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Overview of Point Data Mapping

We now suppose that, rather than having counts arising from areas,
the responses are measured at spatial points.

The conceptual model is that the data could be measured anywhere,
but we have observations from a set of sampled locations.

It is not the locations of the observations that is of interest, but rather
construction of the underlying surface (disease mapping, on which
we focus), or examining associations between the response and
covariates (in a spatial regression setting).

The sampling of locations may be:
I via random sampling – for example we could take a simple

random sample of cases and controls (or a stratified version,
e.g., by urban/rural) and determine their residential addresses, or

I deterministic – for example, we may sample at pre-specified
locations (e.g., on a grid) in air, water or soil.
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Overview of Point Data Mapping

Point data may consist of:
I Binary disease indicators, e.g. disease status.
I Multiple level disease indicators, e.g. strains of a particular

infectious disease, or cause of under-5 death.
I Continuous measurements, e.g. pollutant concentrations.

We will not consider multiple level data1, but the models we describe
for binary and continuous data can be extended to this case, by an
appropriate choice of (multinomial) likelihood.

For both discrete and continuous measurements we may wish to
visually assess spatial dependence by examining the residual
response surface, i.e., after adjusting for covariates.

1For an application to multinomial data, see Tarr et al. (2018); in this paper spatial
surfaces were examined for three different lineages of Escherichia coli O157:H7
infections
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Point Data for Continuous Outcomes
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Modeling Spatial Dependence for Continuous Data

We first consider continuous outcomes: these are of interest in their
own right, but also form a stepping stone to the binary data case.

We illustrate methods using the famous Meuse data set, which gives
locations and top soil heavy metal concentrations (in ppm), along with
a number of soil and landscape variables, collected in a flood plain of
the river Meuse, near the village Stein in the South of the
Netherlands.

Heavy metal concentrations are bulk sampled from an area
approximately 1.5km (north-south) by 2.5km (east-west); there are
155 measurements.

We may be interest in modeling the concentrations as a function of
covariates (spatial regression), or predict the concentration surface,
which requires modeling the residual surface (mapping).
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We will model
and predict a
surface for zinc
concentration;
the concen-
trations at the
sampling sites
are mapped in
Figure 1.
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Figure 1: Levels of zinc at 155 sampling sites.
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Figure 2: Log zinc versus potential explanatory variables: x-coord, y -coord,
elevation, distance from river, soil type, organic matter, flooding frequency
class, lime class, landuse class.
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Modeling Spatial Dependence for Continuous Data

For continuous responses Yi = Y (si ) (which may have been
transformed to produce data that are approximately normally
distributed) measured at location si a plausible starting model is:

Y (si ) = β0 + x(si )β1 + S(si ) + εi ,

where S(si ) are terms with spatial structure, εi are independent
random error terms at location si , for i = 1, . . . ,n.

In terms of the spatial component, we might either assume that S(si )
is

I deterministic, for example, a spline model in space, or
I stochastic, so that the collection S(si ), i = 1, . . . ,, are a

collection of random variables.
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Modeling Spatial Dependence for Continuous Data

Expressing the model in this way we may view Y (s) as a process.

This is useful conceptually and allows us to think about:

I Inference for the parameters of the model, based on Yi ,
i = 1, . . . ,n.

I Prediction of the observable response (as opposed to the mean
response) at unobserved locations s.
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Modeling Spatial Dependence for Continuous Data
A possible model for the error terms is:

ε = [ε1, . . . , εn] ∼ Nn(0, Iσ2
ε )

S = [S(s1), . . . ,S(sn)] = [S1, . . . ,Sn] ∼ Nn(0,Σ)

where I is the n × n identity matrix, and Σ is an n × n
variance-covariance matrix containing diagonal elements (variances)

Σii = σ2
s

and off-diagonal elements Σij .

For example, we may assume the exponential covariance model:

Σij = σ2
sρ

dij = σ2
s exp(−φdij ) (1)

where dij = ||si − sj || is the distance between locations si and sj .

This is an example of a spatial Gaussian process (GP) is a model for
data S(s) such that any collection of points S(si ), i = 1, . . . ,n, follows
a multivariate normal distribution.
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The Semi-Variogram

A key element of the model is the form of the spatial dependence, but
how can we gain clues to the correct form/examine the
appropriateness of a particular model?

We recap on the semi-variogram, as introduced in the time series
section.

A method for assessing the form and extent of the spatial
dependence is via examination of the variogram.

