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Prevalence Mapping

» Prevalence is defined as the proportion of a population who have
a specific characteristic in a given time period.

» Public health targets are often expressed as prevalences. For
example, the Sustainable Development Goals (SDGs) have a
number of such targets including Goal 3.2 which states:

“By 2030, end preventable deaths of newborns and
children under 5 years of age, with all countries aiming
to reduce neonatal mortality to at least as low as 12 per
1,000 live births and under-5 mortality to at least as low
as 25 per 1,000 live births”.

» As data availability escalates, there has been a corresponding
increase in the production of maps displaying the prevalence of a
large range of health and demographic outcomes — an endeavor
that has been labeled prevalence mapping.

4/37



Prevalence Mapping

>

In this lecture we distinguish between modeling at the area level,
which is often dubbed small area estimation (SAE) (Rao and
Molina, 2015; Pfeffermann, 2013), and at the point level, which is
referred to as model-based geostatistics (MBG) (Diggle and
Giorgi, 2019).

Often, maps are produced for low- and middle-income countries
based on household surveys which have complex designs.

Bayesian smoothing models are convenient for both SAE and
MBG, and computation is no longer a major problem for most
prevalence mapping endeavors.

We focus on MBG here, but briefly discuss SAE techniques.

References: Wakefield (2020); Wakefield et al. (2020) — these papers
may be found at
http://faculty.washington.edu/jonno/space-station.html
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Prevalence Mapping

» Prevalence mapping allows fundamental questions such as:
“how many people in my area have condition X or need
treatment Y.

» Disease mapping is traditionally based on a complete
enumeration of disease cases, and may differ from prevalence
mapping which may be based on a subset of individuals,
selected via a survey, which may have a complex design.



Motivating Example

» We take as a motivating example SAE of HIV prevalence among
females aged 15-29, in districts of Malawi, using data from the
2015-16 Malawi DHS.

» We will refer to the Malawi districts as admin-2 areas; there are 3
admin-1 areas, 28 admin-2 areas and 243 admin-3 areas.

» A two-stage stratified cluster sample was implemented, with the
sampling clusters (enumeration areas) being stratified by district
and urban/rural.

» The Malawi Population and Housing Census (MPHC), conducted
in Malawi in 2008 provided the sampling frame for the survey
(Malawi DHS, 2016)..

» The sample for the 2015—-16 Malawi DHS was designed to
provide estimates of key indicators for the country as a whole, for
urban and rural areas separately, and for each of the 28 districts.
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Motivating Example

» The sampling frame
contained 12,558 clusters and
our analyses use data from )
827 sampled clusters (the
supplementary materials give
more details). In the 2015-16 n
DHS survey for Malawi, 8,497
women in the age range
15—-49 were eligible for HIV
testing, and 93% of them
were tested.

» HIV prevalence data was =
obtained from voluntarily
taken blood samples from
survey respondents. w
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Figure 1: Cluster locations in 2015—16 Malawi
DHS.
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Area-Level Models




Weighted Estimate

» In a potentially complex survey situation, let 7y be the probability
of selection for individual k in area i.

» Let dix = 1/mi be the design weight associated with individual k
in area i, whose response is yi.

» Within area i, the design-based weighted (direct) estimator
(Horvitz and Thompson, 1952; Hajek, 1971) is

~pur Zkesf dik Yik
(A S
keS; ik

» The variance of the estimator, V*, may be calculated using
standard methods.

» For simple random sampling (SRS), this estimator simplifies to
the sample mean.

» In the SAE literature, this is known as a direct estimator.
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Area-Level Models

» In a major advance, Fay and Herriot (1979) introduced a very
clever approach that models a transform of the weighted
estimate, in order to gain precision by using a random effects
model.

» For binary outcomes (for example, HIV positive/negative), one
choice of transform is Z; = logit (m}").

» We denote the associated design-based variance of Z; by V;.
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Area-Level Models

» An area-level model is,
Z ~ N(6;,V)

where 6; is the logit of the true proportion in area i, and V; is the
variance of the logit estimator (obtained from V7 via the delta
method).

» We model 0; via a BYM2 specification:
i = Bo + B1x; + b,
where
bi=¢+S;
with €; ~;ig N(0,02) and [Sy, ..., Sy] ~ ICAR(02).

» This model produces what is termed a smoothed direct
estimator.

