRRRAAARAAA AR AR RRRRRAAAAA A AR
Print out the wvalue using 'paste’ to put text before tt. (sep="" to have no
separater between the text and the wvalue)

print(paste("Pielou's statistic value = ",pielou.all,sep=""))

[1] "Pielou's statistic value = 0.65680109594231"

Let’s round the statistic to make the print output a little cleaner.

print(paste("Pielou's statistic value = ",round(pielou.all,4),sep=""))

[1] "Pielou's statistic value = 0.6568"

Now to set up the Monte Carlo test

To get a Monte Carlo p-value we need todo these same calculations to data generated under CSR. First define
the number of simulations.

num.sim = 99

then define a vector to hold the values of Pielou’s statistic for each simulated data set.

pielou.all.sim = O0*(1:num.sim)

Now set up the simulation loop

for (sim in 1:num.sim) {

define CSR data
CSR.x = runif(num.events,min(myrtles.all$x) ,max(myrtles.all$x))

CSR.y = runif(num.events,min(myrtles.all$y) ,max(myrtles.all$y))

#define vector of min NN distances
mindist.sim = 0*(1:length(myrtles.all$x))

find min distances (a loop within the simulation loop)

for (i in 1:length(CSR.x)) {
dist = sqrt((CSR.x[i] - CSR.x)"2 + (CSR.y[i] - CSR.y)"2)
mindist.sim[i] = min(dist[dist!=0])

3

calculate pielou.all.sim[sim] (Pielou's statistic for the "sim-th" CSR data set).
pielou.all.sim[sim] = pi*lambda.all*sum(mindist.sim"2)/n.all

Make a histogram of the CSR values

par(pty="m") # makes plot type "mazimum" (rectangular in window).
hist(pielou.all.sim,xlim=c(0.5,max(pielou.all.sim)))

add a vertical line showing Pielou's statistic from the observed data.
("segments(zl,yl,22,y2)" draws a line segments between (zl1,yl) and (z2,y2).

segments(pielou.all,0,pielou.all,100)

Histogram of pielou.all.sim

o _
(qV
> i _|
(@] i
c
(]
o
o I -
L
L() —
O —
| | | |
0.6 0.8 1.0 1.2
pielou.all.sim sk

Now we can calculate Monte Carlo p-value (the number of statistics from simulated data that exceed the
statistic from the observed data divided by the number of simulations + 1.

p-val = length(pielou.all.sim[pielou.all.sim>pielou.all])/(num.sim+1)
print(paste("Peilou's statistic: ",round(pielou.all,4)," p-val = ",round(p.val,4),sep=""))

[1] "Peilou's statistic: 0.6568 p-val = 0.99"

Now to do this for the healthy and diseased subsets
mindist.healthy = 0*(1:length(myrtles.healthy$x))

for (i in 1:length(myrtles.healthy$x)) {
dist = sqrt((myrtles.healthy$x[i] - myrtles.healthy$x) "2 + (myrtles.healthy$y[i] - myrtles.healthy$y
mindist.healthy[i] = min(dist[dist!=0])

}

n.healthy = length(myrtles.healthy$x)

NOTE: We still use area.all to cover the entire study area.
lambda.healthy = n.healthy/area.all

pielou.healthy = pi*lambda.healthy*sum(mindist.healthy~2)/n.healthy
print(paste("Peilou's statistic, healthy myrtles:",pielou.healthy))

[1] "Peilou's statistic, healthy myrtles: 0.657911544652011"

Now for the diseased trees

mindist.diseased = 0*(1l:length(myrtles.diseased$x))

for (i in 1:length(myrtles.diseased$x)) {
dist = sqrt((myrtles.diseased$x[i] - myrtles.diseased$x) 2 + (myrtles.diseased$y[i] - myrtles.diseas
mindist.diseased[i] = min(dist[dist!=0])

}

n.diseased = length(myrtles.diseased$x)

NOTE: We still use area.all to cover the entire study area.
lambda.diseased = n.diseased/area.all

pielou.diseased = pi*lambda.diseased*sum(mindist.diseased”2)/n.diseased
print(paste("Peilou's statistic, diseased myrtles:",pielou.diseased))

[1] "Peilou's statistic, diseased myrtles: 0.507452851359244"

What we have: Separate tests for healthy trees and for diseased trees.

What we don’t have: A comparison between healthy and diseased trees.

