MODULE 9: Spatial Statistics in Epidemiology and Public Health

Lecture 5: Slippery Slopes: Spatially Varying Associations

Jon Wakefield and Lance Waller

What are we doing?

- Alcohol
- Illegal drugs
- Violent crimes
- Regression
- Breaking the rules (what if the associations change in space?)

Spatially varying associations

Violence, alcohol, drugs Building the model Results

Conclusions

Acknowledgements and References

- Collaborators: Paul Gruenewald, Dennis Gorman, Li Zhu, Carol Gotway, and David Wheeler
- References:
 - Waller et al. (2008) Quantifying geographical associations between alcohol distribution and violence... Stoch Environ Res Risk Assess 21: 573-588.
 - Wheeler and Caldor (2009) As assessment of coefficient accuracy... J Geogr Systems 9: 573-588.
 - ▶ Wheeler and Waller (2009) Comparing spatially varying coefficient models... *J Geogr Systems* 11: 1-22.
 - Finley (2011) Comparing spatially-varying coefficient models... Methods in Ecology and Evolution 2: 143-154.

What do we want to do?

- Quantify associations between outcomes and covariates as observed in data.
- Adjust for spatial correlation (spatial regression) using a random intercept with a CAR prior.
- What if strength of association varies across space?
- Usually, we assume β is the same at every location, what if it varies (but is spatially correlated)?
- Can we have a random slope? Can we use CAR priors for that?

What about spatially varying associations?

- ► Fix it: Geographically weighted regression (GWR)
 - Fotheringham et al. (2002)
- Model it: Spatially varying coefficient (SVC) models
 - Leyland et al. (2000), Assuncao et al. (2003), Gelfand et al. (2003), Gamerman et al. (2003), Congdon (2003, 2006)

Our data for today

- Outcome: Rates (number of cases per person per year) of violent crimes (police/sheriff reports).
- Covariates: Alcohol distribution (licenses and sales), illegal drug arrests (police/sheriff reports).
- ▶ Potential confounders: Sociodemographics (census).
- Linked to common spatial framework (census tracts) via GIS.

Translation complications

- When are crime data like disease data?
 - Counts from small areas.
 - Per person "rate" of interest.
- ▶ When are crime data not like disease data?
 - Outcome not as "rare".
 - Police vs. medical records.
 - Residents not only ones at risk.

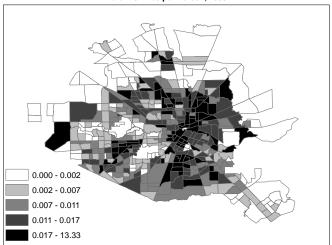
Background: Alcohol, drug arrests, and violent crime

- ► Large body of research showing association between alcohol distribution and the incidence of violence.
- Usually focuses on characteristics of:
 - People (social normative, social disorganization theories)
 - Places (routine activities theory)
 - Interactions of people and places (crime potential, ecology of crime)
- Alcohol distribution of interest since it is regulated and we have data on what and how much is sold where.

Data description

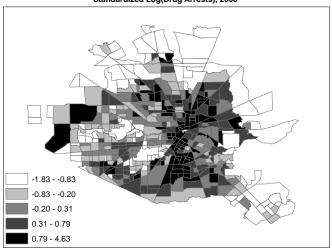
- Spatial support: 439 census tracts (2000 Census).
- Violent crime (murder, robbery, rape, aggravated assault) "first reports" for year 2000 from City of Houston Police Department website.
- ► Gorman et al. (2005, *Drug Alcohol Rev*) report less than 5% discrepancy with 2000 Uniform Crime Reports.
- ▶ 98% of reports geocoded to the census tract level.
- ▶ Alcohol data (locations of active distribution sites in 2000) from Texas Alcoholic Beverage Commission (6,609 outlets), 99.5% geocoded to the tract level.
- Drug law violations (also from City of Houston police data). 98% geocoded to the tract level.

