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Simple Summaries and Motivation for
Smoothing Models
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Mapping
Mapping has a long history in many fields, in particular epidemiology,
and may be defined as the estimation and presentation of summary
measures of outcomes of interest. Background reading, Wakefield
et al. (2000).

The aims of mapping include
I simple description,
I hypothesis generation,
I allocation of resources, assessment of inequalities, and
I estimation of background variability in underlying risk in order to

place studies in context.

In this lecture we consider Poisson models for count data aggregated
over areas, but the methods we describe can be applied to normal
and binomial data, amongst others.

The models we describe in this section, can also be used for
regression modeling, and assessment of clustering.
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Motivation and Context

We begin by noting a number of non-statistical issues, with an
emphasis on epidemiology, public/global health, for more background
see Chapters 12 and 13 of Elliott et al. (2000):

I In broad-scale studies (in particular international endeavors),
data comparability is a major issue.

I Precise disease definition (via ICD codes) is also extremely
important.

I Mortality data tend to be more reliable than incidence data, but
the latter are in general of greater epidemiological interest,
because incident cases are closer in time to exposure.

I Prevalence data are also more common than incidence data.

5 / 56



What’s the Denominator?

In general for count data gathered in a particular geographical region
and over some time period, the starting model will often be binomial
or Poisson.

In either case, it will be important to determine an appropriate
denominator.

If the response we are counting is on humans (e.g., disease counts,
crimes, unemployed,...) then the denominator (on which to base a
raw rate, for example), will often be the population of the area.

However, in the area of crime mapping, an appropriate denominator
may not be totally obvious, and number of household may be more
reasonable for residential burglaries, than population, and for car
thefts, one would want the number of vehicles available to steal. See
Ratcliffe (2010) for further discussion.
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Motivation and Context

There is a trade-off when a geographical
scale is chosen:

I Larger geographical areas providing
more stable rates and less problems
of migration, but relative risk
summaries may be distorted due to
the large aggregation of individuals.

I If the target shows marked variation
within a particular area this
information will be lost – if a
particular subregion has a spike in
the surface then this will be diluted
under aggregation.

I Larger study regions are likely to
offer greater contrasts (range of
covariates x) in relative risks and
exposures.

Figure 1: Vaccination coverage
for: Admin-1 (top), Admin-2
(middle), 1× 1 km (bottom).
Left: posterior mean. Right:
the width of a 95% credible
interval.
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Presentation

I Chloropleth (areas shaded) are the most
popular kind of maps, but isopleth
(contours) and cartograms (size of areas
proportional to denominator) have also
been used.

I Choice of color is important – multiple
colors (hues) can be confusing, shading
with a single color can work well.

I Two colors can work if ‘intuitive’, for
example, for a relative risk, areas above
1 can be colored in red, with darker
shades being used for values further
from 1; areas below 1 can be colored in
blue with darker shades being used for
values further from 1.

I Cut-points should be chosen to be
scientifically meaningful and convey as
much information as possible.

Figure 2: Reduction in under 5
mortality from 1990–2015.
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Bayesian Inference
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Bayesian Inference

Bayesian inference is a convenient framework within which to
implement smoothing models.

I A Data Model (Likelihood) is probabilistically combined with
I A Penalization (Prior) that expresses beliefs about the

parameters θ encoding the model.
I Combination occurs via Bayes Theorem:

p(θ|y)︸ ︷︷ ︸
Posterior

∝ L(θ)︸︷︷︸
Likelihood

×π(θ)︸︷︷︸
Prior

.

I On the log scale:

log p(θ|y)︸ ︷︷ ︸
Updated Beliefs

= log L(θ)︸ ︷︷ ︸
Data Model

+ log π(θ)︸ ︷︷ ︸
Penalization

.
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Bayesian Inference

I In a Bayesian analysis the complete set of unknowns
(parameters) is summarized via the multivariate posterior
distribution.

I The marginal distribution for each parameter may be
summarized via its mean, standard deviation, or quantiles.

I It is common to report the posterior median and a 90% or 95%
posterior range for parameters of interest.

