
A short introduction to
Statistical Practice in Epidemiology with R, 2006
www.pubhealth.ku.dk/~bxc/SPE/

June 2006.

Michael Hills
Highgate, London

Martyn Plummer
International Agency for Research on Cancer, Lyon
plummer@iarc.fr

Bendix Carstensen
Steno Diabetes Center, Gentofte, Denmark
& Department of Biostatistics, University of Copenhagen

bxc@steno.dk
www.pubhealth.ku.dk/~bxc

www.pubhealth.ku.dk/~bxc/SPE/
www.pubhealth.ku.dk/~bxc

Contents

1 Installing R 1
1.1 Microsoft windows . 1
1.2 Gnu/Linux . 1
1.3 Questions about epidmiology with R . 1

2 Some basic commands in R 2
2.1 Preliminaries . 2
2.2 Using R as a calculator . 2
2.3 Objects and functions . 3
2.4 Sequences . 3
2.5 The births data . 4
2.6 Reading the data . 4
2.7 Referencing parts of the data frame . 5
2.8 Summaries . 5
2.9 Turning a variable into a factor . 5
2.10 Frequency tables . 6
2.11 Grouping the values of a metric variable . 6
2.12 Tables of means and other things . 7
2.13 Generating new variables . 8
2.14 Logical variables . 8
2.15 Dates in R . 9

3 Working with R 10
3.1 Saving the work space . 10
3.2 Saving output in a file . 10
3.3 Saving R objects in a file . 10
3.4 Using a text editor with R . 11
3.5 The search path . 12
3.6 Attaching a data frame . 12

4 Graphs in R 14
4.1 Simple plot on the screen . 14
4.2 Colours . 15
4.3 Adding to a plot . 15
4.4 Interacting with a plot . 16
4.5 Saving your graphs for use in other documents . 17
4.6 The par() command . 17
4.7 The Lexis diagram . 18

5 Additional exercises 19

6 R commands 20

ii

Chapter 1

Installing R

1.1 Microsoft windows

The current version of R (1 June 2006) is 2.3.1. To install R plus the data and package used in this
introduction

1. Go to http://cran.r-project.org/mirrors.html and click choose a mirror near you, click on
the link to Windows and after that choose base. Download R-2.3.1-win32.exe to your computer

2. Run this installation file.

3. Fire up R, and at the command prompt type:

install.packages("Epi")

This will install the Epi package provided you are connected to the net.

4. Go to www.sciviews.org/Tinn-R, download the latest stable setup, and run it. This will install
the Tinn-R text editor..

1.2 Gnu/Linux

1. Go to www.r-project.org and click on CRAN.

2. Choose an rpm or tar file from a mirror, appropriate to your version of GNU/Linux, and use it to
install R.

3. Fire up R, and at the command prompt type:

install.packages("Epi")

This will install the Epi package provided you are connected to the net.

1.3 Questions about epidmiology with R

A mailing list has been set up for people who use R for epidemiological analysis. There is a link to it on
the Epi homepage, www.pubhealth.ku.dk/~bxc/Epi, or you can join by going to the R-homepage
www.r-project.org and then click on “Mailing lists” and find the R-sig-Epi mailing list.

You are welcome to pose questions regarding R and epidemiology there, and we will try to help you as
best we can.

1

http://cran.r-project.org/mirrors.html
www.sciviews.org/Tinn-R
www.r-project.org
www.pubhealth.ku.dk/~bxc/Epi
www.r-project.org

Chapter 2

Some basic commands in R

2.1 Preliminaries

The purpose of these notes is to describe a small subset of the R language, sufficient to allow someone
new to R to get started. The exercises are important because they reinforce basic aspects of R. For
further details about R we refer the reader to An Introduction to R by W.N.Venables, D.M.Smith,
and the R development team. This can be downloaded from the R website at http://www.r-project.org.

To start R click on the R icon. To change your working directory click on the tab with this name and
select the directory you want to work in. To get out of R click on the File menu and select Exit. You
will be offered the chance to save the work space, but at this stage just exit without saving, then start
R again, and change the working directory, as before.

R is case sensitive, so that A is different from a. Commands in R are generally separated by a newline,
although a semi-colon can also be used. When using R it makes sense to avoid as much typing as
possible by recalling previous commands using the vertical arrow key and editing them.

2.2 Using R as a calculator

Typing 2+2 will return the answer 4, typing 2^3 will return the answer 8 (2 to the power of 3), typing
log(10) will return the natural logarithm of 10, which is 2.3026, and typing sqrt(25) will return the
square root of 25.

Instead of printing the result you can store it in an object, say

> a <- 2 + 2

which can be used in further calculations. The expression <-, pronounced ”gets”, is called the
assignment operator, and is obtained by typing < and then -. The assignment operator can also be used
in the opposite direction, as in

2+2 -> a

The contents of a can be printed by typing a.
Standard probability functions are readily available. For example, the probability below 1.96 in a

standard normal (i.e. Gaussian) distribution is obtained with

> pnorm(1.96)

while

> pchisq(3.84, 1)

will return the probability below 3.84 in a χ2 distribution on 1 degree of freedom, and

> pchisq(3.84, 1, lower.tail = FALSE)

2

A short introduction to R 3

will return the probability above 3.84.

Exercise 1.

1. Calculate
√

32 + 42.

2. Find the probability above 4.3 in a chi-squared distribution on 1 degree of freedom.

2.3 Objects and functions

All commands in R are functions which act on objects. One important kind of object is a vector, which
is an ordered collections of numbers, or an ordered collection of character strings. Examples of vectors
are 4, 6, 1, 2.2, which is a numeric vector with 4 components, and “Charles Darwin”, “Alfred Wallace”
which is a vector of character strings with 2 components. The components of a vector must be of the
same type (numeric or character). The combine function c(), together with the assignment operator, is
used to create vectors. Thus

> v <- c(4, 6, 1, 2.2)

creates a vector v with components 4, 6, 1, 2.2 by first combining the 4 numbers 4, 6, 1, 2.2 in order and
then assigning the result to the vector v. Collections of components of different types are called lists,
and are created with the list() function. Thus

> m <- list(4, 6, "name of company")

creates a list with 3 components. The main differences between the numbers 4, 6, 1, 2.2 and the vector
v is that along with v is stored information about what sort of object it is and hence how it is printed
and how it is combined with other objects. Try

> v

> 3 + v

> 3 * v

and you will see that R understands what to do in each case. This may seem trivial, but remember that
unlike most statistical packages there are many different kinds of object in R.

You can get a description of the structure of any object using the function str(). For example,
str(v) shows that v is numeric with 4 components.

2.4 Sequences

It is not always necessary to type out all the components of a vector. For example, the vector (15, 20,
25, ... ,85) can be created with

> seq(15, 85, by = 5)

and the vector (5, 20, 25, ... ,85) can be created with

> c(5, seq(20, 85, by = 5))

You can learn more about functions by typing ? followed by the function name. For example ?seq
gives information about the syntax and usage of the function seq().

Exercise 2.

1. Create a vector w with components 1, -1, 2, -2

2. Print this vector (to the screen)

3. Obtain a description of w using str()

4. Create the vector w+1, and print it.

5. Create the vector (0, 1, 5, 10, 15, ... , 75) using c() and seq().

4 2.5 The births data

2.5 The births data

The most important example of a vector in epidemiology is the data on a variable recorded for a group
of subjects. To introduce R we use the births data which concern 500 mothers who had singleton births
in a large London hospital. These data are available as an R object called births in the Epi package.

Some of the variables which make up these data take integer values while others are numeric taking
measurements as values. For most variables the integer values are just codes for different categories,
such as "male" and "female" which are coded 1 and 2 for the variable sex. You can browse the
"births.txt" file by clicking on Display files under the File menu. It is a tab delimited file, that is the
individual items of data are separated by the code for Tab. This is the sort of file you get from a
spreadsheet such as Excel. Missing values are left blank, so they appear as TabTab.