Consider a stochastic process Y (s) and let

γ(s,s′) = cov{Y (s),Y (s′)} = E[{Y (s)− µ(s)}{Y (s′)− µ(s′)}],

denote the autocovariance function of Y (s).
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The Semi-Variogram

We write
Y (s) = µ(s) + e(s),

where µ(s) is the deterministic component and e(s) the stochastic
component.

Definition: A process e(s) is second-order stationary if E[e(s)] is
constant, for all s, and γ(s,s′) depends only on s − s′.

If, further, γ(s,s′) depends only on ||s − s′||, then the process is
called isotropic, otherwise it is anisotropic.

For a residual process any non-zero constant has been absorbed into
µ(s).
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The Autocorrelation Function

There is a fundamental difficulty with trying to decompose Y (s) into
the trend and the stochastic component in a single series because
the two are unidentifiable without further assumptions.

Bartlett (1964) showed that a a process with constant intensity and
clusters of points is not distinguishable from a process with
independent points from a randomly varying intensity (an example of
a Cox process).

Is it serial dependence in the residuals, or a high-order polynomial
trend for example?
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The Autocorrelation Function

Since we have no replicates we need to assume some form of
similarity of the data generating process across the study region.

For a second-order stationary random process, and letting h
represent a 2D vector, the autocovariance function is

cov{Y (s),Y (s + h)} = C(h) = cov{e(s),e(s + h)},

so that C(0) is the variance of Y (s) for all s.

The autocorrelation function is defined as

ρ(h) =
C(h)

C(0)
.
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The Autocorrelation Function

The semi-variogram is defined, for a process e(s) and h ≥ 0 by

γ(h) =
1
2

var [e(s)− e(s + h)] =
1
2

E
[
{e(s)− e(s + h)}2

]
.

If the process displays dependence then if s and s′ are ‘close’ the
variables measured at these points are likely to be positively
correlated, and so will tend to be similar, so that the variance of the
difference is relatively small.
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The Autocorrelation Function

Recall that for a second-order stationary process, E[e(s)] = 0 for all s
and cov{e(s),e(s + h)} only depends on h (which implies constant
variance).

For a second-order stationary smooth process

γ(h) =
1
2
{

E[e(s)2] + E[e(s + h)2]− 2E[e(s)e(s + h)]
}

= σ2
e{1− ρ(h)},

where var(e) = σ2
e .

Note that here the residuals e(s) are the spatial terms we labeled
S(s) in earlier models.
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The Autocorrelation Function

The semi-variogram is also well-defined for an intrinsically stationary
process for which E[e(s)] = 0 and for which

E[(e(s)− e(s + h))2] = 2γ(h).

As h increases then for observatons far apart in space

γ(h)→ var [e(t)] = σ2
e ,

which (recall) is assumed constant.
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Variograms

Recall the semi-variogram is given by

γ(h) =
1
2

var [ e(s)− e(s + h) ] .

If there is spatial dependence then points close together will tend to
be similar and so the variance of the pairwise difference will be small,
but will increase as the distance increases.

At some distance the points will become independent, and the
semi-variogram will take on the variance of the process, this is called
the sill, and the distance at which this occurs, the range.
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Variograms

Often we would like to include an additional variance for
“measurement error”.

Let
e(s) = S(s) + ε,

with the ε independent error terms with

var(ε) = σ2
ε

and S(s) spatially dependent error terms with

var[S(s)] = σ2
s

and
cov[S(s),S(s + h)] = σ2

sρ(h).
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Variograms

In this case the form of the variogram is

γ(h) =
1
2
{

E[e(s)2] + E[e(s + h)2]− 2E[e(s)e(s + h)]
}

= σ2
ε + σ2

s{1− ρ(h)},

where var(e) = σ2
ε + σ2

s .

The value of the semi-variogram close to the origin is of particular
interest, since it determines the degree of smoothness of the process.

A discontinuity at the origin is called the nugget effect, and is often
attributable to measurement error or small-scale spatial variation (we
never directly observe dependence at a distance less than the two
nearest sampling points).
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Variograms

To illustrate the different aspects of the spatial dependence model,
consider the semi-variogram

γ(d) = σ2
ε + σ2

s [1− ρ(d)],

where
I σ2

ε is the nugget variance,
I σ2

s is the spatial variance.
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Variograms

The correlation function is often taken to be then Matérn, which we
parameterize as (Brown, 2014),

ρ(d) =
1

Γ(κ)2κ−1

(
d
√

8κ
φ

)κ
Kκ

(
d
√

8κ
φ

)
,

with
I Γ(·) the gamma function,
I Kκ is a modified Bessel function of the second kind of order κ,
I φ is a range parameter (the distance at which the spatial

correlation falls to 0.14),
I κ is a shape parameter (also called the order); this parameter

determines the analytic smoothness of S(s), with S(s) being
dκ− 1 times mean-squared differentiable2. Hence, larger values
of κ give smoother realizations.