I The range that is reported is known as a credible interval.
I The computations required for Bayesian inference (integrals) is

often not trivial and many be carried out using a variety of
analytic, numeric and simulation based techniques.

I We use the integrated nested Laplace approximation (INLA),
introduced by Rue et al. (2009).

I Book-length treatments:
I Blangiardo and Cameletti (2015) – space-time models.
I Wang et al. (2018) – general models.
I Krainski et al. (2018) – advanced space-time models.
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Bayes Example

I Imagine the data model is normal with an unknown mean µ:

y | µ ∼ N(µ, σ2/n),

where σ2/n is assumed known (σ/
√

n is the standard error).
I We also imagine the prior is normal:

µ ∼ N(m, v),

so that values of the mean µ that are (relatively) far from m are
penalized.

I The log posterior is:

log p(µ | y︸ ︷︷ ︸
Updated Beliefs

) = − n
2σ2 (y − µ)

2︸ ︷︷ ︸
Data Model

− 1
2v

(µ−m)2︸ ︷︷ ︸
Penalization

.
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Figure 3: Normal data model with n = 10, y = 19.3 and standard error 1.41.
The prior for µ has mean m =15 and v = 32. The posterior for the parameter
µ is a compromise between the two sources of information: the posterior
mean is 18.5 and the posterior standard deviation is 1.28.
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Non-Spatial Hierarchical Models
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Instability of the Naive Relative Risk Estimate

We now consider the Poisson model, which is widely used in spatial
epidemiology.

Unfortunately there are well-documented difficulties with the mapping
of raw estimates since, for small areas and rare events in particular,
these estimates will be dominated by sampling variability.

For the model Yi |θi ∼ Poisson(Eiθi), the MLE is θ̂i = SMRi =
Yi
Ei
, with

variance
var(θ̂i) =

θi

Ei
,

which is estimated by

v̂ar(θ̂i) =
θ̂i

Ei

so that areas with small Ei have high associated variance.

In general, a confidence interval for θi is the exponentiated
confidence interval for the log parameter (details shortly).
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Surveillance

We imagine separate monthly surveillance for each of three areas
over a 10-year period.

Data simulated from the model

Yt |θ ∼ind Poisson(Eθ),

t = 1, . . . ,60 months, where the relative risk is θ = 1 in each case.

Recall that the MLE of the SMR in each time period is θ̂t = Yt/E with
variance proportional to 1/E so that areas with small expected
numbers have high variability.

The expected numbers differ in the three plots in Figure 4, and the
resultant instability in the SMR is apparent.

For the E = 0.2 case there are a number of time periods with high
estimates (and estimates of zero also!).
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Figure 4: Simulations from the Poisson distribution under different expected
numbers.
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Scottish Lip Cancer Data

Incidence rates of lip cancer in males in 56 counties of Scotland,
registered in 1975–1980. These data were originally reported in the
mapping atlas of Kemp et al. (1985).

The Scottish lip cancer data have been widely analyzed, because
they have been around a long time, and the SIRs display a lot of
spatial variability.

The form of the data is:
I Observed and expected number of cases (based on the county

age populations, details shortly) – allows the calculation of the
standardized morbidity ratio, the ratio of the observed to the
expected cases.

I A covariate measuring the proportion of the population engaged
in agriculture, fishing, or forestry (AFF).

