SISMID 2021 Spatial Statistics Waller Point Process 1: Monte
Carlo Test of CSR

Lance A. Waller

7/11/21

e What we have
— Event locations for a strand of 327 myrtle trees in a rectangular plot 170.5 x 213.0 meters.
— 221 healthy trees.
— 106 diseased trees.
— Research question: Is the spatial pattern of diseased trees the same as the spatial pattern of health
trees?

¢ Reading in the data, basic R commands

Set my working directory (Lance's here for example)
setwd("~/0OneDrive - Emory University/meetings/SISMID.2021/SISMID.2021.Waller.Rcode")
myrtles.healthy = scan("myrtles.healthy.d",list(x=0,y=0))

HHU U R ARG R AR AR RIS AR

Let's see what we have. Typing the

name "myrtles.healthy” and hitting return
prints out the values.

HARRAAARH AR ARAAR AR RAARARRARAARAH

Commented out so it doesn't list everything in the handout
#myrtles.healthy

e i

The "mames" command just give the

names of the vartables inside the data frame.
HAHHRAAAH R AR AR AR ARG AR

names (myrtles.healthy)

[1] lell llyll

e

To access the value within a data frame

type the mame of the frame, a dollar sign,
then the mame of the wariable.

HAHHHA BB R R BB RRRRRA AR BB R R R AR

#Commented out so @t doesn't list every wvalue in the handout
#myrtles.heal thy$z

L

To find out how many observations are
in myrtles.healty$z, use the "length"
command.

HAHURAARB R R AR RRA AR ARG

length(myrtles.healthy$x)

[1] 221

e Plotting the data
— Read in data on diseased trees.
— Plot patterns
— Take care to make square plots, covering the same area. ***

myrtles.all = scan("myrtles.d",list(x=0,y=0))
myrtles.diseased = scan("myrtles.diseased.d",list(x=0,y=0))

i
Let's plot the data
HAHH R AU R RIA AR AR AR AR

plot(myrtles.healthy$x, myrtles.healthy$y)

i

The "points" command adds points to a plot,

and the "pch" option changes the "plot character”.
Let's add the diseased myrtle locations and plot
them as "D'"s.
i

points(myrtles.diseased$x,myrtles.diseased$y,pch="D")

o
S o
« Bos® .8
oD o 8DOD8 @ O%% Oo@oz@:)o @
> O ©” %% o ° D
& I — ® QC% %) 0 o
e AR L e
o opBeBS 0% o o o % o © o 2
2 g | T o o D“D,D p
o - ®Qom °° °p & '809 QDOD
T o go% ooo Egé)o ppR D
£ o | Do B o0 o
Ty %0 Py P D
IS & &Dod%po O@@DOO o o B
. YGp o © %(?% o’
| | | |
0 50 100 150

myrtles.healthy$x

B

Notice that the plot is sort of square, bdbut
that the range of walues for z is different
from that for y. Let's set the limits

so that they are the same. First, we find
min and max of the = and y coordinates for

ALL myrtle locations (healthy and diseased).

HARBARBHARHRARRBAARHAARRRAARRAARBHARH
min(myrtles.all$x)

[1] 2.5
max (myrtles.all$x)

[1] 170.5
min(myrtles.all$y)

[1] 2.5
max (myrtles.all$y)

[1] 213

i
We can also use the "range" command
to do this.

i

range (myrtles.all$x)

[1] 2.5 170.5
range (myrtles.all$y)

[1] 2.5 213.0

i

Looks like if we set the plot boundaries

for (0,215) for = and y, we'll catch all

of the points. We use the "zlim" and

"ylim" parameters in the plot command.

NOTE: we can continue a command onto the next
line 1f we end with a comma and don't include
a closing paranthestis until we are ready.
ALSO NOTE: "c(0,215)" concatenates the values
0 and 215 into a wvector.
HARHAAARHARARR AR AR RRAARRAAARRARA AR

WO R R R R

plot(myrtles.healthy$x,myrtles.healthy$y,xlim=c(0,215),
ylim=c(0,215))

i

Finally, to make sure R draws the plotting area

as a square, we introduce the "par" command.

"par" sets plotting parameters and is a very,
very, very, very, very, very, very important
command with lots of uses. You have to set

"par" before plotting, but the settings stay unttl
the next "par" command resets them.

"pty" = "plot type" and "pty=s" means "set plot type
to square”.

e

FHOWH ORHOR R R R W™ W

par (pty= ngn)
plot(myrtles.healthy$x,myrtles.healthy$y,xlim=c(0,215),
ylim=c(0,215))

HARRARARBRRAARRAAA AR ARAARRRAAARAHA A

We can also use "par" to put put multiple plots
in the same window.

