MODULE 9: Spatial Statistics in Epidemiology and Public Health
 Lecture 7: Point Processes

Jon Wakefield and Lance Waller

Preliminaries

Random patterns
Heterogeneous Poisson process

Estimating intensities

Second order properties
K functions
Monte Carlo envelopes

References

- Baddeley, A., Rubak, E., and Turner. R. (2015) Spatial Point Patterns: Methodology and Applications in R. Boca Raton, FL: CRC/Chapman \& Hall.
- Diggle, P.J. (1983) Statistical Analysis of Spatial Point Patterns. London: Academic Press.
- Diggle, P.J. (2013) Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition CRC/Chapman \& Hall.
- Waller and Gotway (2004, Chapter 5) Applied Spatial Statistics for Public Health Data. New York: Wiley.
- Møller, J. and Waagepetersen (2004) Statistical Inference and Simulation for Spatial Point Processes. Boca Raton, FL: CRC/Chapman \& Hall.

Goals

- Describe basic types of spatial point patterns.
- Introduce mathematical models for random patterns (stochastic processes) of point-location events.
- Introduce analytic methods for describing patterns in observed collections of events.
- We model the location of each event as a random variable in space.
- NOTE: These probability models often motivate the model structures we use for disease mapping, spatial (count) regression, etc.

Terminology

- Realization: An observed set of event locations (a data set).
- Point: Where an event could occur.
- Event: Where an event did occur.

Complete Spatial Randomness (CSR)

- Start with a model of "lack of pattern".
- Events equally likely to occur anywhere in the study area (uniform distribution).
- Event locations independent of each other.

Six realizations of CSR

CSR as a boundary condition

CSR serves as a boundary between:

- Patterns that are more "clustered" than CSR.
- Patterns that are more "regular" than CSR.

Too Clustered (top), Too Regular (bottom)

Spatial Point Processes

- Mathematically, we treat our point patterns as realizations of a spatial stochastic process.
- A stochastic process is a collection of random variables $X_{1}, X_{2}, \ldots, X_{N}$.
- Examples: Number of people in line at grocery store.
- For us, each random variable represents an event location.

CSR as a Stochastic Process

Let $N(A)=$ number of events observed in region A, and $\lambda=$ a positive constant.

A homogenous spatial Poisson point process is defined by:
(a) $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(b) given $N(A)=n$, the locations of the events are uniformly distributed over A.
λ is the intensity of the process (mean number of events expected per unit area).

Is this CSR?

- Criteria (a) and (b) give a "recipe" for simulating realizations of this process:
* Generate a Poisson random number of events.
* Distribute that many events uniformly across the study area.

$$
\begin{aligned}
& \operatorname{runif}(n, \min (x), \max (x)) \\
& \operatorname{runif}(n, \min (y), \max (y))
\end{aligned}
$$

Monte Carlo testing

Let $T=$ a random variable representing a test statistic (some numerical summary of the observed data).

What is the distribution of T under H_{0} ?

1. t_{1}.
2. simulate t_{2}, \ldots, t_{m} under H_{0}, these values will follow F_{0}.
3. p.value $=\frac{\text { rank of } t_{1}}{m}$.
M.C. tests are useful in spatial statistics since we can simulate spatial patterns and calculate the statistics.

Example: e.g., 592 leukemia cases in ~ 790 regions...

Moving beyond CSR

CSR:

1. is the "white noise" of spatial point processes.
2. characterizes the absence of structure (signal) in data.
3. often the null hypothesis in statistical tests to determine if there is clustering in an observed point pattern.
4. not as useful in public health? Why not?

Heterogeneous population density

Heterogeneous Poisson Process

What if λ, the intensity of the process (mean number of events expected per unit area), varies by location?

1. $N(A)=\operatorname{Pois}\left(\int_{(\boldsymbol{s}) \in A} \lambda(\boldsymbol{s}) d \boldsymbol{s}\right)$

$$
\left(|A|=\int_{(\boldsymbol{s}) \in A} d \boldsymbol{s}\right)
$$

2. Given $N(A)=n$, events distributed in A as an independent sample from a distribution on A with p.d.f. proportional to $\lambda(\boldsymbol{s})$.
We still have counts from areas \sim Poisson and events are distributed proportional to the intensity.

Example intensity function

Six realizations

IMPORTANT FACT!

Without additional information, no analysis can differentiate between:

1. independent events in a heterogeneous (non-stationary) environment
2. dependent events in a homogeneous (stationary) environment

How do we estimate intensities?