2.6 Reading the data

The easiest way to access the births data is first to load the Epi package with

> library(Epi)

and then to load the data with

> data(births)

Try

> objects()

to make sure that you have an object called births in your working directory. The function

> str(births)

shows that the object births is a data frame with 500 observations of 8 variables. The names and types
of the variables are also shown together with the first 10 values of each variable.

Exercise 3.

1. The dataframe "diet" in the Epi package contains data from a follow-up study with
coronary heart disease as the end-point. Load these data with
> data(diet)

and print the contents of the data frame to the screen..
2. Check that you now have two objects, births, and diet in your work space.
3. Obtain a description of the object diet.
4. Remove the object diet with the command

> rm(diet)

Check that you only have the object births left.

Table 2.1: Variables in the births dataset

Variable Units or Coding Type Name

Subject number – categorical id
Birth weight grams metric bweight
Birth weight < 2500 g 1=yes, 0=no categorical lowbw
Gestational age weeks metric gestwks
Gestational age < 37 weeks 1=yes, 0=no categorical preterm
Maternal age years metric matage
Maternal hypertension 1=hypertensive, 0=normal categorical hyp
Sex of baby 1=male, 2=female categorical sex

A short introduction to R 5

2.7 Referencing parts of the data frame

Typing births will list the entire data frame - not usually very helpful. Now try

> births[1, "bweight"]

This will list the value taken by the first subject for the bweight variable. Similarly

> births[2, "bweight"]

will list the value taken by the second subject for bweight, and so on. To list the data for the first 10
subject for the bweight variable, try

> births[1:10, "bweight"]

and to list all the data for this variable, try

> births[, "bweight"]

Exercise 4.

1. Print the data on the variable gestwks for subject 7 in the births data frame.

2. Print all the data for subject 7.

3. Print all the data on the variable gestwks.

2.8 Summaries

A good way to start an analysis is to ask for a summary of the data by typing

> summary(births)

To see the names of the variables in the data frame try

> names(births)

Variables in a data frame can be referred to by name, but to do so it is necessary also to specify the
name of the data frame. Thus births$hyp refers to the variable hyp in the births data frame, and
typing births$hyp will print the data on this variable. To summarize the variable hyp try

> summary(births$hyp)

In most datasets there will be some missing values. These are usually coded using tab delimited
blanks to mark the values which are missing. R then codes the missing values using the NA (not
available) symbol. The summary shows the number of missing values for each variable.

2.9 Turning a variable into a factor

In R categorical variables are known as factors, and the different categories are called the levels of the
factor. Variables such as hyp and sex are originally coded using integer codes, and by default R will
interpret these codes as numeric values taken by the variables. For R to recognize that the codes refer
to categories it is necessary to convert the variables to be factors, and to label the levels. To convert the
variable hyp to be a factor, try

> hyp <- factor(births$hyp)

> str(births)

> objects()

which shows that hyp is both in your work space (as a factor), and in in the births data frame (as a
numeric variable). It is better to use the transform function on the data frame, as in

6 2.10 Frequency tables

> births <- transform(births, hyp = factor(hyp))

> str(births)

which shows that hyp, in the births data frame, is now a factor with two levels, labelled "0" and "1"
which are the original values taken by the variable. It is possible to change the labels to (say) "normal"
and "hyper" with

> births <- transform(births, hyp = factor(hyp, labels(c("normal",

+ "hyper"))))

> str(births)

Exercise 5.

1. Convert the variable sex into a factor

2. Label the levels of sex as "male" and "female".

2.10 Frequency tables

When starting to look at any new data frame the first step is to check that the values of the variables
make sense and correspond to the codes defined in the coding schedule. For categorical variables
(factors) this can be done by looking at one-way frequency tables and checking that only the specified
codes (levels) occur. The most useful function for making tables is stat.table. This is currently part
of the Epi package, so you will need to load this package first with

> library(Epi)

The distribution of the factors hyp and sex can be viewed by typing

> stat.table(hyp, data = births)

> stat.table(sex, data = births)

Their cross-tabulation is obtained by typing

> stat.table(list(hyp, sex), data = births)

Cross-tabulations are useful when checking for consistency, but because no distinction is drawn between
the response variable and any explanatory variables, they are not useful as a way of presenting data.

2.11 Grouping the values of a metric variable

For a numeric variable like matage it is often useful to group the values and to create a new factor
which codes the groups. For example we might cut the values taken by matage into the groups 20–29,
30–34, 35–39, 40–44, and then create a factor called agegrp with 4 levels corresponding to the four
groups. The best way of doing this is with the function cut. Try

> births <- transform(births, agegrp = cut(matage, breaks = c(20,

+ 30, 35, 40, 45), right = FALSE))

> stat.table(agegrp, data = births)

By default the factor levels are labelled [20-25), [25-30), etc., where [20-25) refers to the interval which
includes the left hand end (20) but not the right hand end (25). This is the reason for right=FALSE.
When right=TRUE (which is the default) the intervals include the right hand end but not the left hand.

It is important to realize that observations which are not inside the range specified in the breaks()
part of the command result in missing values for the new factor. For example, try

> births <- transform(births, agegrp = cut(matage, breaks = c(20,

+ 30, 35), right = FALSE))

> summary(births)

A short introduction to R 7

Only observations from 20 up to, but not including 35, are included. For the rest, agegrp is coded
missing. You can specify that you want to cut a variable into a given number of intervals of equal
length by specifying the number of intervals. For example

> births <- transform(births, agegrp = cut(matage, breaks = 5,

+ right = FALSE))

> stat.table(agegrp, data = births)

shows 5 intervals of width 4.

Exercise 6.

1. Summarize the numeric variable gestwks, which records the length of gestation for the
baby, and make a note of the range of values.

2. Create a new factor gest4 which cuts gestwks at 20, 35, 37, 39, and 45 weeks,
including the left hand end, but not the right hand. Make a table of the frequencies for
the four levels of gest4.

3. Create a new factor gest5 which cuts gestwks into 5 equal intervals, and make a table
of frequencies.

2.12 Tables of means and other things

To obtain the mean of bweight by sex, try

> stat.table(sex, mean(bweight), data = births)

The headings of the table can be improved with

> stat.table(sex, list("Mean birth weight" = mean(bweight)), data = births)

To make a two-way table of mean birth weight by sex and hypertension, try

> stat.table(list(sex, hyp), mean(bweight), data = births)

and to tabulate the count as well as the mean, try

> stat.table(list(sex, hyp), list(count(), mean(bweight)), data = births)

Available functions for the cells of the table are count, mean, weighted.mean, sum, min, max,
quantile,median, IQR, and ratio. The last of these is useful for rates and odds. For example, to
make a table of the odds of low birth weight by hypertension, try

> stat.table(hyp, list(odds = ratio(lowbw, 1 - lowbw, 100)), data = births)

The scale factor 100 makes the odds per 100. Margins can be added to the tables, as required. For
example,

> stat.table(sex, mean(bweight), data = births, margins = TRUE)

for a one-way table, and

> stat.table(list(sex, hyp), mean(bweight), data = births, margins = c(TRUE,

+ FALSE))

> stat.table(list(sex, hyp), mean(bweight), data = births, margins = c(FALSE,

+ TRUE))

> stat.table(list(sex, hyp), mean(bweight), data = births, margins = c(TRUE,

+ TRUE))

for a two-way table.

8 2.13 Generating new variables

Exercise 7.

1. Make a table of median birth weight by sex.

2. Do the same for gestation time, but include count as a function to be tabulated along
with median. Note that when there are missing values for the variable being
summarized the count refers to the number of non-missing observations for the row
variable, not the summarized variable.