Figure 3 displays this semi-variogram with σ2
ε = 0.1, σ2

s = 0.5, κ = 2,
φ = 1.

2dz denotes the smallest integer greater than or equal to z
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Figure 3: Theoretical Matérn semi-variogram. The sill (total variance) is
σ2
ε + σ2

s , the partial sill is σ2
s , the nugget is σ2

ε and the effective range is φ.
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Variograms

Notes:
I Choosing κ = 0.5 gives the exponential correlation function

ρ(d) = exp(−d/φ).

I Taking the limit κ→∞ gives the Gaussian correlation function

ρ(d) = exp[−(d/φ)2],

which is not recommended since it can lead to an ill-conditioned
covariance matrix, see the discussion of Diggle et al. (1998).

I Careful on interpretation of results from different
implementations, since a number of different parameterizations
are in circulation.

I Often the data are not informative enough for reliable estimation
of κ, and so it is fixed.
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Empirical Variograms

We gives examples of the variogram for log zinc measured close to
the Meuse river.

In Figure 4 the variogram cloud (an example of an empirical
variogram) is plotted and consists of, for all pairs of data points si and
sj the contributions

(ei − ej )
2/2

plotted against distance
||si − sj ||.

The resultant plot in Figure 4 looks a mess, which is not
uncommon. . . .
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Figure 4: Variogram cloud for the log zinc data.

27 / 86



Empirical Variograms

I Often it is useful to look at the binned variogram in which
distances are binned, with the contributions within each bin
averaged.

I Specifically, if d is the midpoint of a bin:

γ̂(d) =
1

2|Nd |
∑

i,j∈Nd

(ei − ej )
2,

where Nd is the collection of pairs in the bin with mid-point d , and
|Nd | are the number of these pairs.

I Figure 5 shows the binned histogram, note the different scale in
the vertical direction, as compared to Figure 4.
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Figure 5: Binned variogram for the log zinc data.
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Modeling possibilities

As usual in regression modeling, we have parameters in the
regression model and in the variance-covariance model.

The variogram is an explanatory tool: how do we make more formal
inference?

Various possibilities are available for fitting parametric models to
spatial exposure data:

I Apply least squares (ordinary or weighted) to the empirical
variogram – useful for initial estimates.

I Maximum likelihood estimation (MLE) and Restricted MLE
(REML).

I Bayesian estimation.

For the second and third possibilities we must assume a probability
model for the data (possibly after transformation).

For continuous data the usual choice is a normal distribution.
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Gaussian Process Models
Assume we have data Yi , i = 1, . . . ,n with:

Y = [Y1, . . . ,Yn]T ∼ Nn(µ,Σ)

where
I µ = µ(β) = [µ1, . . . , µn] with regression parameters β and
I Σ = Σ(θ) is an n × n variance-covariance matrix, with

parameters θ.
We have log-likelihood

l(β,θ) = −1
2

log |Σ(θ)| − 1
2

(Y − µ)TΣ(θ)−1(Y − µ)

which we need to maximize as a function of β and θ.

The determinant and inverse can be problematic to evaluate if n is
large.

As an example, in the exponential correlation model we have
θ = (σ2

ε , σ
2
s , φ).

In general, closed from estimators do not exist.
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Covariance Models

The response Yi is measured at location si .

The model is
Yi = β0 + x iβ1 + εi + Si

with εi ∼iid N(0, σ2
ε ) and S ∼ Nn(0, σ2

s R) where R is the n × n
correlation matrix.

With the nugget effect σ2
ε we have

Σ = σ2
ε I + σ2

s R

where I is the n × n identity matrix.

We have already seen the common spatial exponential model with
residual correlations between responses at locations si and sj :

Rij = exp(−dijφ)

and dij = ||si − sj || is the distance between spatial locations si and sj .
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GeoR Example: Modeling of zinc concentration

We take as predictor variables here the distance from river and
elevation variables.