» In the HIV prevalence example, we use the HIV prevalence from
antenatal care (ANC) clinics, as covariate.
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The Data Aggregated to Districts

. Sampled Clusters | Sampling Frame
Region HIV +ve  No. Tested Urban Rural Urban Rural
Balaka 13 176 6 24 17 275
Blantyre 19 185 19 16 412 381
Chikwawa 4 136 4 27 16 380
Chiradzulu 10 132 2 27 2 334
Rumphi 8 130 6 20 12 156
Salima 5 168 6 23 22 416
Thyolo 8 177 4 30 12 674
Zomba 19 194 9 26 79 584
Total 278 4427 168 659 1409 11149

Table 1: Summary statistics of Malawi 2015-16 DHS data, by district. These
summaries are for females aged 15-29.
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Figure 2: Estimates of HIV prevalence among females aged 15-29 in districts
of Malawi in 2015-16. Top row estimates are from area-level models: direct
estimates; smoothed direct estimates; smooth direct estimates with antenatal
care (ANC) HIV prevalence covariate. Bottom row estimates are from
unit-level models: no urban/rural adjustment and no covariate; urban/rural
adjustment only; urban/rural adjustment and ANC HIV prevalence covariate.
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Figure 3: Left: Map of ANC prevalence. Right: logit of direct prevalence
estimates versus logit of ANC prevalence estimates.
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Model 2.5% Median 97.5%
No Covariates

BYM2 total variance 0.07 0.19 0.48
Proportion spatial 0.14 0.57 0.94

logit(ANC)
BYM2 total variance 0.00 0.04 0.19
Proportion spatial 0.01 0.17 0.85
logit(ANC): odds ratio  1.59 2.72 4.03

Table 2: Posterior quantiles for the area-level smoothed direct models. The
BYM2 total variance is o2, the proportion spatial is ¢, and the logit ANC (odds
ratio) is exp(31).

The linear predictor is:

0i=Bo+ X B1+ 6+,
~——
bj

with total residual variation af, and proportion spatial ¢.
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Unit-Level Models
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Unit-Level Model

» We let s;; represent the geographical location of cluster ¢ in area
i, and explicitly index the counts and sample sizes as Y. and nj,
respectively, forc=1,...,C;,i=1,...,m.

» A crucial assumption here (Rao and Molina, 2015, Section 4.3) is
that the probability of selection, given covariates, does not
depend on the values of the response.

» This implies that if stratified random sampling is used,
stratification variables must be included in the model.

» One would expect cluster sampling to lead to correlated
responses within clusters, and cluster-level random effects are
introduced to accommodate this aspect (Scott and Smith, 1969).
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Unit-Level Model

» For binary responses, a common model (Diggle and Giorgi,
2019) is,

Yic|pic ~ Binomial(njc, pic). (2)
» One candidate model to accompany (2) is,

Pic = expit (8o + X(Sic)'B1 + z(Sic)y + S(Sic) + €ic) )

where

» Zz(sji;) represents the strata within which cluster c lies,

> exp(7) is the associated odds ratio, and x(s;;) are covariates
available at location s;c, with odds ratios exp(3;).

» The spatial random effect S(s;;) is associated with cluster location
Sic, and may be continuous or discrete.

» The cluster-level error e;; ~ N(0, o2) is the so-called nugget, which
is traditionally vaguely specified as representing short scale
variation and/or “measurement error”.
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Unit-Level Model

» A model-based geostatistics (MBG) model takes S(sj;), as a
realization of a zero-mean Gaussian process (GP).

» GP models are common choices for continuously-indexed spatial
models and imply that any collection of spatial random effects
have a multivariate normal distribution.

» A popular choice for the variance-covariance is the Matérn
covariance function (Stein, 1999), for which the covariance is,

1—vsg - B
COV(S(S1)7 S(SZ)) = ng (\/%M) Kus (\/&M) s
s s

M(vs)

where

>

ps is the spatial range corresponding to the distance at which the
correlation is approximately 0.1,

» o5 is the spatial standard deviation,
» vs is the smoothness (which is usually fixed, since it is difficult to

estimate), and
K., is a modified Bessel function of the second kind, of order vs.
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Computation for unit-level model

» When the number of clusters C = "7, C; is large, computation
is an issue, because we need to manipulate C x C matrices
which involves O(C?) operations (Rue and Held, 2005).

» Various approximations have been proposed to overcome this
problem, for example, the stochastic partial differential equations
(SPDE) approach pioneered by Lindgren et al. (2011) — this is
the approach we use for the HIV prevalence example.

» Other approaches are described by Heaton et al. (2018).
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(a) A continuous function, (b) A piecewise linear approximation,

Fig 2. Piecewise linear approximation of a function over a triangulated mesh,

Figure 4: GMRF representation of a Markovian GRF, via triangulation, from
Simpson et al. (2012). Used in the SPDE approach.
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Unit-Level Model

» Aggregation to the area-level is carried out via,

M;

pi= [ pls)xals)ds ~ Yop(s)xa(s) (@

1=1

where
» the point level risk is,

p(s) = expit(Bo + X(s)'By + z(se)y + S(8))

is the risk at location s (the nugget is, for better or worse, frequently
left out, since it is viewed as measurement error) and

> q(s) is the population density at s, which is needed at all locations
on the approximating mesh, s;,, I/ =1,... M,
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Unit-Level Model

An alternative, overdispersed binomial, unit-level model that we use
for the HIV prevalence data is,

Yic | pic,A ~ BetaBinomial(ni, pic, \) (5)
pic = expit(Bo+ X;By + Zicy + €+ S)) (6)

where
» )\ is the overdispersion parameter and

» we have taken the spatial random effect to be decomposed as
S(sic) = ei + S;, with e; and S; iid and ICAR, respectively, i.e., a
BYM2 model.
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Malawi HIV Prevalence Example
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Model 2.5% Median 97.5%
No Covariates

