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Lecture 4: Spatial regression
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What do we have so far?

I Tension between statistical precision (want large local sample
sizes → big regions), and geographic precision (want small
regions for more detail in map).

I Disease mapping approaches use small area estimation
techniques to borrow information from all areas and from
neighboring areas to improve local estimation in each area.

I But what about local covariates?

I Can we adjust for those (say, using regression models)?

I And still borrow information?

I With independent observations we know how to use linear and
generalized linear models such as linear, Poisson, logistic
regression.

I What happens with dependent observations?
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Caveat

“...all models are wrong. The practical question is how
wrong do they have to be to not be useful.”
Box and Draper (1987, p. 74)
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What changes with dependence?

I In statistical modeling, we are often trying to describe the
mean of the outcome as a function of covariates, assuming
error terms are mutually independent.

I Where do correlated errors come from?

I Perhaps outcomes truly correlated (infectious disease).

I Perhaps we omitted an important variable that has spatial
structure itself.
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NY leukemia data

I NY leukemia data and covariates (Waller and Gotway, 2004).

I 281 census tracts (1980 Census).

I 8 counties in central New York.

I 592 cases for 1978-1982.

I 1,057,673 people at risk.
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Crude Rates (per 100,000)

Central New York Census Tracts, 1980
Leukemia rates 1978-1982

0.000000 - 0.000021

0.000022 - 0.000324

0.000325 - 0.000588

0.000589 - 0.001096

0.001097 - 0.006993
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Outliers, where are the top 3 rates?
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Building the model: Poisson regression

I Let Yi = count for region i .

I Let Ei = expected count for region i .

I Let (xi ,TCE , xi ,65, xi ,home) be the associated covariate values.

I Poisson regression:

Yi ∼ Poisson(Eiζi )

where

log(ζi ) = β0 + xi ,TCEβTCE + xi ,65β65 + xi ,homeβhome .
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Details

I Poisson distribution for counts.

I Link function: Natural log of mean of Yi is a linear function
of covariates.

I βs represent multiplicative increases in expected counts, eβ a
measure of relative risk associated with one unit increase in
covariate.

I Ei an offset, what we expect if the covariates have no impact.

I Age, race, sex adjustments in either Ei (standardization) or
covariates.
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Adding spatial correlation: New York data

I Assume Ei known, perhaps age-standardized, or based on
global (external or internal) rates.

I Our model is

Yi |β, ψi
ind∼ Poisson(Ei exp(x ′

iβ + ψi )),

log(ζi ) = β0 + xi ,TCEβTCE + xi ,65β65 + xi ,homeβhome + ψi .

I The ψi represent the random intercepts.

I Add overdispersion via ψi
ind∼ N(0, vψ).

I Add spatial correlation via

ψ ∼ MVN(0,Σ).
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Priors and “shrinkage”

I Overdispersion model (i.i.d. ψi ) results in each estimate being
a compromise between the local SMR and the global average
SMR.

I “Borrows information (strength)” from other observations to
improve precision of local estimate.

I “Shrinks” estimate toward global mean. (Note: “shrink” does
not mean “reduce”, rather means “moves toward”).
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Local shrinkage

I Spatial model (correlated ψi ) results in each estimate begin a
compromise between the local SMR and the local average
SMR.

I Shrinks each ψi toward the average of its neighbors.

I Can also include both global and local shrinkage (Besag, York,
and Mollié 1991).

I How do we fit these models?
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Bayesian inference

Bayesian inference regarding model parameters based on posterior
distribution

Pr [β,ψ|Y ]

proportional to the product of the likelihood times the prior

Pr [Y |β,ψ]Pr [ψ]Pr [β].

Defers spatial correlation to the prior rather than the likelihood.
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Spatial priors

I Could model joint distribution

ψ ∼ MVN(0,Σ).

I Could also model conditional distribution

ψi |ψj 6=i ∼ N

(∑
j 6=i cijψj∑

j 6=i cij
,

1

vCAR
∑

j 6=i cij

)
, i = 1, . . . ,N.

where cij are weights defining the neighbors of region i .

I Adjacency weights: cij = 1 if j is a neighbor of i .
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CAR priors

I The conditional specification defines the conditional
autoregressive (CAR) prior (Besag 1974, Besag et al. 1991).

I Under certain conditions on the cij , the CAR prior defines a
valid multivariate joint Gaussian distribution.

I Variance covariance matrix a function of the inverse of the
matrix of neighbor weights.