Figure 6 is a variogram that was produced with a model that removes
the linear effects of distance and elevation from the log zinc
measurements:
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Figure 6: Binned variogram for the log zinc data, after removal of distance
from river and elevation covariates effect.
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Monte Carlo Test of No Spatial Correlation in the
Variogram

We describe how a Monte Carlo test of

H0 : No spatial correlation

can be performed.

Under the null hypothesis the data can be randomly permuted (recall
that we require stationarity, so trends should be removed), and we
can examine the resultant variograms.

The steps are:
1. Randomly permute the data locations a set number of times.
2. Compute the semi-variogram for each permutation.
3. Calculate envelopes for each bin.
4. Plot the variogram along with the envelopes.
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Figure 7: Binned variogram along with Monte Carlo simulations.
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Fitted Variograms

We now compare the empirical binned semi-variograms with various
fits.

Many models can be fitted, we illustrate with the exponential
covariance model which is parameterized as σ2

s exp(−d/φ) in geoR.

The nugget variance is σ2
ε .
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Fitted Variograms

Least squares can be used treating the data as the binned variogram
values, as a function of distance; this is a nonlinear model since the
semi-variogram model is not linear in σε, σ2

s , φ.

Although this approach does not rely on a distribution for the data,
there are a number of problems with this approach:

I Loss of information in moving from the full dataset to the binned
variogram values.

I Arbitrary binning – a different binning would produce different
‘data’.

I The points are based on different numbers of observations, and
are dependent, since each original datapoint contributes to
multiple bins.

I WLS can address the former issue, but not the latter.
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Fitted Variograms

MLE and Bayes provide more reliable estimation procedures, though
they require more computation.

In random effects models REML provides, in general, more accurate
estimates of variance-covariance parameters by adjusting for the
degrees of freedom lost in estimation of the fixed effects (the β’s).

Figure 8 compares the various fits.
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Figure 8: Binned variogram with fitted models.
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Prediction of a Spatial Surface
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Prediction of a Spatial Surface
We now describe how to construct a predicted spatial surface for a
continuous variable. We concentrate on a geostatistical technique
known as kriging, which has many flavors.

The model for a general location s is

Y (s) = β0 + x(s)β1 + S(s) + ε

with ε are independent error terms and S(s) are spatial terms.

For the observed data

Yi = β0 + x iβ1 + Si + εi

for the observed data. We have a noisy version of a spatial process.

We suppose that we would like to predict the outcome at a location
s0; we would like point and interval predictions with the latter not
including the ‘measurement error’ (nugget contribution).

To do this we need to include the contribution from the underlying
spatial surface, S0
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Prediction of a Spatial Surface

S0, the spatial random effect associated with location s0.

One justification is to minimize the mean squared error (MSE) of a
predictor S̃0:

MSE = E[(S̃0 − S0)TA(S̃0 − S0)]

Then it can be shown that the form that minimizes the MSE is

S̃0 = E[S0|Y ]

To get specific forms we need to have a more detailed model.
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Prediction of a Spatial Surface

Consider the model

Yi = β0 + x iβ1 + Si + εi

where Si are spatial effects with S = (S1, . . . ,Sn) ∼ Nn(0, σ2
s R) and

εi ∼iid N(0, σ2
ε ).

Then, [
S0
Y

]
∼ Nn+1

([
0

β0 + xβ1

]
,

[
σ2

s σ2
s RT

0
σ2

s R0 σ2
ε I + σ2

s R

])
where R0 is an n × 1 column vector with i-th entry describing the
correlation between locations s0 and si , i = 1, . . . ,n.
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Prediction of a Spatial Surface
Then, using properties of the multivariate normal distribution

Ỹ0 = β0 + x0β1 + S̃0,

where

S̃0 = E[S0|Y ] = σ2
s RT

0(σ2
ε I + σ2

s R)−1(Y − β0 − xβ1)

=
n∑

i=1

wi ri (2)

and where wi are a set of weights and ri = Yi − β0 − x iβ1 are the set
of residuals.

Writing as

S̃0 − β0 − x0β1 =
n∑

i=1

wi (Yi − β0 − x iβ1)

makes it clearer that the prediction for the residual at the new point is
a weighted combination of the residuals from the n observed data
points.
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Prediction of a Spatial Surface
Note that if there is no spatial dependence (σ2

s = 0) the weights are
zero and we only have contributions from x0.

The sizes of the weights depend on the proximity of the new location
to the n data points, and on the magnitude of the spatial dependence,
in comparison with the non-spatial.