"mfrow" means "multiple figures by row".
"mfrow=c(1,2)" means "multiple figures, one row
containing two figures". Let's try <t.
s

RO R R

par(pty="s",mfrow=c(1,2))

plot(myrtles.healthy$x,myrtles.healthy$y,xlim=c(0,215),
ylim=c(0,215))
title("Healthy")

plot(myrtles.diseased$x,myrtles.diseased$y,x1lim=c(0,215),
ylim=c(0,215))
title("Diseased")

Healthy Diseased

S - S - -
- N {5\ ~ o Q) @Q]D
2 o T o Q)
& n — (] o —
= — 2} —
s 5 . %
2 o 9N o @
7] 2 N © 2 N QP (& 00
g g © Sod
E‘ Lfo)] E Lro)] oQJ @
®
_ _ ° ‘98%
[[[[[[[[
0 50 100 150 200 0 50 100 150 200
myrtles.healthy$x myrtles.diseased$x

e Let’s test for CSR

o Consider test statistic by Pielou (1959)

o Test statistic P =7\ > X2?/n

e X, = distance from event 7 to its nearest neighbor

o Pielou (1959) suggests P ~ N(1,1/n).\ [link] (http://methodsblog.com/2017/03/10/ec-pielou/)
e Let’s try a Monte Carlo test.

e

To generate realizations from CSR in the range

of values of the data we use "runtif"

command that generates untformly distributed
random numbers.

NOTE: We don't want to generate on the interval
(0,215) since we want to limit the range of values
to the range of the data. We extended the region to
get a square plot, but we want to limit simulations
to the area with data.
e

Let's set the number of events to simulate to

match the observed number of events.

H O ORE R R R R KRR

num.events = length(myrtles.healthy$x)

CSR.x <- runif(num.events,min(myrtles.all$x) ,max(myrtles.all$x))
CSR.y <- runif (num.events,min(myrtles.all$y) ,max(myrtles.all$y))

plot (CSR.x,CSR.y)

http://methodsblog.com/2017/03/10/ec-pielou/

o o o o o © o o
o o)
Y ®© o e o © o%©°
°© ® o G o 8
o)
o o° ° o ® 00 oo%o & o 9° oo
2 0 o oOof 00 ® o ©
Oo O O %0 @] o O
> oo © o o ooO o °© o o %) o
o o o O O Oo o 0) 000450 ©0 o OO0
n o - é@o © o o 000
O O o o 0 o 8 o o
o
o O 0] % ©) ©) & 00 8
o ° o o & o O © S e) o
— o o ®
ol o o o © 00 o8
% ® O O 0O
8 o o o 8
o" ° o o o)
o 8 0© 0®o o 0° ©
[[[[
0 50 100 150
CSR.x oKk

e Need to reset plot to be in a square

i
Oops mneed to reset "mfrow" and a square plot using "par"
HAARAH AR RARRR AR RA AR RRRRA AR AR RA AR AN

par (mfrow=c(1,1),pty="s")
plot(CSR.x,CSR.y)

150 200
| |
o
o ©o
80
e)

CSR.y

100
|

(@]

i
O

S

O

<

of

50

For a Monte Carlo test, we will want to make a loop of CSR simulations and calculate the test statistic for
each simulated realization.

Let’s calculate a clustering statistic due to Pielou (1959). This statistic requires us to find the distance from
each event to its nearest neighbor. (This also gives us a chance to try out some other R functions.)

First, for each event, calculate the distance to all other events.
We access individual x or y values by brackets with the index, i.e., x[1] is the first element of x.

We can find the distance between (x[1],y[1]) and all other observations by. ..
distl = sqrt((myrtles.all$x[1] - myrtles.all$x) 2 + (myrtles.all$y[1] - myrtles.all$y) 2)

AU BRI R AR AR R AR AR AR

This ©s a little tricky since

"myrtle.all$z[1] - myrtle.all$z" is a number (z[1])

minus a vector (z). In R this results in subtracting the number from
all elements of the wector.

AU B RIA BRI R AR R AR AR AR

Now we want to find the minimum element of “dist1” that is NOT 0. We can use a nifty feature of R namely
we can put logical expressions inside brackets and get only the elements where that expression is true. For
instance,

Commented out so it doesn't list output
distl[dist1!=0]

gives the elements of dist1 that are not equal to zero. So

min(dist1[dist1!=0])

[1] 4.472136

gives the nearest neighbor distance! Now we just need it for all values. Let’s use a loop to get this.