3. Create a table showing the mean gestation time for the baby by hyp and lowbw,
together with margins for both.

4. Make a table showing the odds of hypertension by sex of the baby.

2.13 Generating new variables

New variables can be produced using assignment together with the usual mathematical operations and
functions:

+ - * log exp ^ sqrt

The sign ^ means “to the power of”, log means “natural logarithm”, and sqrt means “square root”.
The transform() function allows you to transform or generate variables in a data frame. For

example, try

> births <- transform(births, num1 = 1, num2 = 2, logbw = log(bweight))

The variable logbw is the natural logarithm of birth weight. Logs base 10 are obtained with log10().

2.14 Logical variables

Logical variables take the values TRUE or FALSE, and behave like factors. New variables can be
created which are logical functions of existing variables. For example

> births <- transform(births, low = bweight < 2000)

> str(births)

creates a logical variable low with levels TRUE and FALSE, according to whether bweight is less than
2000 or not. The logical expressions which R allows are

== < <= > >= !=

The first is logical equals and the last is not equals. One common use of logical variables is to restrict a
command to a subset of the data. For example, to list the values taken by bweight for hypertensive
women, try

> births$bweight[births$hyp == "hyper"]

If you want the entire dataframe restricted to hypertensive women try:

> births[births$hyp == "hyper",]

The subset() function also allows you to take a subset of a data frame. Try

> subset(births, hyp == "hyper")

Exercise 8.

1. Create a logical variable called early according to whether gestwks is less than 30 or
not.Make a frequency table of early.

2. Print the id numbers of women with gestwks less than 30 weeks.

A short introduction to R 9

2.15 Dates in R

Epidemiological studies often contain date variables which take values such as 2/11/1962. We shall use
the diet data to illustrate how to deal with variables whose values are dates.

The important variables in the dataset are chd, which takes the value 1 if the subject develops
coronary heart disease during the study the value 0 if the observation is censored, and the three date
variables which are date of birth (dob), date of entry (doe) and date of exit (dox). The command

> str(diet)

shows that these three variables are Date variables.
You will also see that the values are just numbers, but if you try

> head(diet)

you will see these variables printed as “real” dates. The variables are internally stored as number of days
since 1/1/1970.

To convert a character string (or a character variable) to date format try:

> as.Date("14/07/1952", format = "%d/%m/%Y")

> as.numeric(as.Date("14/07/1952", format = "%d/%m/%Y"))

The first form shows the date form and the latter the number of days since 1/1/1970, which is a
negative number for dates prior to 1/1/1970.

The format parts, “%d” etc., identify elements of the dates, whereas the “/”s are just the separator
characters that are in the character string. There are other possibilities for formats, see ?strftime or
the section on dates and times in the R command sheet at the end of this document .

Reading dates from an external file is done by reading the fields as character variables and then
transforming them to date variables by the function as.Date

If you want to enter a fixed date, for example if you want to terminate follow-up at 1st April 1975 you
could say:

> newx <- pmin(diet$dox, as.Date("1975-4-1", format = "%F"))

The format %F is shorthand for the ISO-standard date representation %Y-%m-%d, which is the default, so
it can be omitted altogether:

> newx <- pmin(diet$dox, as.Date("1975-4-1"))

You can print dates in the format you like by using the function format.Date(), try for example:

> bdat <- as.Date("1952-7-14", format = "%F")

> format.Date(bdat, format = "%A %d %B %Y")

Exercise 9.

1. Enter your own birtday as a date. Print it using format.Date() with the format
"%A %d %B %Y". Did you learn anything new?

2. Enter the birthday of your husband/wife/. . . as a date too. When will you be (were
you) 100 years old together? (Hint: mean() works on vectors of dates as well.)

Chapter 3

Working with R

3.1 Saving the work space

When exiting from R you are offered the chance of saving all the objects in your current work space. If
you do so, the work space is re-instated next time you start R. It can be useful to do this, but before
doing so it is worth tidying things up, because the work space can fill up with temporary objects, and it
is easy to forget what these are when you resume the session.

3.2 Saving output in a file

To save the output from an R command in a file, for future use, the sink() command is used. For
example,

> sink("output.txt")

> summary(births)

first instructs R to re-direct output away from the R terminal to the file "output.txt" and then
summarizes the births data frame, the output from which goes to the sink. While a sink is open all
output will go to it, replacing what is already in the file. To append output to a file, use the
append=TRUE option with sink(). To close a sink, use

> sink()

Exercise 10.

1. Sink output to a file called "output1.txt".

2. Make frequency tables of hyp and sex

3. Make a table of mean birth weight by sex

4. Close the sink

5. From windows, have a look inside the file output1.txt and check that the output you
expected is in the file.

3.3 Saving R objects in a file

The command read.table() is relatively slow because it carries out quite a lot of processing as it reads
the data. To avoid doing this more than once you can save the data frame, which includes the R
information, and read from this saved file in future. For example,

> save(births, file = "births.Rdata")

10

A short introduction to R 11

will save the births data frame in the file births.Rdata. By default the data frame is saved as a binary
file, but the option ascii=TRUE can be used to save it as a text file. To load the object from the file use

> load("births.Rdata")

The commands save() and load() can be used with any R objects, but they are particularly useful
when dealing with large data frames.

Exercise 11.

1. Use read.table() to read the data in the file diet.txt into a data frame called diet.

2. Save this data frame in the file "diet.Rdata"

3. Remove the data frame

4. Load the data frame from the file "diet.Rdata".

3.4 Using a text editor with R

When working with R it is best to use a text editor to prepare a batch file (or script) which contains R
commands and then to run them from the script. This means you can use the cut and paste facilities of
the editor to cut down on typing. For Windows we recommend using the text editor Tinn-R, but you
can use your favourite text editor instead if you prefer. Start up the editor and enter the following lines:

> births <- transform(births, lowbw = factor(lowbw, labels = c("normal",

+ "low")), hyp = factor(hyp, labels = c("normal", "hyper")),

+ sex = factor(sex, labels = c("male", "female")))

Now save the script as mygetbirths.R and run it. One major advantage of running
all your R commands from a script is that you end up with a record of exactly what you did
which can be repeated at any time.

This will also help you redo the analysis in the (highly likely) event that your data changes
before you have finished all analyses.

Exercise 12.

1. Create a script called mytab.R which includes the lines

> stat.table(hyp, data = births)

> stat.table(sex, data = births)

and run just these two lines.

2. Edit the script to include the lines

> stat.table(sex, mean(bweight), data = births)

> stat.table(hyp, mean(bweight), data = births)

and run these two lines.

3. Edit the script to create a factor cutting matage at 20, 30, 35, 40, 45 years, and run
just this part of the script.

4. Edit the script to create a factor cutting gestwks at 20, 35, 37, 39, 45 weeks, and run
just this part of the script.

5. Save and run the entire script.

12 3.5 The search path

3.5 The search path

R organizes objects in different positions on a search path. The command

> search()

shows these positions. The first is the work space, or global environment, the second is the Epi package,
the third is a package of commands called methods, the fourth is a package called stats, and so on. To
see what is in the work space try

> objects()

You should see just the objects births and diet. The command objects(1) does the same as
objects(). To see what is in the Epi package, try

> objects(2)

There are 29 functions in this package.
When you type the name of an object R looks for it in the order of the search path and will return

the first object with this name that it finds. This is why it is best to start your session with a clean
workspace, otherwise you might have an object in your workspace that masks another one later in the
search path.

3.6 Attaching a data frame

The function objects(1) shows that the only objects in the workspace are births and diet. To refer
to variables in the births data frame by name it is necessary to specify the name of the data frame, as
in births$hyp. This is quite cumbersome, and provided you are working primarily with one data
frame, it can help to put a copy of the variables from a data frame in their own position on the search
path. This is done with the function

> attach(births)

which places a copy of the variables in the births data frame in position 2. You can verify this with

> objects(2)

which shows the objects in this position are the variables from the births data frame. Note that the
methods package has now been moved up to position 3, as shown by the search() function.

When you type the command:

> hyp

R will look in the first position where it fails to find hyp, then the second position where it finds hyp,
which now gets printed.