I The projections of the longitude and latitude of the area centroid,
and the “position” of each county expressed as a list of adjacent
counties.
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Area Cases Exp Prop SMR Project Project Adjacent
i Yi Ei AFF N (km) E (km) Counties
1 9 1.4 0.16 6.43 834.7 162.2 5,9,19
2 39 8.7 0.16 4.48 852.4 385.8 7,10
3 11 3.0 0.10 3.67 946.1 294.0 12
4 9 2.5 0.24 3.60 650.5 377.9 18,20,28
5 15 4.3 0.10 3.49 870.9 220.7 1,12,19
6 8 2.4 0.24 3.33 1015.2 340.2 Island
7 26 8.1 0.10 3.21 842.0 325.0 2,10,13,16,17
8 7 2.3 0.07 3.04 1168.9 442.2 Island
...
48 3 9.3 0.01 0.32 654.7 282.0 24,44,47,49
49 28 88.7 0.00 0.32 666.7 267.8 38,41,44,47,48,52,53,54
50 6 19.6 0.01 0.31 736.5 342.2 21,29
51 1 3.4 0.01 0.29 678.9 274.9 34,38,42,54
52 1 3.6 0.00 0.28 683.7 257.8 34,40,49,54
53 1 5.7 0.01 0.18 646.6 265.6 41,46,47,49
54 1 7.0 0.01 0.14 682.3 267.9 34,38,49,51,52
55 0 4.2 0.16 0.00 640.1 321.5 18,24,30,33,45,56
56 0 1.8 0.10 0.00 589.9 322.2 18,20,24,27,55
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Scottish Lip Cancer Data

I Figure 6 shows the SMRs for the
Scottish lip cancer data, and indicates a
large spread with an increasing trend in
the south-north direction.

I The variance of the estimate is
var(SMRi) = SMRi/Ei , which will be
large if Ei is small.
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Figure 5: SMRs in 56 counties
of Scotland.

20 / 56



Scottish Lip Cancer Data

I For the Scottish data the expected
numbers are highly variable, with range
1.1–88.7.

I This variability suggests that there is a
good chance that the extreme SMRs are
based on small expected numbers (many
of the large, sparsely-populated rural
areas in the north have high SMRs).
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Figure 6: SMRs in 56 counties
of Scotland.
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Smoothing Models

The above considerations of instability again lead to models for
smoothing the SMRs using hierarchical/random effects models that
use the data from the totality of areas to provide more reliable
estimates in each of the constituent areas.

Overview of Models:
I Basic Poisson Model: No smoothing.
I Random Effects Models:

I Poisson-Lognormal: Non-spatial smoothing.
I Poisson-Lognormal-Spatial: Spatial and non-spatial smoothing.

I Covariates may be added to each of these in order to smooth
over covariate space.

I Computation for these models is a separate issue.
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The Big Picture
Consider the situation in which I want to estimate the relative risk θ in
an area with a disease count y and expected number of E .

A starting sampling model is Y |θ ∼ Poisson(Eθ) – the MLE (SMR) is
θ̂ = y/E .

Suppose I tell you that based on the larger region in which the area is
contained, a prior for θ is the LogNormal distribution with known
parameters µ and σ2 – the prior median is exp(µ).

A Bayesian analysis can be performed with the two-stage model:

Y |θ ∼ Poisson(Eθ)
θ ∼ LogNormal(µ, σ2)

The posterior distribution for θ will reflect the information in the data,
as quantified through the Poisson sampling model, and the prior – the
resultant inference will typically produce narrower intervals than a
confidence interval, though the estimate will be moved from the SMR,
towards exp(µ) – shrinkage.
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The Big Picture

This is all wishful thinking, as how do we come up with µ and σ2?

Suppose I have data (yi ,Ei) from i = 1, . . . ,n areas – we can use all
of the data to estimate the parameters of the LogNormal distribution,
µ and σ2.

This gives the classic three stage hierarchical model (see next slide).

Hierarchical models have a long history and are designed to produce
improved estimates of the collection θ1, . . . , θn – but the shrinkage
means each area’s estimate is biased (in a frequentist sense).

However, the variance of the estimate in each area is reduced, so we
get improved mean squared error (MSE)1.

But the shrinkage means that hierarchical models are not good for
hot spot detection.

1MSE = Var + Bias2
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Poisson-Lognormal Models

A Poisson-lognormal non-spatial random effect model is given by:

Yi |θi ∼ind Poisson(Eiθi)

log θi = β0 + ei

ei |σ2
e ∼iid N(0, σ2

e)

where ei are area-specific random effects that capture the residual or
unexplained (log) relative risk of the event in area i , i = 1, . . . ,n.

Here we have
λi = eei ∼iid LogNormal(0, σ2

e).

We have a single parameter controlling the spread of the random
effects, σ2

e .

