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Goals

I Describe basic types of spatial point patterns.

I Introduce mathematical models for random patterns
(stochastic processes) of point-location events.

I Introduce analytic methods for describing patterns in observed
collections of events.

I We model the location of each event as a random variable in
space.

I NOTE: These probability models often motivate the model
structures we use for disease mapping, spatial (count)
regression, etc.
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Terminology

I Realization: An observed set of event locations (a data set).

I Point: Where an event could occur.

I Event: Where an event did occur.
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Complete Spatial Randomness (CSR)

I Start with a model of “lack of pattern”.

I Events equally likely to occur anywhere in the study area
(uniform distribution).

I Event locations independent of each other.
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Six realizations of CSR
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CSR as a boundary condition

CSR serves as a boundary between:

I Patterns that are more “clustered” than CSR.

I Patterns that are more “regular” than CSR.
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Too Clustered (top), Too Regular (bottom)
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Spatial Point Processes

I Mathematically, we treat our point patterns as realizations of
a spatial stochastic process.

I A stochastic process is a collection of random variables
X1,X2, . . . ,XN .

I Examples: Number of people in line at grocery store.

I For us, each random variable represents an event location.
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CSR as a Stochastic Process

Let N(A) = number of events observed in region A, and λ = a
positive constant.

A homogenous spatial Poisson point process is defined by:

(a) N(A) ∼ Pois(λ|A|)
(b) given N(A) = n, the locations of the events are uniformly

distributed over A.

λ is the intensity of the process (mean number of events expected
per unit area).
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Is this CSR?

I Criteria (a) and (b) give a “recipe” for simulating realizations
of this process:

* Generate a Poisson random number of events.
* Distribute that many events uniformly across the study area.
runif(n,min(x),max(x))

runif(n,min(y),max(y))
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Monte Carlo testing

Let T= a random variable representing a test statistic (some
numerical summary of the observed data).

What is the distribution of T under H0?

1. t1.

2. simulate t2, ..., tm under H0, these values will follow F0.

3. p.value = rank of t1
m .

M.C. tests are useful in spatial statistics since we can simulate
spatial patterns and calculate the statistics.

Example: e.g., 592 leukemia cases in ∼ 790 regions...
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Moving beyond CSR

CSR:

1. is the “white noise” of spatial point processes.

2. characterizes the absence of structure (signal) in data.

3. often the null hypothesis in statistical tests to determine if
there is clustering in an observed point pattern.

4. not as useful in public health? Why not?
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Heterogeneous population density
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Heterogeneous Poisson Process

What if λ, the intensity of the process (mean number of events
expected per unit area), varies by location?

1. N(A) = Pois
(∫

(s)∈A λ(s)ds
)

(|A| =
∫
(s)∈A ds)

2. Given N(A) = n, events distributed in A as an independent
sample from a distribution on A with p.d.f. proportional to
λ(s).

We still have counts from areas ∼ Poisson and events are
distributed proportional to the intensity.
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Example intensity function
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Six realizations
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IMPORTANT FACT!

Without additional information, no analysis can differentiate
between:

1. independent events in a heterogeneous (non-stationary)
environment

2. dependent events in a homogeneous (stationary) environment
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How do we estimate intensities?

Kernel estimators provide a natural approach (Silverman (1986)
and Wand and Jones (1995, KernSmooth R library)).

Main idea: Put a little “kernel” of density at each data point, then
sum to give the estimate of the overall density function.
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Kernels and bandwidths
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Kernel estimation in R

base

I density() one-dimensional kernel

library(KernSmooth)

I bkde2D(x, bandwidth, gridsize=c(51, 51),

range.x=<<see below>>, truncate=TRUE) block kernel
density estimation

library(splancs)

I kernel2d(pts,poly,h0,nx=20,

ny=20,kernel=’quartic’)

library(spatstat)

I ksmooth.ppp(x, sigma, weights, edge=TRUE)
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Data Break: Early Medieval Grave Sites

I Alt and Vach (1991). (Data from Richard Wright Emeritus
Professor, School of Archaeology, University of Sydney.)

I Archeological dig in Neresheim, Baden-Württemberg,
Germany.

I Question: are graves placed according to family units?

I 143 grave sites, 30 with missing or reduced wisdom teeth.

I Could intensity estimates for grave sites with and without
wisdom teeth help answer this question?
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Plot of the data
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Case intensity
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Control intensity
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What we have/don’t have

I Kernel estimates suggest where there might be differences.

I No significance testing (yet!)
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K functions
Monte Carlo envelopes

First and Second Order Properties

I The intensity function describes the mean number of events
per unit area, a first order property of the underlying process.

I What about second order properties relating to the
variance/covariance/correlation between event locations (if
events non independent...)?
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Ripley’s K function

Ripley (1976, 1977 introduced) the reduced second moment
measure or K function

K (h) =
E [# events within h of a randomly chosen event]

λ
,

for any positive spatial lag h.

I Under CSR, K (h) = πh2 (area of circle of with radius h).

I Clustered? K (h) > πh2.

I Regular? K (h) < πh2.
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Calculating K (h) in R

library(splancs)

I khat(pts,poly,s,newstyle=FALSE)

I poly defines polygon boundary (important!!!).

library(spatstat)

I Kest(X, r, correction=c("border", "isotropic",

"Ripley", "translate"))

I Boundary part of X (point process “object”).
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Plots with K (h)

I Plotting (h,K (h)) for CSR is a parabola.

I K (h) = πh2 implies (
K (h)

π

)1/2

= h.

I Besag (1977) suggests plotting

h versus L̂(h)

where

L̂(h) =

(
K̂ec(h)

π

)1/2

− h
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Monte Carlo Variability and Envelopes

I Observe K̂ (h) from data.

I Simulate a realization of events from CSR.

I Find K̂ (h) for the simulated data.

I Repeat simulations many times.

I Create simulation “envelopes” from simulation-based K̂ (h)’s.
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Example: Regular clusters and clusters of regularity
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Estimated K function, regular pattern of clusters
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Estimated K function, cluster of regular patterns
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Data break: Medieval graves: K functions with polygon
adjustment
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Clustering?

I Clustering of cases at very shortest distances.

I Likely due to two coincident-pair sites (both cases in both
pairs).

I Envelopes based on random samples of 30 “cases” from set of
143 locations.
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Notes

I First and second moments do not uniquely define a
distribution, and λ(s) and K (h) do not uniquely define a
spatial point pattern (Baddeley and Silverman 1984, and in
Section 5.3.4 ).

I Analyses based on λ(s) typically assume independent events.

I Analyses based on K (h) typically assume a stationary process
(with constant λ).

I Remember IMPORTANT FACT! above.
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What questions can we answer?

I Are events uniformly distributed in space?
I Test CSR.

I If not, where are events more or less likely?
I Intensity estimation.

I Do events tend to occur near other events, and, if so, at what
scale?
I K functions with Monte Carlo envelopes.
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