
SISMID 2022 R Notes: Introduction to R

Jon Wakefield
University of Washington

2022-07-17

Preliminaries
Objectives
In this set of R notes you will:

• See the basic types of object that R uses, including spatial objects

• Learn how to install packages

• See how to read in data from a website

• Learn about basic plotting and regression models

Spatial data:

• Lancashire case-control point data

• Washington counties

• Scottish districts

Accessing the R code
To get R code alone, load the knitr library as below and then use the purl command – I comment out these
lines to save time.
#install.packages("knitr")
#library(knitr)
#purl("2022-SISMID-Lec1-R.Rmd")

You need to be in the directory that contains the .Rmd file – the output file is 2022-SISMID-Lec1-R.R and is
also in the current directory, which can be found by typing getwd(). To change the working directory, you
can run setwd("/path/to/new/directory").

Introduction to R

This document is an R Markdown file. It is a relatively easy way to write a report (or notes!) that contains
data analysis – great for reproducibility. To learn more about R Markdown, check out the online book at:

https://bookdown.org/yihui/rmarkdown/.

We describe various types of objects (vectors, matrices, arrays, data frames, lists). This can be confusing but
the class command is useful.

Some functions require certain types of objects as inputs, so if a function doesn’t do as expected, it can be
that the wrong type of input is being used.

1

https://bookdown.org/yihui/rmarkdown/


R’s basic data types are character, numeric, integer, complex, and logical.

R’s basic data structures include vector, list, matrix, data frame, and factor.

Vectors
In R, we use <- or = to assign the value on the right hand side to an object on the left hand side.

For example,
x1 <- "Hello"
x1
## [1] "Hello"
class(x1)
## [1] "character"
y1 <- c(1, 2, 3)
y1
## [1] 1 2 3
class(y1)
## [1] "numeric"

The c(...) notation defines a vector, i.e., a collection of elements of the same type. For some special vectors,
there are faster ways to define them.

For example,
x2 <- 1:10
x2
## [1] 1 2 3 4 5 6 7 8 9 10
class(x2)
## [1] "integer"
x2a <- seq(1, 5, 0.5)
x2a
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
class(x2a)
## [1] "numeric"

Objects of type matrix and array
Similarly, there are two-dimensional extensions of a vector (a matrix), and higher-dimensional extensions of a
vector (an array). We give some examples of subsetting. When data is input the leftmost subscript moves
fastest.
# Matrix
x3 <- matrix(1:24, nrow = 3)
x3
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1 4 7 10 13 16 19 22
## [2,] 2 5 8 11 14 17 20 23
## [3,] 3 6 9 12 15 18 21 24
x3[2, 3]
## [1] 8
class(x3)
## [1] "matrix" "array"

# Array
y2 <- array(1:24, dim = c(2, 3, 4))
y2[, , 1]

2



## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6
y2[, , 4]
## [,1] [,2] [,3]
## [1,] 19 21 23
## [2,] 20 22 24
y2[1, 2, 2]
## [1] 9
class(y2)
## [1] "array"

Vectorized operations
Many operators in R are vectorized, meaning that operations occur in parallel in certain R objects.
# Single operation
x4 <- 3
x4 <- x4ˆ2 + 1
x4
## [1] 10

# Vectorized operation
y3 <- c(2, 3, 0)
y3 <- log(y3)
y3
## [1] 0.6931472 1.0986123 -Inf

Accessing elements
There are three operators that can be used to extract subsets of R objects.

The [ operator always returns an object of the same class as the original. It can be used to select multiple
elements of an object.

The [[ operator is used to extract elements of a list or a data frame. It can only be used to extract a single
element and the class of the returned object will not necessarily be a list or data frame.

The $ operator is used to extract elements of a list or data frame by literal name. Its semantics are similar to
that of [[.

Data frame
A tabular form of data where each column may contain different types of values (i.e., similar to a spreadsheet),
is called a data frame in R.
x5 <- data.frame(ID = 1:4,

name = c("A", "B", "C", "D"),
color = factor(c("red", "blue", "blue", "green")))

class(x5)
## [1] "data.frame"
sapply(x5, class)
## ID name color
## "integer" "character" "factor"
x5$ID
## [1] 1 2 3 4

3



x5[,1]
## [1] 1 2 3 4
x5[1,]
## ID name color
## 1 1 A red

x5[, 2]
## [1] "A" "B" "C" "D"
x5$color
## [1] red blue blue green
## Levels: blue green red
x5[1:2, ]
## ID name color
## 1 1 A red
## 2 2 B blue
x5[1:2, 2:3]
## name color
## 1 A red
## 2 B blue
x5[, c("ID", "name")]
## ID name
## 1 1 A
## 2 2 B
## 3 3 C
## 4 4 D

Factors
Notice that although factors look similar to characters, they can behave very differently in action.