16 / 34



Fitting Bayesian models

I Posterior often difficult to calculate mathematically.

I Markov chain Monte Carlo: Iterative simulation approach to
model fitting.

I Given full conditional distributions, simulate a new value for
each parameter, holding the other parameter values fixed.

I The set of simulated values converges to a sample from the
posterior distribution.

I Alternative: integrated nested Laplace analysis using the inla

package (example code).
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Complete model specification

Yi |β, ψi
ind∼ Poisson(Ei exp(x ′

iβ + ψi )),

log(ζi ) = β0 + xi ,TCEβTCE + xi ,65β65 + xi ,homeβhome + ψi .

βk ∼ Uniform.

ψi |ψj 6=i ∼ N

(∑
j 6=i cijψj∑

j 6=i cij
,

1

vCAR
∑

j 6=i cij

)
, i = 1, . . . ,N.

1

vCAR
∼ Gamma(0.5, 0.0005).
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MCMC trace plots
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Posterior densities

−0.5 0.0 0.5

0.
0

1.
0

2.
0

Intercept

De
ns

ity

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Age Effect

De
ns

ity

0.00 0.10 0.20 0.30

0
2

4
6

8

Exposure Effect

De
ns

ity

−1.0 −0.5 0.0 0.5

0.
0

1.
0

2.
0

Home Ownership Effect

De
ns

ity

20 / 34



MCMC posterior estimates

Covariate Posterior 95% Credible
Median Set

β0 0.048 (-0.355, 0.408)
β65 3.984 (2.736, 5.330)
βTCE 0.152 (0.066, 0.226)
βhome -0.367 (-0.758, 0.049)
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But there’s more!

I A nifty thing about MCMC estimates:

We get posterior samples from any function of model
parameters by taking that function of the sampled posterior
parameter values.

I Gives us posterior inference for SMRi = Yi ,fit/Ei .

I Also can get Pr [SMRi > 200|Y ] and map these exceedence
probabilities.
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Posterior median SMRs
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Posterior exceedence probabilities
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What do we have?

I Associations between local covariates and local outcomes
(counts and rates).

I Spatial correlation between random intercepts (inside the link
function).

I (Aside: This is a clever idea since we can use a multivariate
Gaussian distribution for correlation...).

I Result: Local rates adjusted for covariates and smoothed by
borrowing information.

I Many examples in the literature, and many extensions, we’ll
start with one tomorrow!
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Bonus Example

I Cryptozoology Example: Waller and Carlin (2010) Disease
Mapping. In Handbook of Spatial Statistics, Gelfand et al.
(eds.). Boca Raton: CRC/Chapman and Hall.
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Cryptozoology example

I County-specific reports of encounters with Sasquatch
(Bigfoot).

I Data downloaded from www.bfro.net

I Sightings from counties in Oregon and Washington (Pacific
Northwest).

I Probability of report related to population density?

I (Hopefully) rare events in small areas.

I Perhaps spatial smoothing will stabilize local rate estimates.
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Sasquatch Data

Wasco
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Reports vs. Population Density
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Mapped relative risks
No random  effect RRs Exchangeable RRs

CAR RRs Convolution RRs

Legend 0.00 - 1.00

1.01 - 2.00

2.01 - 3.00

3.01 - 4.00

4.01 - 15.00

approxim ately 70.00
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Skamania Sasquatch Ordinances

I http://www.skamaniacounty.org/commissioners/

homepage/ordinances-2/

I Big Foot Ordinance 69-1: “THEREFORE BE IT RESOLVED
that any premeditated, willful and wonton slaying of any such
creature shall be deemed a felony punishable by a fine not to
exceed Ten Thousand Dollars ($10,000.00) and/or
imprisonment in the county jail for a period not to exceed
Five (5) years. ADOPTED this 1st day of April, 1969.”

I Big Foot Ordinance 1984-2:
I Repealed felony and jail sentence.
I Established a Sasquatch Refuge (Skamania County).
I Clarified penalty (gross misdemeanor vs. misdemeanor) and

penalty (fine and jail time), disallowed insanity defense, and
clarified distinction between coroner designation of victim as
humanoid (murder) or anthropoid (this ordinance).
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And...

www.amazon.com/Skamania-County-Washington-Bigfoot-
Vintage/dp/B076PWN7ZM
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Conclusions

I What method to use depends on what you want data you
have and what question you want to answer.

I All methods try to balance trend (fixed effects) with
correlation (here, with random effects).

I All models wrong, some models useful.

I Trying more than one approach often sensible.
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