The variance of the prediction is given by

var(S̃0|y) = σ2
s − σ2

s RT
0(σ2

ε I + σ2
s R)−1R0σ

2
s

again using properties of the multivariate normal distribution; this is
never less that the spatial variance σ2

s which is good news.

The above estimator may also be justified as the best linear unbiased
estimator (if the data are not Gaussian then the optimal estimator will
not necessarily be linear in the data).

In practice estimates of β0,β1,θ, where θ = (σ2
ε , σ

2
s ,φ) and φ are the

parameters of R, are substituted into the above formulas.
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Derivation of Kriging estimates

The Kriging estimator and variance may be derived in various ways,
and does not require normality of the data.

One approach is to find the best linear unbiased predictor (BLUP),
see Robinson (1991) for discussion.
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A Small Simulated Example
n = 6 points were randomly simulated in the pretend study area
[0,10]× [0,10] and then we suppose we wish to krige a prediction at
the point (5,5); the left hand panel of Figure 9 shows the 6 generated
sampling points in blue and the prediction point in red.

Recall that the prediction is of the form
∑n

i=1 wi ri where ri are the
residuals from the sampling points, and

w T = [w1, . . . ,wn] = σ2
s RT

0(σ2
ε I + σ2

s R)−1,

for i = 1, . . . ,n.

Values: σ2
s = 0.5, ρ = 0.9, σ2

ε = 0.1.

The weights associated with the 6 points are plotted against distance
in the right hand panel of Figure 9; they are not monotonic in distance
(point 4 has a greater weight than 6, even though at a greater
distance, since it is more isolated and therefore more of an
independent predictor).

Also shown is the correlation function ρd for ρ = 0.9.
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A Small Simulated Example
The matrix Λ contains diagonal elements Λii = σ2

s and off-diagonal
elements Λij = σ2

sρ
dij :

0.50 0.24 0.30 0.25 0.41 0.42
0.24 0.50 0.38 0.28 0.20 0.22
0.30 0.38 0.50 0.29 0.25 0.27
0.25 0.28 0.29 0.50 0.23 0.26
0.41 0.20 0.25 0.23 0.50 0.44
0.42 0.22 0.27 0.26 0.44 0.50

 .

The precision Λ−1 is
8.39 0.09 −1.73 −0.01 −3.32 −3.14
0.09 5.21 −3.53 −1.07 0.03 0.13
−1.73 −3.53 6.14 −0.62 0.26 −0.29
−0.01 −1.07 −0.62 3.51 0.14 −1.15
−3.32 0.03 0.26 0.14 10.55 −6.79
−3.14 0.13 −0.29 −1.15 −6.79 11.34


Note there are no zeroes so there are no conditional independencies.
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Figure 9: Left: Locations of n = 6 sampling points (1–6) and prediction point
(0). Right: Weights and correlation function versus distance; the value 0.9 is
marked since this corresponds to the correlation at 1 unit of distance.
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Flavors of Kriging

Simple kriging: linear prediction assuming a known mean.

Ordinary kriging: linear prediction with a constant unknown mean.

Universal kriging: linear prediction with a non-constant mean.

Trans Gaussian kriging transforms the response to approximate
normality.

For more details, see Chapter 10 of Elliott et al. (2000) or Chapter 8
of Waller and Gotway (2004). A more recent treatment is Zimmerman
and Stein (2010).

We have already described universal kriging.
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Example: Predictions of log zinc

We trend the data and then look at the residuals in Figure 10 (note
the reference box which we carry out prediction over later).

Now we carry out Kriging on the residual surface.

Figures 11 and 12 show the predicted surface and the standard error
surface (note the low standard errors at the sampling points).
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Figure 10: Values of residuals obtained after removing effect of distance from
river and elevation.
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Figure 11: Predicted spatial residual surface.
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Figure 12: Standard error of prediction of residual.
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Bayesian Approach

The above procedures do not account for the uncertainty in
parameter estimation (like empirical Bayes) – we have used
E [S0|y , β̂0, β̂1, θ̂].

This may be acknowledged using a Bayesian approach in which we
consider the posterior distribution,

p(S0|y) =

∫
β0

∫
β1

∫
θ

p(S0|y , β0,β1,θ)× p(β0,β1,θ|y) dβ0dβ1dθ

where we average over the posterior distribution for β0,β1,θ, and

p(β0,β1,θ|y) ∝ L(β0,β1,θ)p(β0,β1,θ)

so that a prior p(β0,β1,θ) is required.
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Overview of Approaches

See Bradley et al. (2016) and Heaton et al. (2017) for reviews of
approaches, with an emphasis on big data.