We encourage new users of R to read the section on ‘R Nuts and Bolts’ of this online book R Programming
for Data Science by Roger Peng, (if not the whole book) for more details.

Lists
Another commonly used data structure is ‘list’. It creates a list of elements that are not necessarily of the
same type, dimension, or have the same attributes. For example,
y4 <- list(apple = 1:20, orange = x5)
class(y4)
## [1] "list"
y4
## $apple
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
##
## $orange
## ID name color
## 1 1 A red
## 2 2 B blue
## 3 3 C blue
## 4 4 D green

To subset a list:
y4[[1]]
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4

https://bookdown.org/rdpeng/rprogdatascience/r-nuts-and-bolts.html#factors
https://bookdown.org/rdpeng/rprogdatascience/r-nuts-and-bolts.html#factors


y4[["apple"]]
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y4$apple
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

y4[["orange"]]
## ID name color
## 1 1 A red
## 2 2 B blue
## 3 3 C blue
## 4 4 D green
y4$orange
## ID name color
## 1 1 A red
## 2 2 B blue
## 3 3 C blue
## 4 4 D green

Coercion
Objects can be explicitly coerced from one class to another using the as.* functions, if available.
x <- 0:6
class(x)
## [1] "integer"
as.numeric(x)
## [1] 0 1 2 3 4 5 6
as.logical(x)
## [1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE
as.character(x)
## [1] "0" "1" "2" "3" "4" "5" "6"

R packages: Installation
To install packages that are hosted on CRAN, we only need to use the install.packages function.
#install.packages("ggplot2", dep = TRUE)
#install.packages("rgdal", dep = TRUE)

Some packages not hosted on CRAN. For example, the INLA package that we will be using for space-time
smoothing is hosted on its own website.
# Commented out to save time
# install.packages("INLA",
# repos=c(getOption("repos"),
# INLA="https://inla.r-inla-download.org/R/stable"))

Load R packages
Once a package is installed, you can load it into your workspace. Then you can use all the functions and
data provided in that package.
library(ggplot2)
library(rgdal)
library(SUMMER)

5

https://cran.r-project.org
http://www.r-inla.org


You can check your loaded packages in the workspace by (I haven’t evaluated here, as I have lots of packages
installed!).
# sessionInfo()

Spatial R

R for Spatial Analysis
R has extensive spatial capabilities, the Spatial task view is here.

Bivand et al (2013), is the reference book for GIS in R, though unfortunately it’s quite hard to follow if
you’re an R novice.

Representing Spatial Data
Spatial classes were defined to represent and handle spatial data, so that data can be exchanged between
different classes.

Class definitions are objects that contain the formal definition of a class of R objects, usually referred to as
an S4 class.

Just as components of a list are accessed using $, slots of an object are accessed using @.

The sp library is the workhorse for representing spatial data.

The most basic spatial object is a 2d or 3d point: a set of coordinates may be used to define a SpatialPoints
object.

From the help function:

SpatialPoints(coords, proj4string=CRS(as.character(NA)),bbox = NULL)

• PROJ.4 is a library (not an R package) for performing conversions between cartographic projections.

• The points in a SpatialPoints object may be associated with a set of attributes to give a
SpatialPointsDataFrame object.

Creating a Spatial Object
As an example, the splancs library was pre-sp and so does not use spatial objects.

splancs contains a number of useful functions for analyzing spatial referenced point data.
library(sp)
library(splancs)
data(southlancs) # case control data
summary(southlancs)
## x y cc
## Min. :346475 Min. :412437 Min. :0.00000
## 1st Qu.:353031 1st Qu.:417358 1st Qu.:0.00000
## Median :355870 Median :421900 Median :0.00000
## Mean :355526 Mean :421518 Mean :0.05852
## 3rd Qu.:358202 3rd Qu.:425984 3rd Qu.:0.00000
## Max. :364435 Max. :428987 Max. :1.00000

