SISMID 2021 Spatial Statistics Waller Point Process 1: Monte Carlo Test of CSR

Lance A. Waller

7/11/21

- What we have
- Event locations for a strand of 327 myrtle trees in a rectangular plot 170.5×213.0 meters.
- 221 healthy trees.
- 106 diseased trees.
- Research question: Is the spatial pattern of diseased trees the same as the spatial pattern of health trees?
- Reading in the data, basic \mathbf{R} commands

```
# Set my working directory (Lance's here for example)
setwd("~/OneDrive - Emory University/meetings/SISMID.2021/SISMID.2021.Waller.Rcode")
myrtles.healthy = scan("myrtles.healthy.d",list(x=0,y=0))
#####################################
# Let's see what we have. Typing the
# name "myrtles.healthy" and hitting return
# prints out the values.
#####################################
# Commented out so it doesn't list everything in the handout
#myrtles.healthy
####################################
# The "names" command just give the
# names of the variables inside the data frame.
####################################
names(myrtles.healthy)
## [1] "x" "y"
###################################
# To access the value within a data frame
# type the name of the frame, a dollar sign,
# then the name of the variable.
#####################################
#Commented out so it doesn't list every value in the handout
#myrtles.healthy$x
```

```
#####################################
# To find out how many observations are
# in myrtles.healty$x, use the "length"
# command.
####################################
length(myrtles.healthy$x)
## [1] 221
```


- Plotting the data

- Read in data on diseased trees.
- Plot patterns
- Take care to make square plots, covering the same area. ***

```
myrtles.all = scan("myrtles.d",list(x=0,y=0))
myrtles.diseased = scan("myrtles.diseased.d",list(x=0,y=0))
######################################
# Let's plot the data
#####################################
plot(myrtles.healthy$x, myrtles.healthy$y)
######################################
# The "points" command adds points to a plot,
# and the "pch" option changes the "plot character".
# Let's add the diseased myrtle locations and plot
# them as "D"s.
######################################
```

points(myrtles.diseased\$x,myrtles.diseased\$y,pch="D")


```
## [1] 2.5 213.0
#####################################
# Looks like if we set the plot boundaries
# for (0,215) for }x\mathrm{ and }y\mathrm{ , we'll catch all
# of the points. We use the "xlim" and
# "ylim" parameters in the plot command.
# NOTE: we can continue a command onto the next
# line if we end with a comma and don't include
# a closing paranthesis until we are ready.
# ALSO NOTE: "c(0,215)" concatenates the values
# 0 and 215 into a vector.
#####################################
plot(myrtles.healthy$x,myrtles.healthy$y,xlim=c (0, 215),
    ylim=c(0,215))
###################################
# Finally, to make sure R draws the plotting area
# as a square, we introduce the "par" command.
# "par" sets plotting parameters and is a very,
# very, very, very, very, very, very important
# command with lots of uses. You have to set
# "par" before plotting, but the settings stay until
# the next "par" command resets them.
# "pty" = "plot type" and "pty=s" means "set plot type
# to square".
####################################
par(pty="s")
plot(myrtles.healthy$x,myrtles.healthy$y,xlim=c (0, 215),
    ylim=c(0,215))
```


\#

```
# We can also use "par" to put put multiple plots
# in the same window.
# "mfrow" means "multiple figures by row".
# "mfrow=c(1,2)" means "multiple figures, one row
# containing two figures". Let's try it.
####################################
par(pty="s",mfrow=c(1,2))
plot(myrtles.healthy$x,myrtles.healthy$y,xlim=c (0, 215),
    ylim=c(0, 215))
title("Healthy")
plot(myrtles.diseased$x,myrtles.diseased$y,xlim=c (0,215),
    ylim=c(0,215))
title("Diseased")
```