Although convenient, attaching a data frame can give rise to confusion. For example, when you create
a new object from the variables in an attached data frame, as in

> subgrp <- bweight[hyp == 1]

the object subgrp will be in your workspace (position 1 on the search path) not in position 2. To
demonstrate this, try

> objects(1)

> objects(2)

Similarly, if you modify the data frame in the workspace the changes will not carry through to the
attached version of the data frame. The best advice is to regard any operation on an attached data
frame as temporary, intended only to produce output such as summaries and tabulations.

Beware of attaching a data frame more than once - the second attached copy will be attached in
position 2 of the search path, while the first copy will be moved up to position 3. You can see this with

A short introduction to R 13

> attach(births)

> search()

Having several copies of the same data set can lead to great confusion. To detach a data frame, use the
command

> detach(births)

which will detach the copy in position 2 and move everything else down one position. To detach the
second copy repeat the command detach(births).

Exercise 13.

1. Use search() to make sure you have no data frames attached.

2. Use objects(1) to check that you have the data frame births in your work space.

3. Verify that typing births$hyp will print the data on the variable hyp but typing hyp
will not.

4. Attach the births data frame in position 2 and check that the variables from this data
frame are now in position 2.

5. Verify that typing hyp will now print the data on the the variable hyp.

6. Summarize the variable bweight for hypertensive women.

> setwd(sweave.wd)

Chapter 4

Graphs in R

There are three kinds of plotting functions in R:

1. Functions that generate a new plot, e.g. hist() and plot().

2. Functions that add extra things to an existing plot, e.g. lines() and text().

3. Functions that allow you to interact with the plot, e.g. locator() and identify().

The normal procedure for making a graph in R is to make a fairly simple initial plot and then add on
points, lines, text etc., preferably in a script.

4.1 Simple plot on the screen

Load the births data and get an overview of the variables:

> library(Epi)

> data(births)

> str(births)

Now attach the dataframe and look at the birthweight distribution with

> attach(births)

> hist(bweight)

The histogram can be refined – take a look at the possible options with

> "?"(hist)

and try some of the options, for example:

> hist(bweight, col = "gray", border = "white")

To look at the relationship between birthweight and gestational weeks, try

> plot(gestwks, bweight)

You can change the plot-symbol by the option pch=. If you want to see all the plot symbols try:

> plot(1:25, pch = 1:25)

Exercise 14.

1. Make a plot of the birth weight versus maternal age with
> plot(matage, bweight)

2. Label the axes with
> plot(matage, bweight, xlab = "Maternal age", ylab = "Birth weight (g)")

14

A short introduction to R 15

4.2 Colours

There are many colours recognized by R. You can list them all by colours() or, equivalently, colors()
(R allows you to use British or American spelling). To colour the points of birthweight versus
gestational weeks, try

> plot(gestwks, bweight, pch = 16, col = "green")

This creates a solid mass of colour in the centre of the cluster of points and it is no longer possible to
see individual points. You can recover this information by overwriting the points with black circles
using the points() function.

> points(gestwks, bweight)

4.3 Adding to a plot

The points() function is one of several functions that add elements to an existing plot. By using these
functions, you can create quite complex graphs in small steps.

Suppose we wish to recreate the plot of birthweight vs gestational weeks using different colours for
male and female babies. To start with an empty plot, try

> plot(gestwks, bweight, type = "n")

Then add the points with the points function.

> points(gestwks[sex == 1], bweight[sex == 1], col = "blue")

> points(gestwks[sex == 2], bweight[sex == 2], col = "red")

To add a legend explaining the colours, try

> legend("topleft", pch = 1, legend = c("Boys", "Girls"), col = c("blue",

+ "red"))

which puts the legend in the top left hand corner.
Finally we can add a title to the plot with

> title("Birth weight vs gestational weeks in 500 singleton births")

Using indexing for plot elements

One of the most powerful features of R is the possibility to index vectors, not only to get subsets of
them, but also for repeating their elements in complex sequences.

Putting separate colours on males and female as above would become very clumsy if we had a 5 level
factor instead.

Instead of specifying one color for all points, we may specify a vector of colours of the same length as
the gestwks and bweight vectors. This is rather tedious to do directly, but R allows you to specify an
expression anywhere, so we can use the fact that sex takes the values 1 and 2, as follows:

First create a colour vector with two colours, and take look at sex:

> c("blue", "red")

> sex

Now see what happens if you index the colour vector by sex:

> c("blue", "red")[sex]

For every occurrence of a 1 in sex you get "blue", and for every occurrence of 2 you get "red", so the
result is a long vector of "blue"s and "red"s corresponding to the males and females. This can now be
used in the plot:

16 4.4 Interacting with a plot

> plot(gestwks, bweight, pch = 16, col = c("blue", "red")[sex])

The same trick can be used if we want to have a separate symbol for mothers over 40 say. We first
generate the indexing variable:

> oldmum <- (matage >= 40) + 1

Note we add 1 because (matage >= 40) generates a logic variable, so by adding 1 we get a numeric
variable with values 1 and 2, suitable for indexing:

> plot(gestwks, bweight, pch = c(16, 3)[oldmum], col = c("blue",

+ "red")[sex])

so where oldmum is 1 we get pch=16 (a dot) and where oldmum is 2 we get pch=3 (a cross).
R will accept any kind of complexity in the indexing as long as the result is a valid index, so you don’t

need to create the variable oldmum, you can create it on the fly:

> plot(gestwks, bweight, pch = c(16, 3)[(matage >= 40) + 1], col = c("blue",

+ "red")[sex])

Exercise 15.

1. Make a three level factor for maternal age with cutpoints at 30 and 40 years.

2. Use this to make the plot of gestational weeks with three different plotting symbols.
(Hint: Indexing with a factor automatically gives indexes 1,2,3 etc.).

Generating colours

R has functions that generate a vector of colours for you. For example,

> rainbow(4)

produces a vector with 4 colours (not immediately human readable, though). There are a few other
functions that generates other sequences of colours, type ?rainbow to see them.

Gray-tones are produced by the function gray (or grey), which takes a numerical argument between
0 and 1; gray(0) is black and gray(1) is white. Try:

> plot(0:10, pch = 16, cex = 3, col = gray(0:10/10))

> points(0:10, pch = 1, cex = 3)

4.4 Interacting with a plot

The locator() function allows you to interact with the plot using the mouse. Typing locator(1)
shifts you to the graphics window and waits for one click of the left mouse button. When you click, it
will return the corresponding coordinates.

You can use locator() inside other graphics functions to position graphical elements exactly where
you want them. Recreate the birth-weight plot,

> plot(gestwks, bweight, pch = c(16, 3)[(matage >= 40) + 1], col = c("blue",

+ "red")[sex])

> print(1:10)

and then add the legend where you wish it to appear by typing

> legend(locator(1), pch = 1, legend = c("Boys", "Girls"), col = c("blue",

+ "red"))

The identify() function allows you to find out which records in the data correspond to points on the
graph. Try

A short introduction to R 17

> identify(gestwks, bweight)

When you click the left mouse button, a label will appear on the graph identifying the row number of
the nearest point in the data frame births. If there is no point nearby, R will print a warning message
on the console instead. To end the interaction with the graphics window, right click the mouse: the
identify function returns a vector of identified points.

Exercise 16.

1. Use identify() to find which records correspond to the smallest and largest number of
gestational weeks.

2. View all the variables corresponding to these records with

births[identify(gestwks, bweight),]

4.5 Saving your graphs for use in other documents

Once you have a graph on the screen you can click on File → Save as , and choose the format you
want your graph in. The PDF (Acrobat reader) format is normally the most economical, and Acrobat
reader has good options for viewing in more detail on the screen. The Metafile format will give you an
enhanced metafile .emf, which can be imported into a Word document by Insert → Picture →
From File . Metafiles can be resized and edited inside Word.
If you want exact control of the size of your plot-file you can start a graphics device before doing the

plot. Instead of appearing on the screen, the plot will be written directly to a file. After the plot has
been completed you will need to close the device again in order to be able to access the file. Try:

> win.metafile(file = "plot1.emf", height = 3, width = 4)

> plot(gestwks, bweight)

> dev.off()

This will give you a enhanced metafile plot1.emf with a graph which is 3 inches tall and 4 inches wide.