Fixed rank kriging (Cressie and Johannesson, 2008); R
implementation via the FRK package:

https://cran.r-project.org/web/packages/FRK/index.html

Predictive processes (Banerjee et al., 2008). R implementation
available in the spBayes package.

Lattice kriging (Nychka et al., 2015); R implementation via the
LatticeKrig package:

https://cran.r-project.org/web/packages/LatticeKrig/index.html

Approximation based on a stochastic partial differential equation
(SPDE) and utilizing INLA (Lindgren et al., 2011; Simpson et al.,
2012).
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Bayesian Approach: Computation
As we have seen, Bayesian models may be fitted in inla (using
analytical approximations and numerical integration).

I The INLA framework fits Markov random field (MRF) models, and
the Gaussian process model does not fit into this framework, but
?) show that the GP model may be represented as an MRF, thus
allowing the GP model to be fitted within inla.

I The package geostatsp package makes the fitting of these
models simpler (Brown, 2014).

Bayesian models may also be fitted via MCMC:
I in WinBUGS, with spatial.exp providing the exponential

correlation model.
I The krige.bayes() function within geoR carries out Bayesian

inference via Markov chain Monte Carlo (MCMC).
I Stan is improving its capabilities for spatial models, and there is

an efficient implementation for the BYM model (Morris et al.,
2019).

I For continuous spatial models, efficient MCMC implementations
are more challenging.
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Generalized Additive Models
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Generalized Additive Models (GAMs)

A different approach to modeling the spatial structure is via a
deterministic model – this may work well if there is not too much
small-scale spatial variation

A GAM extends the usual generalized linear model (GLM) by adding
a non-parametric component.

For continuous (nominally normal) data the model is of the form

Yi = β0 + x iβ1 + S(si ) + εi

where εi ∼ N(0, σ2
ε ) and S(si ) is a smooth function of the spatial

location si .

This smooth function can be specified in a number of ways.

A popular choice is a spline model, though kernels may also be used.

An excellent text on GAMs is Wood (2006).
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Generalized Additive Models (GAMs)

The following leans on Chapters 11 and 12 of Wakefield (2013).

Suppose wish to minimize the penalized sum of squares,

n∑
i=1

[yi − f (si1, si2)]2 + λP(f ) (3)

where f (s) is the unknown latent spatial function that we would like to
estimate.

The penalization term is,

P(f ) =

∫ ∫ [(
∂2f
∂s2

1

)2

+ 2
(

∂2f
∂s1∂s2

)2

+

(
∂2f
∂s2

2

)2]
ds1ds2. (4)

This term penalizes wiggliness.
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Generalized Additive Models (GAMs)

As shown by Green and Silverman (1994, Chapter 7) the unique
minimizer is provided by the natural thin plate spline with knots at the
observed data (to give a so-called smoothing spline), which is defined
as

f (s) = β0 + β1s1 + β2s2 +
n∑

i=1

biη(||s − si ||), (5)

where

η(r) =

{ 1
8π r2 log(r) for r > 0

0 for r = 0

and the unknown bi are constrained via

n∑
i=1

bi =
n∑

i=1

bisi1 =
n∑

i=1

bisi2 = 0.
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Generalized Additive Models (GAMs)

Such a spline provides the unique minimizer of P(f ) amongst
interpolating functions. Interested readers are referred to Theorems
7.2 and 7.3 of Green and Silverman (1994) and to Duchon (1977),
who proved optimality and uniqueness properties for natural thin plate
splines.

Natural thin plate splines are very appealing since they remove the
need to decide upon knot locations or basis functions; each is
contained in (5).

In practice, however, thin plate splines have too many parameters. A
thin plate regression spline (TPRS) truncates the space of the
“wiggly” basis (the bi ’s in (5)), while leaving β unchanged.

Various approaches are available for selecting the key smoothing
parameter λ in (3) including cross-validation and REML (under a
mixed model representation).
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Spline Detail

Wahba (1978) showed that this smoothing spline solution could be
reached using a Bayesian approach.

For simplicity, we describe in the one-dimensional case, with the
variable over which smoothing is being carried out is t on the range
[0,1].

A frequentist approach chooses f (·) to minimize

1
n

n∑
i=1

[ yi − f (ti ) ]2 + λ

∫ 1

0

d2f
du

du, (6)

with λ > 0 .