Kernel estimators provide a natural approach (Silverman (1986) and Wand and Jones (1995, KernSmooth R library)).

Main idea: Put a little "kernel" of density at each data point, then sum to give the estimate of the overall density function.

Kernels and bandwidths

Kernel variance $\boldsymbol{= 0 . 0 4}$

Kernel variance $\boldsymbol{= 0 . 1}$

Kernel estimation in R

base

- density() one-dimensional kernel
library (KernSmooth)
- bkde2D(x, bandwidth, gridsize=c(51, 51), range. $x=\ll$ see below>>, truncate=TRUE) block kernel density estimation
library (splancs)
- kernel2d(pts,poly,h0,nx=20, ny=20,kernel='quartic')
library (spatstat)
- ksmooth.ppp(x, sigma, weights, edge=TRUE)

Data Break: Early Medieval Grave Sites

- Alt and Vach (1991). (Data from Richard Wright Emeritus Professor, School of Archaeology, University of Sydney.)
- Archeological dig in Neresheim, Baden-Württemberg, Germany.
- Question: are graves placed according to family units?
- 143 grave sites, 30 with missing or reduced wisdom teeth.
- Could intensity estimates for grave sites with and without wisdom teeth help answer this question?

Plot of the data

Grave locations (*=grave, $\mathrm{O}=$ affected)

Case intensity

Estimated intensity function
Affected grave locations

Estimating intensities

 Second order properties
Control intensity

Estimated intensity function

Non-affected grave locations

What we have/don't have

- Kernel estimates suggest where there might be differences.
- No significance testing (yet!)

First and Second Order Properties

- The intensity function describes the mean number of events per unit area, a first order property of the underlying process.
- What about second order properties relating to the variance/covariance/correlation between event locations (if events non independent...)?

Ripley's K function

Ripley (1976, 1977 introduced) the reduced second moment measure or K function

$$
K(h)=\frac{E[\# \text { events within } h \text { of a randomly chosen event }]}{\lambda},
$$

for any positive spatial lag h.

- Under CSR, $K(h)=\pi h^{2}$ (area of circle of with radius h).
- Clustered? $K(h)>\pi h^{2}$.
- Regular? $K(h)<\pi h^{2}$.

Calculating $K(h)$ in R

library (splancs)

- khat(pts,poly,s,newstyle=FALSE)
- poly defines polygon boundary (important!!!).
library (spatstat)
- Kest(X, r, correction=c("border", "isotropic", "Ripley", "translate"))
- Boundary part of X (point process "object").

Plots with $K(h)$

- Plotting $(h, K(h))$ for CSR is a parabola.
- $K(h)=\pi h^{2}$ implies

$$
\left(\frac{K(h)}{\pi}\right)^{1 / 2}=h
$$

- Besag (1977) suggests plotting

$$
h \text { versus } \widehat{L}(h)
$$

where

$$
\widehat{L}(h)=\left(\frac{\widehat{K}_{e c}(h)}{\pi}\right)^{1 / 2}-h
$$

Monte Carlo Variability and Envelopes

- Observe $\widehat{K}(h)$ from data.
- Simulate a realization of events from CSR.
- Find $\widehat{K}(h)$ for the simulated data.
- Repeat simulations many times.
- Create simulation "envelopes" from simulation-based $\widehat{K}(h)$'s.

Example: Regular clusters and clusters of regularity

Estimated K function, regular pattern of clusters

Estimated K function, cluster of regular patterns

Data break: Medieval graves: K functions with polygon adjustment

Clustering?

- Clustering of cases at very shortest distances.
- Likely due to two coincident-pair sites (both cases in both pairs).
- Envelopes based on random samples of 30 "cases" from set of 143 locations.

Notes

- First and second moments do not uniquely define a distribution, and $\lambda(\boldsymbol{s})$ and $K(h)$ do not uniquely define a spatial point pattern (Baddeley and Silverman 1984, and in Section 5.3.4).
- Analyses based on $\lambda(\boldsymbol{s})$ typically assume independent events.
- Analyses based on $K(h)$ typically assume a stationary process (with constant λ).
- Remember IMPORTANT FACT! above.

What questions can we answer?

- Are events uniformly distributed in space?
- Test CSR.
- If not, where are events more or less likely?
- Intensity estimation.
- Do events tend to occur near other events, and, if so, at what scale?
- K functions with Monte Carlo envelopes.