4.6 The par() command

It is possible to manipulate any element in a graph, by using the graphics options. These are collected
on the help page of par(). For example, if you want axis labels always to be horizontal, use the
command par(las=1). This will be in effect until a new graphics device is opened.

Look at the typewriter-version of the help-page with

> "?"(par)

or better, use the the html-version through Help → Html help → Packages → base → P → par .

It is a good idea to take a print of this (having set the text size to “smallest” because
it is long) and carry it with you at any time to read in buses, cinema queues, during boring
lectures etc. Don’t despair, few R-users can understand what all the options are for.
par() can also be used to ask about the current plot, for example par("usr") will give

you the exact extent of the axes in the current plot.
If you want more plots on a single page you can use the command

> par(mfrow = c(2, 3))

This will give you a layout of 2 rows by 3 columns for the next 6 graphs you produce. The
plots will appear by row, i.e. in the top row first. If you want the plots to appear columnwise, use par(
mfcol=c(2,3)) (you still get 2 rows by 3 columns). To restore the layout to a single plot per page use

> par(mfrow = c(1, 1))

18 4.7 The Lexis diagram

4.7 The Lexis diagram

If you load the Epi package you can draw a Lexis diagram by:

> Lexis.diagram()

You can draw the lifelines of the members of the diet study in the diagram by:

> data(diet)

> Lexis.lines(entry.date = diet$doe, exit.date = diet$dox, birth.date = diet$dob,

+ fail = diet$chd)

Lexis.lines recognizes variables of format Date and automatically converts them to fractional years
when plotting them. The age and date axes are in years, so if you want to add text or other things to
the diagran you must give coordinates in years.

You would probably want to adjust the axes of the Lexis diagram, for example by:

> Lexis.diagram(age = c(30, 75), date = c(1950, 1995))

Chapter 5

Additional exercises

Exercise 17.

1. Use R to calculate 27/481.

2. Find the probability below 1.5 in a Gaussian (normal) distribution.

3. What is the probability between −1.64 and +1.64 in a Gaussian distribution?

4. What is the probability above 10 in a chi-squared distribution on 5 df?

5. Create a vector v with components (0, 5, 10, 15,. . . 65, 70, 80, 100) and find its length.

Exercise 18.

1. Load the diet data using data(diet. You must have the Epi package loaded to do this.

2. Get the names of the variables in diet, and obtain a summary of diet. The length of
follow-up is recorded in the variable y and the outcome at the end of follow-up is
recorded in the variable chd, coded 1 for coronary heart disease and 0 otherwise.

3. Convert hieng to a factor and label its levels ”low” and ”high”.

4. Create a table showing the frequencies of the two levels of hieng.

5. Convert job to a factor and label its levels ”driver”, ”conductor” and ”bank” .

6. Create a table showing the frequencies of the three levels of job.

7. Create a table showing a two-way table of frequencies for hieng and job.

8. Use stat.table(hieng,ratio(chd,y,1000),data=diet) to make a table of rates per
1000 by hieng.

9. Use stat.table to make a table of rates per 1000 by hieng and job.

10. Create a histogram of energy.

11. Create a boxplot of energy.

12. Create a boxplot of energy by job.

13. Generate a new variable measuring body mass index (height/weight2) and call it bmi.

14. Plot the cumulative distribution funcyion (cdf) of bmi and use this to select 5 possible
break points when grouping the values of bmi.

15. Use cut to create a factor with the 5 break points selected above, and call this bmigrp.

16. Use stat.table to make a table of rates per 1000 by bmigrp.

17. Use stat.table to make a table of rates per 1000 by hieng and bmigrp.

19

Chapter 6

R commands

This R Reference Card is written by Tom Short, EPRI PEAC, tshort@epri-peac.com, 2004-10-21 and granted
to the public domain. See www.Rpad.org for the source and latest version. Includes material from R for
Beginners by Emmanuel Paradis (with permission).

It is also available separately as a 4-page landscape document from the R-hompage www.r-project.org,
Manuals → contributed documentation.

Getting help

Most R functions have online documentation.
help(topic) documentation on topic

?topic — the same.
help.search("topic") search the help system
apropos("topic") the names of all objects in the

search list matching the regular expression
”topic”

help.start() start the HTML version of help
str(a) display the internal *str*ucture of an R object
summary(a) gives a “summary” of a, usually a

statistical summary but it is generic meaning it
has different operations for different classes of a

ls() show objects in the search path; specify
pat="pat" to search on a pattern

ls.str() str() for each variable in the search path
dir() show files in the current directory
methods(a) shows S3 methods of a

methods(class=class(a)) lists all the methods to
handle objects of class a.

Input and output
load() load the datasets written with save

data(x) loads specified data sets
library(x) load add-on packages
read.table(file) reads a file in table format and

creates a data frame from it; the default
separator sep="" is any whitespace; use
header=TRUE to read the first line as a header of
column names; use as.is=TRUE to prevent
character vectors from being converted to factors;
use comment.char="" to prevent "#" from being
interpreted as a comment; use skip=n to skip n

lines before reading data; see the help for options
on row naming, NA treatment, and others

read.csv("filename",header=TRUE) id. but with
defaults set for reading comma-delimited files

read.delim("filename",header=TRUE) id. but with
defaults set for reading tab-delimited files

read.fwf(file,widths,header=FALSE,sep="�",as.is=FALSE)
read a table of f ixed w idth f ormatted data into
a ’data.frame’; widths is an integer vector, giving
the widths of the fixed-width fields

save(file,...) saves the specified objects (...) in
the XDR platform-independent binary format

save.image(file) saves all objects
cat(..., file="", sep=" ") prints the arguments

after coercing to character; sep is the character
separator between arguments

print(a, ...) prints its arguments; generic,
meaning it can have different methods for
different objects

format(x,...) format an R object for pretty printing
write.table(x,file="",row.names=TRUE,col.names=TRUE,

sep=" ") prints x after converting to a data
frame; if quote is TRUE, character or factor
columns are surrounded by quotes ("); sep is the
field separator; eol is the end-of-line separator;
na is the string for missing values; use
col.names=NA to add a blank column header to
get the column headers aligned correctly for
spreadsheet input

sink(file) output to file, until sink()
Most of the I/O functions have a file argument.

This can often be a character string naming a file or a
connection. file="" means the standard input or
output. Connections can include files, pipes, zipped
files, and R variables.

On windows, the file connection can also be used
with description = "clipboard". To read a table
copied from Excel, use

x <- read.delim("clipboard")

To write a table to the clipboard for Excel, use
write.table(x,"clipboard",sep="\t",col.names=NA)

For database interaction, see packages RODBC, DBI,
RMySQL, RPgSQL, and ROracle. See packages XML, hdf5,
netCDF for reading other file formats.