The polynomial pieces connect and the resulting function has two
continuous derivatives.
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Spline Detail

The prior on f (t) is of the form

f (t) = β0 + β1t + β2t2 + Z (t),

where Z (t) is a zero-mean Gaussian process with

d2Z (t)
dt2 = δ1/2 dW (t)

dt
, (7)

where δ > 0 is a scale parameter and dW (t)/dt is scaled white noise,
i.e., W (t) is a zero-mean Wiener process with variance t .
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Spline Detail

Wahba (1978) characterizes Z (t) as the integrated Wiener process:

Z (t) =

∫ t

0
(t − u)−1dW (u).

The prior on β = [β0, β1, β2] is an improper flat prior, which is taken as
the limit of a two-dimensional normal, N(0, ξI) as the precision
ξ →∞.

In this situation, the posterior mean of f corresponds to the usual
frequentist estimator with λ = σ2/δ.
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Example of GAM fitting: Zinc Data

We fit a GAM to the log zinc data using thin plate regression splines.

We display the fitted surface S(s) over a grid of s values, in Figure 14.

A comparison between the two predictions is given in Figure 16 and
we see that the dame medium- to large-scale features are being
picked up.
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Figure 13: Predicted (residual) surface from the GAM model.
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Figure 14: Uncertainty from the GAM model.
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Figure 15: Predicted (residuals) surfaces from the geostatistical and GAM
models.
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Figure 16: Uncertainty surfaces from the geostatistical and GAM models.
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Summary for Continuous Responses

The semi-variogram can be a useful exploratory tool, but they can be
very noisy.

Other explanatory tools for examining spatial dependence/clustering
include:

I Moran’s I for count data.
I F ,G,K ,L functions for point process data.
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Summary for Continuous Responses
We have described two models for modeling continuous point data.

In the geostatistical (kriging) model we have

Yi = β0 + x iβ1 + Si + εi

where Si = S(si ) is the spatial random effect at location si .

This model can be good at picking up small scale behavior but
assumes the same form of dependence across the study region.

Tricky aspects include:
I knowing when we have the data to obtain reliable estimates – this

includes both the number of data points, and the configuration
(what’s the distribution of distances between points?).

I Checking the model:
I Stationarity over study region?
I Deterministic component?
I Covariance Function?
I Distribution of errors?
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Summary for Continuous Responses

In the GAM we have

Yi = β0 + x iβ1 + g(si ) + εi

with g(si ) a smooth term that may be estimated using splines (for
example).

This model is sometimes known as a geoadditive model (Kammann
and Wand, 2003).

The GAM is good at picking up medium- and large-scale spatial
trends but not so good at small scale.

Being nonparametric it does allow flexibility across the map.

I view as more of an exploratory tool.
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Overview of Approaches

At a generic location s we assume,

Y (s) = η(s) + ε, (8)

where ε represents zero-mean measurement error (which may have
known variance) and η(s) consists of the regression contribution and
the latent field.

The latent field may be decomposed as

η(s) = β0 + x(s)β1 + S(s) + e, (9)

with S(s) and e representing small-scale and micro-scale spatial
variation, respectively.

The component β0 + x(s)β1 (which may be replaced by a non-linear
function) is sometimes known as the drift or spatial trend.
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Overview of Kriging Type Approaches

In the Earth sciences, (8) is known as the data model and (9) the
process model.

In the following, all terms ε, e and S(s) (if treated as stochastic) are
assumed independent.

Data {y(si ),x(si ), i = 1, . . . ,n}, are observed at locations si and the
aim is often prediction at a set of unobserved locations.
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Overview of Approaches

There are many different options for S(s) — we have already
discussed the kriging approach to prediction in which a covariance
model is assumed (for example, the Matérn) and the prediction (2) is
used.

Unfortunately, the computational complexity is O(n3) so prohibitive for
large datasets.

A crucial observation is that the kriging estimator is a sum of basis
functions with coefficients that are linear in the observed y and where
the bases functions are defined in terms of the covariance function
(Nychka, 2000).
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Overview of Approaches

A non-stochastic (deterministic) approach for modeling S(s) is
provided by splines, an example of which we have already seen.

If a smoothing spline is used, then the computational complexity is
again O(n3).

In a thin-plate regression spline with K knots, the complexity reduces
to O(nK 2 + K 3).
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Mapping of Binary Data
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Overview of Point Data Mapping

We now consider binary data, and the visualization of relative
risk/odds ratio surfaces.