We use the INLA computational approach (Rue et al., 2009) – see
Riebler et al. (2016) for details on how a variety of spatial models may
be analyzed with INLA.
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INLA

I Relatively recently an approach has emerged that combines
Laplace approximations and numerical integration in a very
efficient manner, see Rue et al. (2009) for more detail.

I The method is designed for latent Gaussian models, which for
our purposes, means modeling with latent normal random
effects, that have independent, spatial, or space-time structure.

I Suppose the outcomes yi , have density p(yi |x i ,α
?), i = 1, . . . ,n,

where x |θ ∼ N(0,Q(θ)−1) and α? are dispersion parameters
(e.g. the measurement error variance for a normal sampling
model).

I The x represent the random effects, along with regression
coefficients.

I We also have priors for α? and θ — these priors may be
non-normal – penalized complexity (PC) priors are
recommended (Simpson et al., 2017).

I Let α = [θ,α?] denote the non-Gaussian parameters.
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INLA

The posterior is,

π(x ,α | y) ∝ π(α)π(x | α)
n∏

i=1

p(yi | x i ,α)

∝ π(α)|Q(θ)|p/2 exp

{
−1

2
xTQ(θ)x +

n∑
i=1

log p(yi |x i ,α)

}

The random effects are always added on the linear predictor scale:

I linear for a normal sampling model
I log-linear for a Poisson sampling model
I logistic for a sampling binomial model
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IID Model Estimates
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Figure 7: Comparison of posterior medians from IID Lognormal model and
SMRs. The shrinkage of the Bayes estimates is evident.
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IID Model Estimates
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Figure 8: Map of posterior medians of relative risk estimates – note the
narrowing of the range.
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AFF Covariate
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Figure 9: SMR versus percentage of population in agriculture, fishing and
farming, in Scottish counties.
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Covariates

We now add the AFF covariate x to the model:

Yi |θi ∼ind Poisson(Eiθi)

log θi = β0 + β1xi + ei

ei |σ2
e ∼iid N(0, σ2

e)

This results is a RR posterior median estimate of exp(β̂1) = 1.07 so
that an area with 1% higher in AFF has a 7% increase in risk of male
lip cancer.

This is an ecological association, and should not be assumed to hold
for the men in the areas – this runs the risk of the ecological fallacy
(Wakefield, 2008).
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Parameter Interpretation

The posterior median of σe is 0.582 and a 95% interval is

[1/
√

5.13,1/
√

1.70] = [0.44,0.77].

A more interpretable quantity is an interval on the residual relative
risk (RRR).

The RRRs follow a lognormal distribution LogNormal(0, σ2
e) so a 95%

interval is exp(±1.96× σe).

A posterior median of a 95% RRR interval is

[exp(−1.96×median(σe)), exp(1.96×median(σe))]

= [exp(−1.96× 0.582), exp(1.96× 0.582)]
= [0.320,3.13]

which is quite wide.
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Spatial Hierarchical Models

33 / 56



Poisson Spatial Model

The previous model assumed that deviations from the overall level
arose from the same distribution, with no spatial pattern – we might
expect local fluctuations.

A natural spatial model is:

Yi |θi ∼ind Poisson(Eiθi) (1)
log θi = β0 + xiβ1 + δi (2)

where δi have a spatial component.
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The BYM Model

In the popular BYM model Besag, York and Mollié (1991):

δi = Si + ei ,

where
I ei ∼ind N(0, σ2

e).
I The spatial effects Si are modeled conditional on the neighbors:

Si | {Sj = sj , j ∼ i}︸ ︷︷ ︸
Neighbors of i

, σ2
s ∼ N

(
si ,

σ2
s

mi

)
,

where si =
1

mi

∑
j∼i sj is the mean of the neighbors of area i and

mi is the number of such neighbors.
I σ2

s is a smoothing parameter: large values indicate large spatial
variability.

I This form is known as an intrinsic conditional autoregression
(ICAR).
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Example of a Neighborhood Scheme
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Figure 10: Common boundary neighbor
scheme for Bangladesh divisions.

ICAR prior for spatial random
effects s cab be written as,

p(s|σ2
s ) ∝ exp

(
−1

2
sTQs

)
.