Violent Crime reporting rates, Houston, 2000



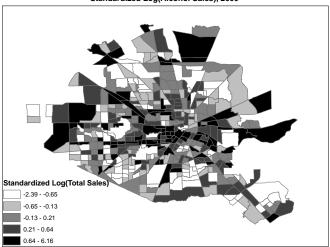
Standarized log(drug arrests), Houston, 2000

Standardized Log(Drug Arrests), 2000



Standarized log(alcohol sales), Houston, 2000

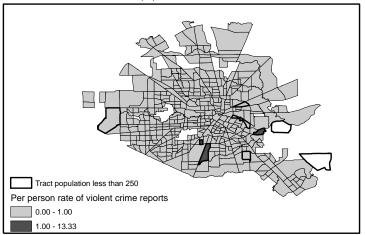
Standardized Log(Alcohol Sales), 2000



Data "features"

- ➤ 7 of 439 tracts have extremely small population sizes: 1, 3, 4, 16, 34, 116, and 246.
- ► Tracts typically have 3,000-5,000 residents.
- ► Local rates for such tracts are extremely unstable (e.g., 40 reports, 3 residents).
- Actually a motivating a reason for including the spatially varying intercept: borrow information across regions.

Low population tracts and high rates



Basic Poisson regression

- Let Y_i = number of reports in tract i, i = 1, ..., 439.
- ▶ Suppose $Y_i \sim \text{Poisson}(E_i \exp(\mu_i))$, where $E_i = \text{the}$ "expected" number of reports under some null model.
- ▶ Typically, $E_i = n_i R$ where all n_i individuals in region i are equally likely to report.
- ightharpoonup exp (μ_i) = "relative risk" of outcome in region i.
- We add covariates in linear format (within $\exp(\cdot)$): $\mu_i = \beta_0 + \beta_1 x_{alc,i} + \beta_2 x_{drug,i}$.
- Same "skeleton" for both GWR and SVC.

Why do we have E_i ?

▶ $E_i = n_i R$ represents an "offset" in the model and lets us use Poisson regression to model *rates* as well as *counts*.

$$E[Y_{i}] = E_{i} \exp(\beta_{0} + \beta_{1}x_{alc,i} + \beta_{2}x_{drug,i})$$

$$= \exp(\ln(E_{i}) + \beta_{0} + \beta_{1}x_{alc,i} + \beta_{2}x_{drug,i})$$

$$= \exp(\ln(n_{i}) + \ln(R) + \beta_{0} + \beta_{1}x_{alc,i} + \beta_{2}x_{drug,i})$$

$$\log(E[Y_{i}]) = \ln(n_{i}) + \ln(R) + \beta_{0} + \beta_{1}x_{alc,i} + \beta_{2}x_{drug,i}$$

▶ GWR offset: $ln(n_i)$, SVC offset: $ln(n_i) + ln(R)$.

GWPR (Nakaya et al., 2005)

- Geographically weighted Poisson regression.
- $\widehat{\boldsymbol{\beta}}_{GWPR} = (\boldsymbol{X}'\boldsymbol{W}(\boldsymbol{s})\boldsymbol{A}(\boldsymbol{s})\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{W}(\boldsymbol{s})\boldsymbol{A}(\boldsymbol{s})\boldsymbol{Z}(\boldsymbol{s}).$
- ightharpoonup A(s) = diagonal matrix of Fisher scores.
- ightharpoonup Z(s) =Taylor-series approximation to transformed outcomes.
- ▶ Update A(s), Z(s) and $\widehat{\beta}_{GWPR}$ until convergence.

Fitting in R

- ► Waller et al. (2007) use GWR 3.0 software.
- ▶ In R: maptools will read in ArcGIS-formatted shapefile (files) into R.
- spgwr fits linear GWR and GLM-type GWR.

SVC

- $\mu_i = \beta_0 + \beta_1 x_{alc,i} + \beta_2 x_{drug,i} + b_{1,i} x_{alc,i} + b_{2,i} x_{drug,i} + \phi_i + \theta_i.$
- \triangleright $\beta_0, \beta_1, \beta_2 \sim \text{Uniform}.$
- Random intercept has 2 components (Besag et al. 1991):

$$\theta_i \stackrel{ind}{\sim} N(0, \tau^2)$$

$$|\phi_i|\phi_j \sim N\left(rac{\sum_j w_{ij}\phi_j}{\sum_j w_{ij}}, rac{1}{\lambda \sum_j w_{ij}}
ight).$$

where w_{ij} defines neighbors, and λ controls spatial similarity.