Let’s look at the case control points as regular R data.
class(southlancs)
## [1] "data.frame"

6

http://cran.r-project.org/web/views/Spatial.html


names(southlancs)
## [1] "x" "y" "cc"
points <- southlancs[, c("x", "y")]
summary(points)
## x y
## Min. :346475 Min. :412437
## 1st Qu.:353031 1st Qu.:417358
## Median :355870 Median :421900
## Mean :355526 Mean :421518
## 3rd Qu.:358202 3rd Qu.:425984
## Max. :364435 Max. :428987

We convert into a SpatialPoints object and then create a SpatialPointsDataFrame data frame.
casepoints <- SpatialPoints(southlancs[, c("x", "y")])
summary(casepoints)
## Object of class SpatialPoints
## Coordinates:
## min max
## x 346475 364435
## y 412437 428987
## Is projected: NA
## proj4string : [NA]
## Number of points: 974

class(casepoints)
## [1] "SpatialPoints"
## attr(,"package")
## [1] "sp"
proj4string(casepoints)
## [1] NA

No info on where these points are on planet Earth. . .

Examining a Spatial Object
Try out some commands
head(coordinates(casepoints), 3)
## x y
## 1 359014 416976
## 2 352909 426935
## 3 353848 422172
bbox(casepoints)
## min max
## x 346475 364435
## y 412437 428987
casepoints@coords[1:3, ]
## x y
## 1 359014 416976
## 2 352909 426935
## 3 353848 422172

str(casepoints)
## Formal class 'SpatialPoints' [package "sp"] with 3 slots
## ..@ coords : num [1:974, 1:2] 359014 352909 353848 359202 357795 ...

7



## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:974] "1" "2" "3" "4" ...
## .. .. ..$ : chr [1:2] "x" "y"
## ..@ bbox : num [1:2, 1:2] 346475 412437 364435 428987
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:2] "x" "y"
## .. .. ..$ : chr [1:2] "min" "max"
## ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot
## .. .. ..@ projargs: chr NA

Creating a Spatial Object (continued)
Now create a SpatialPointsDataFrame data frame.
caseDF <- SpatialPointsDataFrame(coords = casepoints, data = as.data.frame(southlancs$cc))
class(caseDF)
## [1] "SpatialPointsDataFrame"
## attr(,"package")
## [1] "sp"
names(caseDF)
## [1] "southlancs$cc"

Now examine the SpatialPointsDataFrame data frame.
summary(caseDF)
## Object of class SpatialPointsDataFrame
## Coordinates:
## min max
## x 346475 364435
## y 412437 428987
## Is projected: NA
## proj4string : [NA]
## Number of points: 974
## Data attributes:
## southlancs$cc
## Min. :0.00000
## 1st Qu.:0.00000
## Median :0.00000
## Mean :0.05852
## 3rd Qu.:0.00000
## Max. :1.00000

Visualizaing Spatial Data
Plotting spatial data can be provided in a variety of ways, see Chapter 3 of Bivand et al. (2013).

The most obvious is to use the regular plotting functions, by converting Spatial dataframes to regular
dataframes, for example using as.data.frame.

Reading Shapefiles
ESRI (a company one of whose products is ArcGIS) shapefiles consist of three files, and this is a common
form.

• The first file (*.shp) contains the geography of each shape.

8



• The second file (*.shx) is an index file which contains record offsets.

• The third file (*.dbf) contains feature attributes with one record per feature.

Reading Shapefiles
Many repositories host data. Globally, the Database of Global Administrative Areas (GADM) here provides
maps and spatial data for all countries and their subdivisions (admin-0, admin-1, admin-2,. . . ).

Locally, the UW Geospatial Data Resources: here.

As an example, consider Washington county data that was downloaded from this site. The data consists of
the three files: wacounty.shp, wacounty.shx, wacounty.dbf.

The following code reads in these data and then draws a county level map of 1990 populations.

First load the libraries.
library(maps)
library(maptools)

The three required data files (wacounty.*) can be downloaded from here: http://faculty.washington.edu/jon
no/SISMIDmaterial/, and can be put in a directory R-examples (which you’ll need to create).