Precision matrix, Q = R/σ2
s ,

R:
3 −1 −1 −1 0 0

−1 3 −1 0 0 −1
−1 −1 5 −1 −1 −1
−1 0 −1 3 −1 0

0 0 −1 −1 2 0
0 −1 −1 0 0 2
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BYM2 Prior
We have random effects contributions Si + ei , and in the BYM2 model
the original BYM model is reparameterized (Riebler et al., 2016;
Simpson et al., 2017).

The vector of random effects δ = [δ1, . . . , δn]
T is written as,

δ = σδ

[√
1− φe +

√
φS?

]
where e are iid and S? are ICAR random effects rescaled to have a
comparable (generalized) variance to the IID terms.

Then,
var(δ) = σ2

δ

[
(1− φ)I + φQ?−

]
,

so
I σ2

δ is the total variance and
I φ is the proportion of the variance that is spatial.

The BYM2 model is very popular, because of its relative simplicity,
ease of implementation, and the extensive experience gathered on its
use.
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BYM2 Hyperpriors

Recall the BYM2 model with random effects,

δ = σδ[
√

1− φe +
√
φS?]

where x? have been rescaled to have a comparable (generalized)
variance to the IID terms. Then,

var(δ) = σ2
δ [(1− φ)I + φQ?−].

For a prior on σ2
δ , we specify two values (U1, α1) such that

Pr(σδ < U1) = α1, e.g., U1 = 0.5, α1 = 0.95.

In terms of the mixing parameter, φ = 0 corresponds to the base
model, i.e., no spatial variation.

We again specify (U2, α2) set through Pr(φ < U2) = α2,
e.g., U2 = 0.5, α2 = 0.5.
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Neighborhood Models

I We need to specify a rule for determining the neighbors of each
area.

I In an epidemiological context the areas are not regular in shape.
I This is in contrast to image processing applications in which the

data are collected on a regular grid.
I Hence, there is an arbitrariness in specification of the

neighborhood structure.
I To define neighbors, the most common approach is to take the

neighborhood scheme to be such that two areas are treated as
neighbors if they share a common boundary.

I This is reasonable if all regions are (at least roughly) of similar
size and arranged in a regular pattern (as is the case for pixels in
image analysis where these models originated), but is not
particularly attractive otherwise (but reasonable practical
alternatives are not available).
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A Conditional Spatial Model

Various other neighborhood/weighting schemes are possible:

I One can take the neighborhood structure to depend on the
distance between area centroids and determine the extent of the
spatial correlation (i.e. the distance within which regions are
considered neighbors).

I One could also define neighbors in terms of cultural similarity.

In typical applications it is difficult to assess whether the spatial model
chosen is appropriate, which argues for a simple form, and to assess
the sensitivity of conclusions to different choices.
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Spatial Model Estimates
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Figure 11: Map of posterior medians of relative risk estimates from the spatial
model with covariate.
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Spatial model fit

The posterior median of the total standard deviation (on the log
relative risk scale) is 1/

√
4.45 = 0.47.

The posterior median for the proportion of the residual variation that
is spatial is 0.96.

Note that the posterior mean estimate of β1, log relative risk
associated with AFF is reduced from 0.068 to 0.026 when moving
from the non-spatial to spatial model – this is known as confounding
by location.

The model attributes spatial variability in risk to either the covariate
(which has a strong spatial pattern) or to the spatial random effects –
in the non-spatial model, all of the spatial variation goes into the
covariate term.
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Spatial Model Estimates
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Figure 12: Map of posterior medians of non-spatial component of the log
residual relative risk (ei ) from the spatial model with covariate.
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Spatial Model Estimates
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Figure 13: Map of posterior medians of spatial component of the log residual
relative risk (Si ) from the spatial model with covariate. Note the very different
scale from the previous map.
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Discussion
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Discussion

I If the data are sparse in an area, averages and totals are
unstable because of the small denominators.

I More reliable estimates can be obtained by using the totality of
data to inform on the distribution, both locally and globally.