In an epidemiology context such data may arise from a case-control
study (since we will rarely know the locations of all non-cases).

Alternatively, again in epidemiology (or in the social sciences)
cross-sectional surveys are carried out.

Also in epidemiology, particularly in a developing world context,
prevalence mapping is an important endeavor, with the data available
from surveys carried out in particular villages (say).

Binary point data are difficult to visualize, since they are binary!

This observation suggests we need to bin (to create denominators
greater than 1) or smooth geographically.
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Overview of Disease Mapping for Binary Data

We will describe three approaches:
1 Kernel Density Estimation (KDE) Approach:

I We can view the non-case locations, s1, . . . , sn0 as a sample from
a probability density f0(s).

I We can view the case locations, sn0+1, . . . , sn0+n1 as a sample from
a probability density f1(s).

I These densities can these be estimated using KDE.
I This approach can be used in exploratory analyses, but alone is

less good for inference.

2 Generalized Additive Models (GAMs)
I Supplement a generalized linear model (GLM) with a smoother

component in space, such as a kernel or a spline, known as a
GAM.

I In this way one can carry out inference and adjust for confounders
such as age and gender, and other predictors such as exposures.
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Overview of Disease Mapping for Binary Data

3 Geostatistical Approach:
I Let p(s) be the probability of being a case at location s.
I We can then consider models of the form

log

(
p(s)

1− p(s)

)
= β0 + β1x(s) + ε(s) + S(s),

where x(s) is a spatially references covariate and ε(s) and S(s)
are non-spatial and spatial residual error terms.

I The likelihood is

Yi |p(si) ∼ Bernoulli[p(si)],

i = 1, . . . , n0, n0 + 1, . . . , n0 + n1.

Analogy with regression: If we obtain a simple random sample of
(x , y) pairs, we can reconstruct the x distribution, but if the x ’s are
fixed by design we cannot learn about the x distribution, but we can
model y |x .
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Binary Data: GAMs

If we define
pi = p(si ) = Pr(Yi = 1|x i ,si )

as the probability of a case at location si with covariates x i then

log

(
pi

1− pi

)
= β0 + x iβ1 + g(si ).

Kelsall and Diggle (1998) suggest using a generalized additive model
(GAM) to simultaneously estimate the effect of covariates and use
KDE on the residuals, i.e. to estimate g(s).

In general, different smoothers may be used; for example, penalized
regression splines are a common choice.

See Bivand et al. (2013, Section 7.5.2).
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Binary Data: GAMs

Recall
pi = p(si ) = Pr(Yi = 1|x i ,si )

as the probability of a case at location si with covariates x i then

log

(
pi

1− pi

)
= β1 + x iβ1 + g(si ).

In general, there are many possibilities for modeling g(s) including
kernels, splines and local polynomials.

We can replace g(si ) with ε(si ) + S(si ) where ε(si ) and S(si ) are
random effects without and with spatial structure – known as the
geostatistical approach.
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Geostatistical Approach

I Let p(s) be the probability of being a case at location s.
I We can then consider models of the form

log

(
p(s)

1− p(s)

)
= β0 + β1x(s) + ε(s) + S(s),

where x(s) is a spatially references covariate and ε(s) and S(s)
are non-spatial and spatial residual error terms.

I The likelihood is

Yi |p(si ) ∼ Bernoulli[p(si )],

i = 1, . . . ,n0,n0 + 1, . . . ,n0 + n1.
I Inference using INLA via wrappers is available (Brown, 2014) or

using a full-on SPDE approach (Lindgren et al., 2011).
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Summary for Binary Data

The KDE approach with points can be useful for exploratory
purposes, but I wouldn’t trust it for inference, because it’s so sensitive
to the smoothing parameter.

The GAM approach is better in this respect, but picking up small-scale
variation using splines (for example) is not straightforward.

The model-based geostatistics approach is flexible and can provide
reliable inference, but many crucial choices in the implementation, not
least of which is the prior on the variances (spatial and nugget).

86 / 86



References

Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008).
Gaussian predictive process models for large spatial data sets.
Journal of the Royal Statistical Society, Series B, 70, 825–848.

Bartlett, M. (1964). The spectral analysis of two-dimensional point
processes. Biometrika, 51, 299–311.

Bivand, R., Pebesma, E., and Gómez-Rubio, V. (2013). Applied
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