20

www.Rpad.org
www.r-project.org

R command sheet 21

Data creation

c(...) generic function to combine arguments with
the default forming a vector; with
recursive=TRUE descends through lists
combining all elements into one vector

from:to generates a sequence; “:” has operator
priority; 1:4 + 1 is “2,3,4,5”

seq(from,to) generates a sequence by= specifies
increment; length= specifies desired length

seq(along=x) generates 1, 2, ..., length(along);
useful for for loops

rep(x,times) replicate x times; use each= to repeat
“each” element of x each times; rep(c(1,2,3),2)
is 1 2 3 1 2 3; rep(c(1,2,3),each=2) is 1 1 2 2 3
3

data.frame(...) create
a data frame of the named or unnamed arguments;
data.frame(v=1:4,ch=c("a","B","c","d"),n=10);
shorter vectors are recycled to the length of the
longest

list(...) create a list of the named or unnamed
arguments; list(a=c(1,2),b="hi",c=3i);

array(x,dim=) array with data x; specify dimensions
like dim=c(3,4,2); elements of x recycle if x is
not long enough

matrix(x,nrow=,ncol=) matrix; elements of x recycle
factor(x,levels=) encodes a vector x as a factor
gl(n,k,length=n*k,labels=1:n) generate levels

(factors) by specifying the pattern of their levels;
k is the number of levels, and n is the number of
replications

expand.grid() a data frame from all combinations of
the supplied vectors or factors

rbind(...) combine arguments by rows for matrices,
data frames, and others

cbind(...) id. by columns

Slicing and extracting data

Indexing vectors
x[n] nth element
x[-n] all but the nth element
x[1:n] first n elements
x[-(1:n)] elements from n+1 to the end
x[c(1,4,2)] specific elements
x["name"] element named "name"

x[x > 3] all elements greater than 3
x[x > 3 & x < 5] all elements between 3 and 5
x[x %in% c("a","and","the")] elements in the given set
Indexing lists
x[n] list with elements n

x[[n]] nth element of the list
x[["name"]] element of the list named "name"

x$name id.
Indexing matrices
x[i,j] element at row i, column j

x[i,] row i

x[,j] column j

x[,c(1,3)] columns 1 and 3
x["name",] row named "name"

Indexing data frames (matrix indexing plus the
following)

x[["name"]] column named "name"

x$name id.

Variable conversion
as.array(x), as.data.frame(x), as.numeric(x),

as.logical(x), as.complex(x),

as.character(x), ... convert type; for a
complete list, use methods(as)

Variable information
is.na(x), is.null(x), is.array(x),

is.data.frame(x), is.numeric(x),

is.complex(x), is.character(x), ... test for
type; for a complete list, use methods(is)

length(x) number of elements in x

dim(x) Retrieve or set the dimension of an object;
dim(x) <- c(3,2)

dimnames(x) Retrieve or set the dimension names of
an object

nrow(x) number of rows; NROW(x) is the same but
treats a vector as a one-row matrix

ncol(x) and NCOL(x) id. for columns
class(x) get or set the class of x; class(x) <-

"myclass"

unclass(x) remove the class attribute of x

attr(x,which) get or set the attribute which of x

attributes(obj) get or set the list of attributes of
obj

Data selection and manipulation
which.max(x) returns the index of the greatest

element of x

which.min(x) returns the index of the smallest
element of x

rev(x) reverses the elements of x

sort(x) sorts the elements of x in increasing order;
to sort in decreasing order: rev(sort(x))

cut(x,breaks) divides x into intervals (factors);
breaks is the number of cut intervals or a vector
of cut points

match(x, y) returns a vector of the same length than
x with the elements of x which are in y (NA
otherwise)

which(x == a) returns a vector of the indices of x if
the comparison operation is true (TRUE), in this
example the values of i for which x[i] == a (the
argument of this function must be a variable of
mode logical)

choose(n, k) computes the combinations of k events
among n repetitions = n!/[(n − k)!k!]

na.omit(x) suppresses the observations with missing
data (NA) (suppresses the corresponding line if x

is a matrix or a data frame)
na.fail(x) returns an error message if x contains at

least one NA

unique(x) if x is a vector or a data frame, returns a
similar object but with the duplicate elements
suppressed

table(x) returns a table with the numbers of the
differents values of x (typically for integers or
factors)

subset(x, ...) returns a selection of x with respect
to criteria (..., typically comparisons: x$V1 <

10); if x is a data frame, the option select gives
the variables to be kept or dropped using a
minus sign

22 R command sheet

sample(x, size) resample randomly and without
replacement size elements in the vector x, the
option replace = TRUE allows to resample with
replacement

prop.table(x,margin=) table entries as fraction of
marginal table

Math
sin,cos,tan,asin,acos,atan,atan2,log,log10,exp

max(x) maximum of the elements of x

min(x) minimum of the elements of x

range(x) id. then c(min(x), max(x))

sum(x) sum of the elements of x

diff(x) lagged and iterated differences of vector x

prod(x) product of the elements of x

mean(x) mean of the elements of x

median(x) median of the elements of x

quantile(x,probs=) sample quantiles corresponding
to the given probabilities (defaults to
0,.25,.5,.75,1)

weighted.mean(x, w) mean of x with weights w

rank(x) ranks of the elements of x

var(x) or cov(x) variance of the elements of x

(calculated on n − 1); if x is a matrix or a data
frame, the variance-covariance matrix is
calculated

sd(x) standard deviation of x

cor(x) correlation matrix of x if it is a matrix or a
data frame (1 if x is a vector)

var(x, y) or cov(x, y) covariance between x and y,
or between the columns of x and those of y if
they are matrices or data frames

cor(x, y) linear correlation between x and y, or
correlation matrix if they are matrices or data
frames

round(x, n) rounds the elements of x to n decimals
log(x, base) computes the logarithm of x with base

base

scale(x) if x is a matrix, centers and reduces the
data; to center only use the option
center=FALSE, to reduce only scale=FALSE (by
default center=TRUE, scale=TRUE)

pmin(x,y,...) a vector which ith element is the
minimum of x[i], y[i], . . .

pmax(x,y,...) id. for the maximum
cumsum(x) a vector which ith element is the sum

from x[1] to x[i]

cumprod(x) id. for the product
cummin(x) id. for the minimum
cummax(x) id. for the maximum
union(x,y), intersect(x,y), setdiff(x,y), sete-

qual(x,y), is.element(el,set) “set”
functions

Re(x) real part of a complex number
Im(x) imaginary part
Mod(x) modulus; abs(x) is the same
Arg(x) angle in radians of the complex number
Conj(x) complex conjugate
convolve(x,y) compute the several kinds of

convolutions of two sequences
fft(x) Fast Fourier Transform of an array
mvfft(x) FFT of each column of a matrix
filter(x,filter) applies linear filtering to a

univariate time series or to each series separately
of a multivariate time series

Many math functions have a logical parameter
na.rm=FALSE to specify missing data (NA) removal.

Matrices
t(x) transpose
diag(x) diagonal
%*% matrix multiplication
solve(a,b) solves a %*% x = b for x

solve(a) matrix inverse of a

rowsum(x) sum of rows for a matrix-like object;
rowSums(x) is a faster version

colsum(x), colSums(x) id. for columns
rowMeans(x) fast version of row means
colMeans(x) id. for columns

Advanced data processing
apply(X,INDEX,FUN=) a vector or array or list of

values obtained by applying a function FUN to
margins (INDEX) of X

lapply(X,FUN) apply FUN to each element of the list X

tapply(X,INDEX,FUN=) apply FUN to each cell of a
ragged array given by X with indexes INDEX

by(data,INDEX,FUN) apply FUN to data frame data

subsetted by INDEX

merge(a,b) merge two data frames by common
columns or row names

xtabs(a b,data=x) a contingency table from
cross-classifying factors

aggregate(x,by,FUN) splits the data frame x into
subsets, computes summary statistics for each,
and returns the result in a convenient form; by is
a list of grouping elements, each as long as the
variables in x

stack(x, ...) transform data available as separate
columns in a data frame or list into a single
column

unstack(x, ...) inverse of stack()

reshape(x, ...) reshapes a data frame between
’wide’ format with repeated measurements in
separate columns of the same record and ’long’
format with the repeated measurements in
separate records; use (direction=”wide”) or
(direction=”long”)

Strings
paste(...) concatenate vectors after converting to

character; sep= is the string to separate terms (a
single space is the default); collapse= is an
optional string to separate “collapsed” results

substr(x,start,stop) substrings in a character
vector; can also assign, as substr(x, start,

stop) <- value

strsplit(x,split) split x according to the substring
split

grep(pattern,x) searches for matches to pattern

within x; see ?regex

gsub(pattern,replacement,x) replacement of
matches determined by regular expression
matching sub() is the same but only replaces the
first occurrence.