I We have described a popular “BYM2” smoothing model in the
context of Poisson data – the relative risk was modeled as

ηi = β0 + x T
i β + δi ,

with random effects δi that have independent and spatial
components.

I This same ηi can be used with other types of data, including
normal and binomial – in these cases ηi is on the linear and
logistic scales.
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Discussion

Four levels of understanding for hierarchical models, in descending
order of importance:

I The intuition on global and local smoothing.
I The models to achieve this.
I How to specify prior distributions.
I The computation behind the modeling.

Overall Strategy
I First, calculate empirical averages (e.g., the SMRs) and map

them. Also look at map of standard errors and/or confidence
intervals.

I Fit non-spatial random effects models.
I Fit the BYM2 spatial model.
I Covariates can be added, if available.
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Krainski, E. T., Gómez-Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo,
D., Simpson, D., Lindgren, F., and Rue, H. (2018). Advanced
Spatial Modeling with Stochastic Partial Differential Equations
Using R and INLA. Chapman and Hall/CRC.

Ratcliffe, J. (2010). Crime mapping: spatial and temporal challenges.
In Handbook of Quantitative Criminology , pages 5–24. Springer.

47 / 56



Riebler, A., Sørbye, S., Simpson, D., and Rue, H. (2016). An intuitive
Bayesian spatial model for disease mapping that accounts for
scaling. Statistical Methods in Medical Research, 25, 1145–1165.

Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian
inference for latent Gaussian models using integrated nested
Laplace approximations (with discussion). Journal of the Royal
Statistical Society, Series B, 71, 319–392.

Simpson, D., Rue, H., Riebler, A., Martins, T., and Sørbye, S. (2017).
Penalising model component complexity: A principled, practical
approach to constructing priors (with discussion). Statistical
Science, 32, 1–28.

Wakefield, J. (2008). Ecologic studies revisited. Annual Review of
Public Health, 29, 75–90.

Wakefield, J. C., Best, N. G., and Waller, L. A. (2000). Bayesian
approaches to disease mapping. In P. Elliott, J. C. Wakefield, N. G.
Best, and D. Briggs, editors, Spatial Epidemiology: Methods and
Applications, pages 104–27. Oxford University Press, Oxford.

Wang, X., Yue, Y., and Faraway, J. J. (2018). Bayesian Regression
Modeling with INLA. Chapman and Hall/CRC.

48 / 56



Appendix: Parameter Interpretation
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Parameter interpretation

We consider the model used for count data Y1, . . . ,Yn from a rare
outcome, with mean E[Yi ] = Eiθi , where θi is the relative risk (RR)
associated with area i .

It is important to emphasize that the RRs are associated with areas
(which constitute the level of the analysis), the RRs should not be
interpreted as the RRs associated with the individual within the areas.

Recall the “relative” is with respect to the reference risks that were
used to calculate the expected numbers.

In the following we state the model on the loglinear scale (which
makes sense statistically/computationally), and on the natural scale
(which is more interpretable).

The RR is not the empirical RR (this is the SMR, i.e., Yi/Ei ) but the
super-population RR — i.e., the RR associated with a hypothetical
infinite population living in area i .
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Parameter interpretation

Constant Relative Risk Model:

E[Yi ] = Eieβ0 = Eiθ0, i = 1, . . . ,n

I RRs are the same in all areas.
I θ0 is the relative risk in each area.
I To obtain a credible interval for the relative risk in each we would

need to account for parameter uncertainty.
I Under this (usually unrealistic) model, we obtain the posterior

distribution p(θ0|y), from which we can obtain the usual
summaries – posterior mean, median, standard deviation,
variance, quantiles (to obtain credible intervals).

I The posterior does not correspond to uncertainty about the
empirical RR, but for the superpopulation RR θ0.
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Parameter interpretation

Saturated Model:

E[Yi ] = Eieβi = Eiθi , i = 1, . . . ,n

I RRs are unique in each area with no modeled similarity.
I θi is the relative risk associated with area i .
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Parameter interpretation

Covariate Model:

E[Yi ] = Eieβ0+β1xi = Eiθ0θ
xi
1 , i = 1, . . . ,n

I RRs differ across areas, due to the association with a covariate
xi .