- \triangleright θ_i allows overdispersion (smoothing to global mean).
- ϕ_i follows conditionally autoregressive distribution (smoothing to local mean), generates MVN but more convenient for MCMC.

Defining the SVCs

- ▶ b_1 , b_2 also given spatial priors and allowed to be correlated with one another.
- ▶ We use a formulation by Leyland et al. (2000) which defines

$$(b_{1,i},b_{2,i})' \sim MVN((0,0)', \Sigma)$$

.

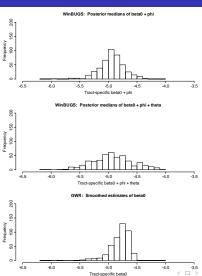
Fitting in WinBUGS

- ▶ Waller et al. (2007): Define the model in WinBUGS.
- MCMC fit.
- Note: Runs sloooooooowly.

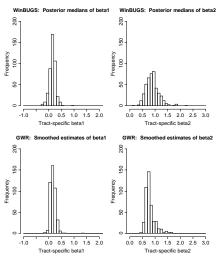
Implementation

- ▶ Waller et al. (2007): GWR3.0 used to fit the GWR Poisson model.
 - ▶ Converged to estimate in \sim 100 iterations.
 - Minutes.
 - Example code using spgwr library in R.
- ▶ WinBUGS 1.4.1 used to fit SVC model.
 - ▶ Converged to distribution in \sim 2,000 iterations.
 - ▶ 8,000 additional iterations used for inference.
 - Hours.
- ► Fit several versions of SVC model and compared fit via deviance information criterion (Spiegelhalter et al., 2003).
- Best fit included spatial varying coefficients, random intercept, and correlation between alcohol and drug effects.

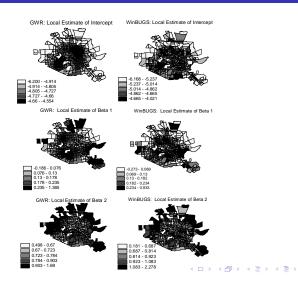
Results: Intercept



Results: Alcohol sales and drug arrests



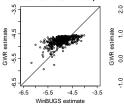
Estimated effects

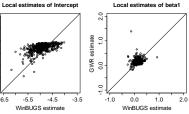


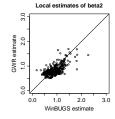
Similarities

- Alcohol: Increased impact in western, south-central, and southeastern parts of city.
- ► Illegal drug: Increased impact on periphery, lower influence in central and southwestern parts of city.
- Intercept: Increased risk of violence in central area, above and beyond that predicted by alcohol sales and illegal drug arrests.
- ▶ But, associations not too close...

Results: tract-by-tract



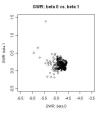


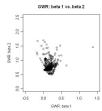


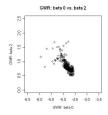
Differences

- ► GWR much smoother based on global best fit for *bw*.
- SVC used adjacency-based smoothing and a different amount of smoothing for each covariate.
- GWR: collineary between surfaces (Wheeler and Tiefelsdorf, 2005).
- SVC: Model based approach removes (or at least reduces) collinearity.

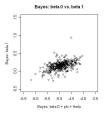
GWR: Collinearity?

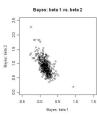


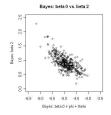




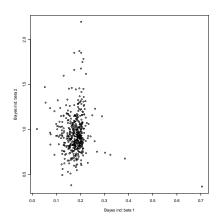
SVC: Collinearity?







SVC: No prior correlation



Let's try it out!

- ► Houston data on violent crime, alcohol sales, and illegal drug arrests.
- ArcGIS shapefile.
- Required R libraries: maptools (to read in shape file), RColorBrewer (to set colors), classInt (to set intervals of values for mapping), and spgwr (for GWR).

Conclusions

- GWR and SVC very different approaches to the same problem.
- Qualitatively similar in results, but not directly transformable.
- GWR fixed problems within somewhat of a black box.
- SVC allows probability model-based inference with lots of flexibility but at a computational cost (both in set-up and implementation).
- Further research:
 - Wheeler and Waller (2009): Attempt to set up SVC model to more closely mirror amount of smoothing in GWR.
 - Collinearity "ribbons".
 - Griffith (2002) eigenvector spatial filtering to adjust collinearity. Interpretability?