tolower(x) convert to lowercase
toupper(x) convert to uppercase
match(x,table) a vector of the positions of first

matches for the elements of x among table

x %in% table id. but returns a logical vector

R command sheet 23

pmatch(x,table) partial matches for the elements of
x among table

nchar(x) number of characters

Dates and Times
The class Date has dates without times. POSIXct has

dates and times, including time zones. Comparisons
(e.g. >), seq(), and difftime() are useful. Date also
allows + and −. ?DateTimeClasses gives more
information. See also package chron. as.Date(s) and
as.POSIXct(s) convert to the respective class.
format(dt) converts to a string representation. The
default string format is “2001-02-21”. These accept a
second argument to specify a format for conversion.
Some common formats are:

%a, %A Abbreviated and full weekday name.
%b, %B Abbreviated and full month name.
%d Day of the month (01–31).
%H Hours (00–23).
%I Hours (01–12).
%j Day of year (001–366).
%m Month (01–12).
%M Minute (00–59).
%p AM/PM indicator.
%S Second as decimal number (00–61).
%U Week (00–53); the first Sunday as day 1 of week 1.
%w Weekday (0–6, Sunday is 0).
%W Week (00–53); the first Monday as day 1 of week 1.
%y Year without century (00–99). Don’t use.
%Y Year with century.
%z (output only.) Offset from Greenwich; -0800 is 8

hours west of.
%Z (output only.) Time zone as a character string

(empty if not available).

Where leading zeros are shown they will be used on
output but are optional on input. See ?strftime.

Plotting
plot(x) plot of the values of x (on the y-axis)

ordered on the x-axis
plot(x, y) bivariate plot of x (on the x-axis) and y

(on the y-axis)
hist(x) histogram of the frequencies of x

barplot(x) histogram of the values of x; use
horiz=FALSE for horizontal bars

dotplot(x) if x is a data frame, plots a Cleveland dot
plot (stacked plots line-by-line and
column-by-column)

piechart(x) circular pie-chart
boxplot(x) “box-and-whiskers” plot
sunflowerplot(x, y) id. than plot() but the points

with similar coordinates are drawn as flowers
which petal number represents the number of
points

stripplot(x) plot of the values of x on a line (an
alternative to boxplot() for small sample sizes)

coplot(x~y | z) bivariate plot of x and y for each
value or interval of values of z

interaction.plot (f1, f2, y) if f1 and f2 are
factors, plots the means of y (on the y-axis) with
respect to the values of f1 (on the x-axis) and of
f2 (different curves); the option fun allows to
choose the summary statistic of y (by default
fun=mean)

matplot(x,y) bivariate plot of the first column of x

vs. the first one of y, the second one of x vs. the
second one of y, etc.

fourfoldplot(x) visualizes, with quarters of circles,
the association between two dichotomous
variables for different populations (x must be an
array with dim=c(2, 2, k), or a matrix with
dim=c(2, 2) if k = 1)

assocplot(x) Cohen–Friendly graph showing the
deviations from independence of rows and
columns in a two dimensional contingency table

mosaicplot(x) ‘mosaic’ graph of the residuals from a
log-linear regression of a contingency table. Also
useful for graphical display of contingency tables.

pairs(x) if x is a matrix or a data frame, draws all
possible bivariate plots between the columns of x

plot.ts(x) if x is an object of class "ts", plot of x

with respect to time, x may be multivariate but
the series must have the same frequency and
dates

ts.plot(x) id. but if x is multivariate the series may
have different dates and must have the same
frequency

qqnorm(x) quantiles of x with respect to the values
expected under a normal law

qqplot(x, y) quantiles of y with respect to the
quantiles of x

contour(x, y, z) contour plot (data are interpolated
to draw the curves), x and y must be vectors and
z must be a matrix so that dim(z)=c(length(x),

length(y)) (x and y may be omitted)
filled.contour(x, y, z) id. but the areas between

the contours are coloured, and a legend of the
colours is drawn as well

image(x, y, z) id. but with colours (actual data are
plotted)

persp(x, y, z) id. but in perspective (actual data
are plotted)

stars(x) if x is a matrix or a data frame, draws a
graph with segments or a star where each row of
x is represented by a star and the columns are
the lengths of the segments

symbols(x, y, ...) draws, at the coordinates given
by x and y, symbols (circles, squares, rectangles,
stars, thermometres or “boxplots”) which sizes,
colours . . . are specified by supplementary
arguments

termplot(mod.obj) plot of the (partial) effects of a
regression model (mod.obj)

The following parameters are common to many
plotting functions:

add=FALSE if TRUE superposes the plot on the
previous one (if it exists)

axes=TRUE if FALSE does not draw the axes and the
box

type="p" specifies the type of plot, "p": points, "l":
lines, "b": points connected by lines, "o": id. but
the lines are over the points, "h": vertical lines,
"s": steps, the data are represented by the top of
the vertical lines, "S": id. but the data are
represented by the bottom of the vertical lines

xlim=, ylim= specifies the lower and upper limits of
the axes, for example with xlim=c(1, 10) or
xlim=range(x)

xlab=, ylab= annotates the axes, must be variables
of mode character

main= main title, must be a variable of mode
character

24 R command sheet

sub= sub-title (written in a smaller font)

Low-level plotting commands
points(x, y) adds points (the option type= can be

used)
lines(x, y) id. but with lines
text(x, y, labels, ...) adds text given by labels

at coordinates (x,y); a typical use is: plot(x, y,

type="n"); text(x, y, names)

mtext(text, side=3, line=0, ...) adds text given
by text in the margin specified by side (see
axis() below); line specifies the line from the
plotting area

segments(x0, y0, x1, y1) draws lines from points
(x0,y0) to points (x1,y1)

arrows(x0, y0, x1, y1, angle= 30, code=2) id.
with arrows at points (x0,y0) if code=2, at points
(x1,y1) if code=1, or both if code=3; angle
controls the angle from the shaft of the arrow to
the edge of the arrow head

abline(a,b) draws a line of slope b and intercept a

abline(h=y) draws a horizontal line at ordinate y

abline(v=x) draws a vertical line at abcissa x

abline(lm.obj) draws the regression line given by
lm.obj

rect(x1, y1, x2, y2) draws a rectangle which left,
right, bottom, and top limits are x1, x2, y1, and
y2, respectively

polygon(x, y) draws a polygon linking the points
with coordinates given by x and y

legend(x, y, legend) adds the legend at the point
(x,y) with the symbols given by legend

title() adds a title and optionally a sub-title
axis(side, vect) adds an axis at the bottom

(side=1), on the left (2), at the top (3), or on the
right (4); vect (optional) gives the abcissa (or
ordinates) where tick-marks are drawn

rug(x) draws the data x on the x-axis as small
vertical lines

locator(n, type="n", ...) returns the coordinates
(x, y) after the user has clicked n times on the
plot with the mouse; also draws symbols
(type="p") or lines (type="l") with respect to
optional graphic parameters (...); by default
nothing is drawn (type="n")