Healthy

Diseased

- Let's test for CSR

- Consider test statistic by Pielou (1959)
- Test statistic $P=\pi \lambda \sum X_{i}^{2} / n$
- $X_{i}=$ distance from event i to its nearest neighbor
- Pielou (1959) suggests $P \stackrel{a}{\sim} N(1,1 / n) . \backslash[$ link] (http://methodsblog.com/2017/03/10/ec-pielou/)
- Let's try a Monte Carlo test.

```
#######################################
# To generate realizations from CSR in the range
# of values of the data we use "runif"
# command that generates uniformly distributed
# random numbers.
# NOTE: We don't want to generate on the interval
# (0,215) since we want to limit the range of values
# to the range of the data. We extended the region to
# get a square plot, but we want to limit simulations
# to the area with data.
#########################################
# Let's set the number of events to simulate to
# match the observed number of events.
num.events = length(myrtles.healthy$x)
CSR.x <- runif(num.events,min(myrtles.all$x),max(myrtles.all$x))
CSR.y <- runif(num.events,min(myrtles.all$y),max(myrtles.all$y))
plot(CSR.x,CSR.y)
```


- Need to reset plot to be in a square
\#
\# Dops need to reset "mfrow" and a square plot using "par"
\#
$\operatorname{par}(m f r o w=c(1,1), p t y=" s ")$
plot(CSR.x,CSR.y)

CSR.x

For a Monte Carlo test, we will want to make a loop of CSR simulations and calculate the test statistic for each simulated realization.

Let's calculate a clustering statistic due to Pielou (1959). This statistic requires us to find the distance from each event to its nearest neighbor. (This also gives us a chance to try out some other R functions.)

First, for each event, calculate the distance to all other events.
We access individual x or y values by brackets with the index, i.e., $\mathrm{x}[1]$ is the first element of x .
We can find the distance between ($\mathrm{x}[1], \mathrm{y}[1]$) and all other observations by...

```
dist1 = sqrt( (myrtles.all$x[1] - myrtles.all$x)^2 + (myrtles.all$y[1] - myrtles.all$y)^2 )
##########################################
# This is a little tricky since
# "myrtle.all$x[1] - myrtle.all$x" is a number (x[1])
# minus a vector ( }x\mathrm{ ). In }R\mathrm{ this results in subtracting the number from
# all elements of the vector.
##########################################
```

Now we want to find the minimum element of "dist1" that is NOT 0 . We can use a nifty feature of R namely we can put logical expressions inside brackets and get only the elements where that expression is true. For instance,

```
# Commented out so it doesn't list output
# dist1[dist1!=0]
```

gives the elements of dist1 that are not equal to zero. So

```
min(dist1[dist1!=0])
## [1] 4.472136
```

gives the nearest neighbor distance! Now we just need it for all values. Let's use a loop to get this.

```
###################
# Set a vector of zeros with length equal to the number of locations in myrtles.all (length(myrtles.all
mindist.all <- 0*(1:length(myrtles.all$x))
for (i in 1:length(myrtles.all$x)) {
    dist = sqrt( (myrtles.all$x[i] - myrtles.all$x)^2 + (myrtles.all$y[i] - myrtles.all$y)^2 )
    mindist.all[i] = min(dist[dist!=0])
}
```

Now we need to calculate Pielou's statistic. ***

```
n.all = length(myrtles.all$x)
area.all = (max(myrtles.all$x) - min(myrtles.all$x)) * (max(myrtles.all$y)-min(myrtles.all$y))
lambda.all = n.all/area.all
pielou.all = pi*lambda.all*sum(mindist.all~2)/n.all
###########################################
# Print out the value using 'paste' to put text before it. (sep="" to have no
# separater between the text and the value)
```

```
print(paste("Pielou's statistic value = ",pielou.all,sep=""))
## [1] "Pielou's statistic value = 0.65680109594231"
```

Let's round the statistic to make the print output a little cleaner.

```
print(paste("Pielou's statistic value = ",round(pielou.all,4),sep=""))
## [1] "Pielou's statistic value = 0.6568"
```