I θ0 = exp(β0) is the RR of an area with x = 0.
I θ1 = exp(β1) is the multiplicative change in the areal RR

associated with a 1-unit increase in x .
I The only between-area variability in the areal RR is due to the

covariate.
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Parameter interpretation
Random Effects Model:

E[Yi ] = Eieβ0+ei = Eiθ0δi , i = 1, . . . ,n.
I RRs are assumed to be “tied together” via the random effects

ei ∼ N(0, σ2) – this is equivalent to δi ∼ LogNormal(0, σ2).
I The “overall level” θ0 is the RR associated with a “typical” area,

i.e., an area with δ = 1.
I The distribution of the RRs is LogNormal(β0, σ

2). An alternative
interpretation is that, across the study region, θ0 is the median of
the distribution of the RRs (the mean of the distribution of RRs is
θ0 exp(σ

2/2)).
I The LogNormal(0, σ2) is the distribution of residual RRs across

the map/study region. Residual here is relative to the overall
level θ0.

I The δi are the area-specifc adjustments to the overall level of the
RR (which is θ0).

I σ is the standard deviation of the log residual RRs.
I θ0 exp(±1.96× σ) is an interval within which 95% of the area

RRs lie.
I exp(±1.96× σ) is an interval within which 95% of the area
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Parameter interpretation

Covariate and Random Effects Model:

E[Yi ] = Eieβ0+β1xi+ei = Eiθ0θ
xi
1 δi , i = 1, . . . ,n.

I RRs are assumed to be “tied together” across areas via the
random effects ei ∼ N(0, σ2).

I This is equivalent to δi ∼ LogNormal(0, σ2) – these are the
area-specifc adjustments to the covariate-adjusted level.

I RRs differ across areas, due to the association with a covariate
xi , and other independent adjustments δi .

I The LogNormal(0, σ2) is the distribution of residual RRs across
the map/study region. Residual here is relative to the covariate
adjusted level θ0θ

xi
1

I θ0 is the RR of an area with x = 0 and δ = 1.
I θ1 is the multiplicative change in the areal RR associated with a

1-unit increase in x , for two areas with the same δ (or in a typical
area with δ = 1).
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Parameter interpretation

BYM Random Effects Model:

E[Yi ] = Eieβ0+ei+Si = Eiθ0δiηi , i = 1, . . . ,n.

I RRs are assumed to be “tied together” via global and local
contributions, δi and ηi , respectively.

I The global (often referred to as unstructured) random effects
have distribution ei ∼ N(0, σ2) – which is equivalent to
δi ∼ LogNormal(0, σ2).

I The local (often referred to as structured) random effects have
distribution Si |Sj , j ∈ ne(i) ∼ ICAR(σ2

s ) – which is equivalent to
ηi |ηj , j ∈ ne(i) ∼ LogNormal(0, σ2

s ).
I The “overall level” θ0 is the RR associated with a “typical” area,

i.e., an area with δ = η = 1.
I The distribution of the RRs (and the residual RRs) is undefined,

since the ICAR model is not proper.
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Parameter interpretation
BYM Random Effects Model:

E[Yi ] = Eieβ0+ei+Si = Eiθ0δiηi , i = 1, . . . ,n.

I The LogNormal(0, σ2) is the distribution of the unstructured
contribution to the residual RRs across the map/study region.

I The δi are the area-specifc unstructured adjustments to the
overall level of the RR (which is θ0), and ηi are the area-specifc
structured adjustments to the overall level of the RR (which is θ0).

I The σs parameter is very difficult to interpret.
I Under the BYM2 reparameterized version of BYM, we have

b = σ2
b[
√

1− φI +
√
φQ?],

and so work with the total variance (on the log scale) σ2
b and the

proportion of the variability that is spatial φ.
I σ is the standard deviation of the log residual RRs.
I θ0 exp(±1.96× σb) is an interval within which 95% of the area

RRs lie.
I exp(±1.96× σb) is an interval within which 95% of the areas

residual RRs lie.
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