Graphical parameters
These can be set globally with par(...); many can

be passed as parameters to plotting commands.
adj controls text justification (0 left-justified, 0.5

centred, 1 right-justified)
bg specifies the colour of the background (ex. :

bg="red", bg="blue", . . . the list of the 657
available colours is displayed with colors())

bty controls the type of box drawn around the plot,
allowed values are: "o", "l", "7", "c", "u" ou
"]" (the box looks like the corresponding
character); if bty="n" the box is not drawn

cex a value controlling the size of texts and symbols
with respect to the default; the following
parameters have the same control for numbers on
the axes, cex.axis, the axis labels, cex.lab, the
title, cex.main, and the sub-title, cex.sub

col controls the color of symbols and lines; use color
names: "red", "blue" see colors() or as
"#RRGGBB"; see rgb(), hsv(), gray(), and
rainbow(); as for cex there are: col.axis,
col.lab, col.main, col.sub

font an integer which controls the style of text (1:
normal, 2: italics, 3: bold, 4: bold italics); as for
cex there are: font.axis, font.lab, font.main,
font.sub

las an integer which controls the orientation of the
axis labels (0: parallel to the axes, 1: horizontal,
2: perpendicular to the axes, 3: vertical)

lty controls the type of lines, can be an integer or
string (1: "solid", 2: "dashed", 3: "dotted", 4:
"dotdash", 5: "longdash", 6: "twodash", or a
string of up to eight characters (between "0" and
"9") which specifies alternatively the length, in
points or pixels, of the drawn elements and the
blanks, for example lty="44" will have the same
effect than lty=2

lwd a numeric which controls the width of lines,
default 1

mar a vector of 4 numeric values which control the
space between the axes and the border of the
graph of the form c(bottom, left, top,

right), the default values are c(5.1, 4.1, 4.1,

2.1)

mfcol a vector of the form c(nr,nc) which partitions
the graphic window as a matrix of nr lines and
nc columns, the plots are then drawn in columns

mfrow id. but the plots are drawn by row
pch controls the type of symbol, either an integer

between 1 and 25, or a single character in "":
1: 2: 3: 4: 5: 6: 7: 8: 9:

10: 11: 12: 13: 14: 15: 16: 17: 18:

19: 20: 21: 22: 23: 24: 25: *: .:

●

● ● ●

● ● ● *
ps an integer which controls the size in points of

texts and symbols
pty a character which specifies the type of the

plotting region, "s": square, "m": maximal
tck a value which specifies the length of tick-marks on

the axes as a fraction of the smallest of the width
or height of the plot; if tck=1 a grid is drawn

tcl a value which specifies the length of tick-marks
on the axes as a fraction of the height of a line of
text (by default tcl=-0.5)

xaxt if xaxt="n" the x-axis is set but not drawn
(useful in conjonction with axis(side=1, ...))

yaxt if yaxt="n" the y-axis is set but not drawn
(useful in conjonction with axis(side=2, ...))

Lattice (Trellis) graphics
barchart(y~x) histogram of the values of y with

respect to those of x

bwplot(y~x) “box-and-whiskers” plot
densityplot(~x) density functions plot
dotplot(y~x) Cleveland dot plot (stacked plots

line-by-line and column-by-column)
histogram(~x) histogram of the frequencies of x

qqmath(~x) quantiles of x with respect to the values
expected under a theoretical distribution

stripplot(y~x) single dimension plot, x must be
numeric, y may be a factor

qq(y~x) quantiles to compare two distributions, x
must be numeric, y may be numeric, character,
or factor but must have two ‘levels’

R command sheet 25

xyplot(y~x) bivariate plots (with many
functionalities)

levelplot(z~x*y) coloured plot of the values of z at
the coordinates given by x and y (x, y and z are
all of the same length)

splom(~x) matrix of bivariate plots
parallel(~x) parallel coordinates plot

Optimization and model fitting
optim(par, fn, method = c("Nelder-Mead",

"BFGS", "CG", "L-BFGS-B", "SANN")

general-purpose optimization; par is initial
values, fn is function to optimize (normally
minimize)

nlm(f,p) minimize function f using a Newton-type
algorithm with starting values p

lm(formula) fit linear models; formula is typically of
the form response termA + termB + ...; use
I(x*y) + I(x^2) for terms made of nonlinear
components

glm(formula,family=) fit generalized linear models,
specified by giving a symbolic description of the
linear predictor and a description of the error
distribution; family is a description of the error
distribution and link function to be used in the
model; see ?family

nls(formula) nonlinear least-squares estimates of the
nonlinear model parameters

approx(x,y=) linearly interpolate given data points;
x can be an xy plotting structure

spline(x,y=) cubic spline interpolation
loess(formula) fit a polynomial surface using local

fitting
Many of the formula-based modeling functions have

several common arguments: data= the data frame for
the formala variables, subset= a subset of variables used
in the fit, na.action= action for missing values:
"na.fail", "na.omit", or a function. The following
generics often apply to model fitting functions:

predict(fit,...) predictions from fit based on
input data

df.residual(fit) returns the number of residual
degrees of freedom

coef(fit) returns the estimated coefficients
(sometimes with their standard-errors)

residuals(fit) returns the residuals
deviance(fit) returns the deviance
fitted(fit) returns the fitted values
logLik(fit) computes the logarithm of the

likelihood and the number of parameters
AIC(fit) computes the Akaike information criterion

or AIC

Statistics
aov(formula) analysis of variance model
anova(fit,...) analysis of variance (or deviance)

tables for one or more fitted model objects
density(x) kernel density estimates of x

binom.test(), pairwise.t.test(), power.t.test(),
prop.test(), t.test(), ... use
help.search("test")

Distributions
rnorm(n, mean=0, sd=1) Gaussian (normal)
rexp(n, rate=1) exponential
rgamma(n, shape, scale=1) gamma
rpois(n, lambda) Poisson
rweibull(n, shape, scale=1) Weibull
rcauchy(n, location=0, scale=1) Cauchy
rbeta(n, shape1, shape2) beta
rt(n, df) ‘Student’ (t)
rf(n, df1, df2) Fisher–Snedecor (F) (χ2)
rchisq(n, df) Pearson
rbinom(n, size, prob) binomial
rgeom(n, prob) geometric
rhyper(nn, m, n, k) hypergeometric
rlogis(n, location=0, scale=1) logistic
rlnorm(n, meanlog=0, sdlog=1) lognormal
rnbinom(n, size, prob) negative binomial
runif(n, min=0, max=1) uniform
rwilcox(nn, m, n), rsignrank(nn, n) Wilcoxon’s

statistics
All these functions can be used by replacing the

letter r with d, p or q to get, respectively, the
probability density (dfunc(x, ...)), the cumulative
probability density (pfunc(x, ...)), and the value of
quantile (qfunc(p, ...), with 0 < p < 1).

Programming
function(arglist) expr function definition
return(value)

if(cond) expr

if(cond) cons.expr else alt.expr

for(var in seq) expr

while(cond) expr

repeat expr

break

next

Use braces {} around statements
ifelse(test, yes, no) a value with the same shape

as test filled with elements from either yes or no

do.call(funname, args) executes a function call
from the name of the function and a list of
arguments to be passed to it.

The Epi package
Lexis.diagram() Draw a Lexis diagram, optionally

with life lines.
Lexis.lines() Add lines to a Lexis diagram.
rateplot(rates,...) Make plots of rates from an

age by period table.
cal.yr(x,format) Convert x to fractional calendar

year.
stat.table(index,contents,...) Make tables,

classified by index, of sums, ratios etc. giben in
contents.

ci.lin(obj,ctr.mat,subset,diffs,Exp) Extract
parameters and linear functions of them from
model objects.

plotEst(ests,...) Make a plot of parameter
estimates.

twoby2(exposure,outcome,...) Analysis of a 2× 2
table. Input can be either two binary variables or
a matrix of counts.

	Contents
	Installing R
	Microsoft windows
	Gnu/Linux
	Questions about epidmiology with R

	Some basic commands in R
	Preliminaries
	Using R as a calculator
	Objects and functions
	Sequences
	The births data
	Reading the data
	Referencing parts of the data frame
	Summaries
	Turning a variable into a factor
	Frequency tables
	Grouping the values of a metric variable
	Tables of means and other things
	Generating new variables
	Logical variables
	Dates in R

	Working with R
	Saving the work space
	Saving output in a file
	Saving R objects in a file
	Using a text editor with R
	The search path
	Attaching a data frame

	Graphs in R
	Simple plot on the screen
	Colours
	Adding to a plot
	Interacting with a plot
	Saving your graphs for use in other documents
	The par() command
	The Lexis diagram

	Additional exercises
	R commands