Overdispersion 0.01 0.02 0.05
BYM2 total variance 0.05 0.14 0.35
Proportion spatial 0.15 0.62 0.96
U/R In
Overdispersion 0.01 0.02 0.04
BYM2 total variance 0.05 0.13 0.33
Proportion spatial 0.20 0.71 0.98
Urban: odds ratio 1.73 2.29 3.00
U/R In, logit(ANC)
Overdispersion 0.01 0.02 0.04
BYM2 total variance 0.00 0.02 0.12
Proportion spatial 0.01 0.22 0.91
Urban: odds ratio 1.70 2.24 2.94

logit(ANC): odds ratio  1.59 2.32 3.35

Table 3: Posterior quantiles for the unit-level betabinomial models. The
overdispersion parameter is A\, BYM2 total variance is o2, the proportion
spatial is ¢, the odds ratio associated with an urban cluster is exp(y), and the
logit ANC odds ratio is exp(f51).
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Figure 5: Posterior distributions for HIV prevalence. Top row area-level
models: direct; smoothed direct; smoothed direct with ANC covariate. Bottom
row unit-level (betabinomial) models: no urban/rural, no covariate; urban/rural

only; urban/rural and ANC covariate. a7
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Figure 6: District prevalence estimates from two unit-level models. On the
y-axis, the prevalence estimates are from a model with no urban/rural
adjustment, while on the x-axis the model has an adjustment.

The estimates from the no adjustment model are too high because of
the oversampling of urban areas, which have higher HIV prevalence.
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Figure 7: Uncertainty estimates (standard errors for direct estimates,
posterior standard deviations for the remainder) of HIV prevalence. Top:
area-level models: direct estimates; smoothed direct estimates with no ANC
covariate; smooth direct estimates with ANC covariate. Bottom: unit-level
models: no urban/rural adjustment, no ANC covariate; urban/rural adjusted,
no ANC covariate; urban/rural covariate and ANC covariate.
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Figure 8: Distributions on the rankings for the smoothed direct estimates with
the ANC covariate. The lines represent 90% intervals based on samples from
the posterior, with rank = 1 on the y-axis corresponding to the lowest HIV
prevalence and rank = 27 corresponding to the highest HIV prevalence.

30/37



Model Assessment

» One of the hardest parts of model-based approaches to SAE is
assessment of model assumptions.

» A cross-validation strategy is to systematically remove one area
at a time, and then obtain a prediction of the missing area’s (logit
of the) direct prevalence estimate, based on the remaining areas.

» The asymptotic distribution of this direct estimate is
logit(m™) ~ N(logit(m;), V;).

» We simulate samples from the approximation to the posterior of
logit(p;) that is provided by INLA, and add iid N(0, V;) errors to
each sample.

» The result is the predictive distribution of what the model thinks
the direct estimate will be in the area for which the data were
removed.

» We then plot representations of these 27 predictive distributions,
and compare with the observed points logit(m™).
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Figure 9: Leave-one cross-validation predictions for the smoothed direct
models. Black dots are the direct estimates. Left column: 50% predictive
intervals. Right: 80% predictive intervals. Top row: No ANC covariate.
Bottom row: ANC covariate.
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Figure 10: Leave-one CV for betabinomial models. Black dots are direct
estimates. Left: 50% predictive intervals. Right: 80% predictive intervals. Top
row: No urban/rural, no ANC covariate. Middle row: Urban/rural, no ANC

covariate. Bottom row: Urban/rural, ANC covariate.
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SPDE Model

Figure 11: HIV prevalence summaries at the admin-2 level, using SPDE
models. Left column is no urban/rural adjustment, no covariate. Middle

column: urban/rural, no covariate. Right column: urban/rural, ANC covariate.
Top row: posterior medians. Bottom row: posterior standard deviations.
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Figure 12: HIV prevalence summaries at the pixel level, using SPDE models.
Left column is no urban/rural adjustment, no covariate. Middle column:

urban/rural, no covariate. Right column: urban/rural, ANC covariate. Top row:

posterior medians. Bottom row: posterior standard deviations.
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Figure 13: Spatial field summaries estimates at the pixel level, using SPDE
models. Left column is no urban/rural adjustment, no covariate. Middle

column: urban/rural, no covariate. Right column: urban/rural, ANC covariate.

Top row: posterior medians. Bottom row: posterior standard deviations.
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» Area-level modeling is more straightforward, if the data are
sufficiently abundant.

» Unit-level modeling allow finer-scale modeling, but more
sophisticated, and hence trickier; also more computationally
expensive.

» If pixel maps are displayed, they should be accompanied by a
map of uncertainty. Different methods for showing uncertainty
are described in Dong and Wakefield (2021).

» Discrete spatial models always have an ad hoc neighborhood
specification, which is unfortunate.

» Continuous spatial model are far more appealing in this respect,
and also allow data that are aggregated to different levels to be
combined

» The non-GP models can be fit in the SUMMER package (Li et al.,
2020).
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