HARBHAAAB R RHAA S
Set a vector of zeros with length equal to the number of locations in myrtles.all (length(myrtles.all

mindist.all <- O*(l:length(myrtles.all$x))

for (i in 1:length(myrtles.all$x)) {
dist = sqrt((myrtles.all$x[i] - myrtles.all$x) "2 + (myrtles.all$y[i] - myrtles.all$y)”2)
mindist.all[i] = min(dist[dist!=0])

}

Now we need to calculate Pielou’s statistic. ***

n.all = length(myrtles.all$x)

area.all = (max(myrtles.all$x) - min(myrtles.all$x)) * (max(myrtles.all$y)-min(myrtles.all$y))
lambda.all = n.all/area.all

pielou.all = pixlambda.all*sum(mindist.all”2)/mn.all

HAHRHAA AR R R AR RAAARRAA AR AR R RRRRAAAAAA A AR
Print out the wvalue using 'paste’ to put text before tt. (sep="" to have no
separater between the text and the wvalue)

print(paste("Pielou's statistic value = ",pielou.all,sep=""))

[1] "Pielou's statistic value = 0.65680109594231"

Let’s round the statistic to make the print output a little cleaner.

print(paste("Pielou's statistic value = ",round(pielou.all,4),sep=""))

[1] "Pielou's statistic value = 0.6568"

Now to set up the Monte Carlo test*

To get a Monte Carlo p-value we need todo these same calculations to data generated under CSR. First define
the number of simulations.

num.sim = 99

then define a vector to hold the values of Pielou’s statistic for each simulated data set.

pielou.all.sim = 0*(1:num.sim)

Now set up the simulation loop

for (sim in 1:num.sim) {

define CSR data
CSR.x = runif (num.events,min(myrtles.all$x) ,max(myrtles.all$x))
CSR.y = runif(num.events,min(myrtles.all$y) ,max(myrtles.all$y))

#define vector of min NN distances
mindist.sim = 0*(1:length(myrtles.all$x))

find min distances (a loop within the simulation loop)

for (i in 1:length(CSR.x)) {
dist = sqrt((CSR.x[i] - CSR.x)"2 + (CSR.y[i] - CSR.y)"2)
mindist.sim[i] = min(dist[dist!=0])

}

calculate pielou.all.sim[sim] (Pielou's statistic for the "sim—-th" CSR data set).
pielou.all.sim[sim] = pi*lambda.all*sum(mindist.sim”2)/n.all

Make a histogram of the CSR values

par(pty="m") # makes plot type "mazimum" (rectangular in window).
hist(pielou.all.sim,x1im=c(0.5,max(pielou.all.sim)))

add a wvertical line showing Pielou's statistic from the observed data.
("segments(zl,yl,z2,y2)" draws a line segments between (zl,yl) and (z2,y2).

segments(pielou.all,0,pielou.all,100)

Histogram of pielou.all.sim

25
I

20

15

Frequency

10

I I I I
0.6 0.8 1.0 1.2

pielou.all.sim sk

Now we can calculate Monte Carlo p-value (the number of statistics from simulated data that exceed the
statistic from the observed data divided by the number of simulations + 1.

p.val = length(pielou.all.sim[pielou.all.sim>pielou.alll)/(num.sim+1)
print(paste("Peilou's statistic: ",round(pielou.all,4)," p-val = ",round(p.val,4),sep=""))

[1] "Peilou's statistic: 0.6568 p-val = 0.99"

** Now to do this for the healthy and diseased subsets

mindist.healthy = 0*(1:length(myrtles.healthy$x))

for (i in 1:length(myrtles.healthy$x)) {
dist = sqrt((myrtles.healthy$x[i] - myrtles.healthy$x) 2 + (myrtles.healthy$y[i] - myrtles.healthy$y
mindist.healthy[i] = min(dist[dist!=0])

}

n.healthy = length(myrtles.healthy$x)

NOTE: We still use area.all to cover the entire study area.
lambda.healthy = n.healthy/area.all

pielou.healthy = pi*lambda.healthy*sum(mindist.healthy~2)/n.healthy
print(paste("Peilou's statistic, healthy myrtles:",pielou.healthy))

[1] "Peilou's statistic, healthy myrtles: 0.657911544652011"

Now for the diseased trees

mindist.diseased = 0*(1l:length(myrtles.diseased$x))

for (i in 1:length(myrtles.diseased$x)) {
dist = sqrt((myrtles.diseased$x[i] - myrtles.diseased$x) 2 + (myrtles.diseased$y[i] - myrtles.diseas
mindist.diseased[i] = min(dist[dist!=0])

}

n.diseased = length(myrtles.diseased$x)

NOTE: We still use area.all to cover the entire study area.
lambda.diseased = n.diseased/area.all

pielou.diseased = pi*lambda.diseased*sum(mindist.diseased”2)/n.diseased
print(paste("Peilou's statistic, diseased myrtles:",pielou.diseased))

[1] "Peilou's statistic, diseased myrtles: 0.507452851359244"

What we have: Separate tests for healthy trees and for diseased trees.

What we don’t have: A comparison between healthy and diseased trees.

10