You can put in any old directory, including the current directory, so long as you use the correct name when
you call. The following code does this for you:
# Create directory
if (!("R-examples" %in% list.files())) {

dir.create("R-examples")
}

# Download files using urls If this throws an error, comment out and manually
# download the .shp, .shx and .dbf files from the website.
download.file("http://faculty.washington.edu/jonno/SISMIDmaterial/wacounty.dbf",

destfile = "R-examples/wacounty.dbf")
download.file("http://faculty.washington.edu/jonno/SISMIDmaterial/wacounty.shp",

destfile = "R-examples/wacounty.shp")
download.file("http://faculty.washington.edu/jonno/SISMIDmaterial/wacounty.shx",

destfile = "R-examples/wacounty.shx")

# Now read all the files into a single data frame
wacounty <- rgdal::readOGR(dsn = "R-examples", layer = "wacounty")
## OGR data source with driver: ESRI Shapefile
## Source: "/Users/kpaulson/Documents/SISMID-spatial/R-examples", layer: "wacounty"
## with 39 features
## It has 6 fields
class(wacounty)
## [1] "SpatialPolygonsDataFrame"
## attr(,"package")
## [1] "sp"

Looking at the data

names(wacounty)
## [1] "AreaName" "AreaKey" "INTPTLAT" "INTPTLNG" "TotPop90" "CNTY"

# Let's see what these variables look like

9

https://gadm.org
https://guides.lib.uw.edu/friendly.php?s=research/gis
http://faculty.washington.edu/jonno/SISMIDmaterial/
http://faculty.washington.edu/jonno/SISMIDmaterial/


wacounty$AreaName[1:3] # county names
## [1] "WA, Adams County" "WA, Asotin County" "WA, Benton County"
wacounty$AreaKey[1:3] # FIPS codes
## [1] "53001" "53003" "53005"

Examining SpatialPolygonDataFrames

proj4string(wacounty)
## [1] NA
head(wacounty)
## class : SpatialPolygonsDataFrame
## features : 6
## extent : -124.7312, -116.915, 45.5434, 48.5504 (xmin, xmax, ymin, ymax)
## crs : NA
## variables : 6
## names : AreaName, AreaKey, INTPTLAT, INTPTLNG, TotPop90, CNTY
## min values : WA, Adams County, 53001, 45.773673, -123.931203, 13603, 1
## max values : WA, Clark County, 53011, 48.109502, -117.18502, 238053, 9

Examining the data
Let’s look in the data slot
head(wacounty@data)
## AreaName AreaKey INTPTLAT INTPTLNG TotPop90 CNTY
## 0 WA, Adams County 53001 46.98899 -118.5569 13603 1
## 1 WA, Asotin County 53003 46.18248 -117.1850 17605 3
## 2 WA, Benton County 53005 46.24764 -119.5015 112560 5
## 3 WA, Chelan County 53007 47.87696 -120.6414 52250 7
## 4 WA, Clallam County 53009 48.10950 -123.9312 56464 9
## 5 WA, Clark County 53011 45.77367 -122.4843 238053 11

Drawing a map
We look at some variables.
wacounty$INTPTLAT[1:3] # latitude
## [1] 46.98899 46.18248 46.24764
wacounty$INTPTLNG[1:3] # longitude
## [1] -118.5569 -117.1850 -119.5015
wacounty$CNTY[1:3]
## [1] "1" "3" "5"
wacounty$TotPop90[1:3]
## [1] 13603 17605 112560

We set up the colors to map.
library(RColorBrewer)
plotvar <- wacounty$TotPop90 # variable we want to map
summary(plotvar)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2248 16863 38558 123102 81478 1507319
nclr <- 8 # next few lines set up the color scheme for plotting
plotclr <- brewer.pal(nclr, "Oranges")

10



brks <- round(quantile(plotvar, probs = seq(0, 1, 1/(nclr))), digits = 1)
colornum <- findInterval(plotvar, brks, all.inside = T)
colcode <- plotclr[colornum]
plot(wacounty, col = colcode)
legend(-119, 46, legend = leglabs(round(brks, digits = 1)), fill = plotclr, cex = 0.35,

bty = "n")

under 8648.4
8648.4 − 16863.2
16863.2 − 26660
26660 − 38558
38558 − 56825.8
56825.8 − 81478
81478 − 207851.8
over 207851.8

Figure 1: 1990 Washington population counts by census tracts

As an alternative we can use the spplot function, which uses lattice (trellis) plot methods for spatial data
with attributes.
spplot(wacounty, zcol = "TotPop90", col.regions = brewer.pal(9, "Purples"), cuts = 8)