Now to set up the Monte Carlo test*

To get a Monte Carlo p-value we need todo these same calculations to data generated under CSR. First define the number of simulations.

```
num.sim = 99
```

then define a vector to hold the values of Pielou's statistic for each simulated data set.

```
pielou.all.sim = 0*(1:num.sim)
```

Now set up the simulation loop

```
for (sim in 1:num.sim) {
    # define CSR data
    CSR.x = runif(num.events,min(myrtles.all$x),max(myrtles.all$x))
    CSR.y = runif(num.events,min(myrtles.all$y),max(myrtles.all$y))
    #define vector of min NN distances
    mindist.sim = 0*(1:length(myrtles.all$x))
    # find min distances (a loop within the simulation loop)
    for (i in 1:length(CSR.x)) {
        dist = sqrt( (CSR.x[i] - CSR.x)^2 + (CSR.y[i] - CSR.y)^2 )
        mindist.sim[i] = min(dist[dist!=0])
    }
    # calculate pielou.all.sim[sim] (Pielou's statistic for the "sim-th" CSR data set).
    pielou.all.sim[sim] = pi*lambda.all*sum(mindist.sim^2)/n.all
}
```

Make a histogram of the CSR values

```
par(pty="m") # makes plot type "maximum" (rectangular in window).
hist(pielou.all.sim,xlim=c(0.5,max(pielou.all.sim)))
# add a vertical line showing Pielou's statistic from the observed data.
# ("segments(x1,y1,x2,y2)" draws a line segments between (x1,y1) and (x2,y2).
segments(pielou.all,0,pielou.all,100)
```

Histogram of pielou.all.sim

Now we can calculate Monte Carlo p-value (the number of statistics from simulated data that exceed the statistic from the observed data divided by the number of simulations +1 .

```
p.val = length(pielou.all.sim[pielou.all.sim>pielou.all])/(num.sim+1)
print(paste("Peilou's statistic: ",round(pielou.all,4)," p-val = ",round(p.val,4),sep=""))
## [1] "Peilou's statistic: 0.6568 p-val = 0.99"
```

** Now to do this for the healthy and diseased subsets

```
mindist.healthy = 0*(1:length(myrtles.healthy$x))
for (i in 1:length(myrtles.healthy$x)) {
    dist = sqrt( (myrtles.healthy$x[i] - myrtles.healthy$x)^2 + (myrtles.healthy$y[i] - myrtles.healthy$y
    mindist.healthy[i] = min(dist[dist!=0])
}
```

```
n.healthy = length(myrtles.healthy$x)
# NOTE: We still use area.all to cover the entire study area.
lambda.healthy = n.healthy/area.all
pielou.healthy = pi*lambda.healthy*sum(mindist.healthy^2)/n.healthy
print(paste("Peilou's statistic, healthy myrtles:",pielou.healthy))
## [1] "Peilou's statistic, healthy myrtles: 0.657911544652011"
```

Now for the diseased trees

```
mindist.diseased = 0*(1:length(myrtles.diseased$x))
for (i in 1:length(myrtles.diseased$x)) {
    dist = sqrt( (myrtles.diseased$x[i] - myrtles.diseased$x)^2 + (myrtles.diseased$y[i] - myrtles.diseas
    mindist.diseased[i] = min(dist[dist!=0])
}
```

n.diseased = length (myrtles.diseased\$x)
\# NOTE: We still use area.all to cover the entire study area.
lambda.diseased = n.diseased/area.all
pielou.diseased = pi*lambda.diseased*sum(mindist.diseased^2)/n.diseased
print(paste("Peilou's statistic, diseased myrtles:",pielou.diseased))
\#\# [1] "Peilou's statistic, diseased myrtles: 0.507452851359244"

What we have: Separate tests for healthy trees and for diseased trees.
What we don't have: A comparison between healthy and diseased trees.