0
200000
400000
600000
800000
1000000
1200000
1400000
1600000

Figure 2: 1990 Washington population counts by county

Highlight a county

# identify counties of interest
xx = which(wacounty$CNTY == 33)
xx2 = which(wacounty$CNTY == 63)
# plot the whole state
plot(wacounty)
# highlight counties of interest
plot(wacounty[xx, ], col = "pink", border = "red", add = T, lwd = 2.5)
plot(wacounty[xx2, ], col = "lightblue", border = "darkblue", add = T, lwd = 2.5)
# Add some labels
text(coordinates(wacounty[xx, ]), "King", cex = 0.75, pos = 3, offset = 0.15)
text(coordinates(wacounty[xx2, ]), "Spokane", cex = 0.7, pos = 1, offset = 0.25)
points(coordinates(wacounty[c(xx, xx2), ]), pch = 16, cex = 0.75)

11



King
Spokane

Scottish lip cancer data
We will first fit a number of models to the famous Scottish lip cancer data.

We have counts of disease, expected numbers and an area-based covariate (proportion in agriculture, fishing
and farming) in each of 56 areas.
library(SpatialEpi)
data(scotland)
Y <- scotland$data$cases
X <- scotland$data$AFF
E <- scotland$data$expected
# Relative risk estimates
smr <- Y/E
summary(E)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.100 4.050 6.300 9.575 10.125 88.700
summary(smr)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 0.496 1.111 1.522 2.241 6.429

Distribution of SMRs

ggplot(data.frame(smr), aes(x = smr)) + geom_histogram(color = "blue",
fill = "lightblue", bins = 20) + labs(x = "SMR",
y = "Disease Counts")

0.0

2.5

5.0

7.5

10.0

12.5

0 2 4 6
SMR

D
is

ea
se

 C
ou

nt
s

12



Mapping

smap <- scotland$spatial.polygon
scotd <- scotland$data[, c("county.names", "cases", "expected", "AFF")]
scotd$SIR <- scotd$cases/scotd$expected

# set the polygons ID slot values to correspond to county names
sapply(slot(smap, "polygons"), function(x) {

slot(x, "ID")
})
## [1] "skye-lochalsh" "banff-buchan" "caithness" "berwickshire"
## [5] "ross-cromarty" "orkney" "moray" "shetland"
## [9] "lochaber" "gordon" "western.isles" "sutherland"
## [13] "nairn" "wigtown" "NE.fife" "kincardine"
## [17] "badenoch" "ettrick" "inverness" "roxburgh"
## [21] "angus" "aberdeen" "argyll-bute" "clydesdale"
## [25] "kirkcaldy" "dunfermline" "nithsdale" "east.lothian"
## [29] "perth-kinross" "west.lothian" "cumnock-doon" "stewartry"
## [33] "midlothian" "stirling" "kyle-carrick" "inverclyde"
## [37] "cunninghame" "monklands" "dumbarton" "clydebank"
## [41] "renfrew" "falkirk" "clackmannan" "motherwell"
## [45] "edinburgh" "kilmarnock" "east.kilbride" "hamilton"
## [49] "glasgow" "dundee" "cumbernauld" "bearsden"
## [53] "eastwood" "strathkelvin" "tweeddale" "annandale"
rownames(scotd) <- scotd$county

smap <- SpatialPolygonsDataFrame(smap, scotd, match.ID = TRUE)
spplot(smap, zcol = "SIR", col.regions = brewer.pal(9, "Purples"), cuts = 8)

0

1

2

3

4

5

6

Exercises
• Experiment with the spplot command, changing colors, for example

• Map the expected numbers from the Scottish lip cancer example

13


	Preliminaries
	Objectives
	Accessing the R code
	Introduction to R
	Vectors
	Objects of type matrix and array
	Vectorized operations
	Accessing elements
	Data frame
	Factors
	Lists
	Coercion
	R packages: Installation
	Load R packages

	Spatial R
	R for Spatial Analysis
	Representing Spatial Data
	Creating a Spatial Object
	Examining a Spatial Object
	Creating a Spatial Object (continued)
	Visualizaing Spatial Data
	Reading Shapefiles
	Reading Shapefiles
	Looking at the data
	Examining SpatialPolygonDataFrames
	Examining the data
	Drawing a map
	Highlight a county
	Scottish lip cancer data
	Distribution of SMRs
	Mapping
	Exercises


