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Infectious Disease Data

The aims of infectious disease modeling include:
I Understanding the mechanisms of spread.
I Estimating the durations of the latent and infectious periods.
I Determining strategies for disease control.
I Forecasting the future space-time course of the epidemic,

including estimating the cumulative number of cases.

The modeling of infectious disease data has a huge literature, though
spatial models are less well-developed than temporal models.
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Overview

I Keeling and Rohan (2008, Chapter 7) give an overview of spatial
modeling.

I For directly transmitted diseases, individuals have to be in the
same geographical location, and spread will occur when
individuals move in space.

I The type of model used will depend on:
I the host organism (human, animal, plant),
I what is known about the organism’s behavior, and
I the geographical scale that is considered.

I A big distinction concerns the form of the data we receive; do we
see individuals, with point locations, or aggregated counts with
respect to some administrative regions?

I If infection can only be passed to a small number of individuals
(as is the case for sexually transmitted diseases) then network
models are advantageous, if the required data are available
(which is rare).
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Infectious Disease Data

I A starting dichotomy is in
terms of deterministic versus
stochastic models.

I The classic text on
deterministic models is
Anderson and May (1991).

I Books that consider both
include Daley and Gani
(1999) and Bailey (1975).

I Books on stochastic modeling
include Becker (1989),
Andersson and Britton (2000)
and Halloran et al. (2010).

I The SIR model is popular.
I Let x(t), y(t), z(t) be the

number of susceptibles,
infectives, recovered at time t
in a closed population.

x(t)

S

y(t)

I

z(t)
βx(t) y(t) γy(t)

R

Figure 1: Solid arrows show the movement from S to I to R.
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Categories of infectious disease transmission models

Deterministic Models based on Differential Equations:
I Computation is efficient so system can be complex.
I Fit to data using ordinary least squares or variants, inference

dicey.
I Interpretable parameters.
I Poor for small populations or when the disease is rare.

Discrete-Time Stochastic Models:
I Fitting via likelihood/Bayes is relatively straightforward.
I Interpretability of parameters depends on the exact form.
I Computational efficiency not greatly affected by population size.
I Rigid data form (equally-spaced) typically required.

Continuous-Time Stochastic Models:
I Interpretable parameters.
I Computation not yet feasible in large populations.
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Deterministic Models

I The law of mass action is central to modeling (both deterministic
and stochastic).

I In a population context, if the individuals in a population mix
homogeneously, the rate of interaction between two different
subsets of the population is proportional to the product of the
numbers in each of the subsets concerned.

I Groups of individuals defined by their disease status are
described in continuous time (usually) via differential equations
and there is no randomness — may be thought of as producing
the mean of a random process.
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Deterministic SIR model
I Kermack and McKendrick (1927) proposed the following classic

mass-action equations to describe the dynamics of the general
epidemic (where we assume frequency dependent transmission):

dx(t)
dt

= −βx(t)y(t)

dy(t)
dt

= βx(t)y(t)− γY (t)

dz(t)
dt

= γy(t),

subject to initial conditions (X (0),Y (0),Z (0)) with Z (0) = 0.
I Per-contact infection rate is β and the recovery rate is γ.
I Deterministic models can be embedded within a statistical

framework for inference, or a stochastic approach can be taken
from the onset.

x(t) y(t) z(t)
βx(t) y(t) γy(t)
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Continuous-time stochastic SIR model
I In the SIR model, deterministic differential equations are

replaced by probabilistic descriptions of the transitions.
I Continuous-time Markov chain {X (t),Y (t), t ≥ 0} with transition

probabilities for a susceptible becoming infective and an infective
becoming recovered being:

Pr

( [
X (t + h)
Y (t + h)

]
=

[
x − 1
y + 1

] ∣∣∣∣ [X (t)
Y (t)

]
=

[
x
y

] )
= βhxy + o(h)

Pr

( [
X (t + h)
Y (t + h)

]
=

[
x

y − 1

] ∣∣∣∣ [X (t)
Y (t)

]
=

[
x
y

] )
= γhy + o(h)

where the remainder term o(h) is small.
I The most appealing (at least to a statistician!) but quickly gets

computationally hideous as populations increase in size given
the usual surveillance data, see references in Fintzi et al. (2017).

x(t) y(t) z(t)
βx(t) y(t) γy(t)
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Computation for compartmental models
To address the inference problem, various approaches have been
suggested:

I For small populations, auxiliary variable approaches are tractable
(Gibson and Renshaw, 1998; O’Neill and Roberts, 1999; O’Neill
and Becker, 2001; Neal and Kypraios, 2015).

I Discrete approximations (Lekone and Finkenstädt, 2006).
I Diffusion process approximation (Cauchemez and Ferguson,

2008).
I Particle filtering, for likelihood or Bayesian inference (He et al.,

2010; Koepke et al., 2016).
I Gaussian process approximate Bayesian inference (Jandarov

et al., 2014).
I Approximate Bayesian Computation (ABC) (McKinley et al.,

2009; Toni et al., 2010; Neal, 2012).
The last three require simulation from the model, which is
straightforward.

Disease mapping type models ignore the infectious aspect (Mugglin
et al., 2002; Knorr-Held and Richardson, 2003; Bauer et al., 2016).
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Discrete-Time Stochastic Models
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An epidemic/endemic framework

I We describe in some detail, a statistical framework for analyzing
spatio-temporal, aggregated infectious disease data originally
proposed by Held et al. (2005).

I The framework was extended by Paul et al. (2008), Paul and
Held (2011), Held and Paul (2012), Meyer and Held (2014) and
Geilhufe et al. (2014)

I These models are implemented within the surveillance

package in R (Meyer et al., 2017) and have been applied to a
variety of diseases; see, for example, Höhle et al. (2011) and
Herzog et al. (2011).

I Notably the implementation does not provide a straightforward
way to allow age/gender and space to be in the model, though
Meyer and Held (2017) use survey information on contact rates
in the epidemic/endemic model.
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A Discrete Time SIR Model

I We focus on the situation in which we have disease counts Yit in
area i and in time observation period t .

I It is common to use time steps relative to the disease of interest,
meaning that we are assuming the sum of incubation and
infectious times is approximately that of the observation times.

I For example, for measles, the data are often aggregated over 1
or 2 week periods.

I Let Sit be the size of the susceptible population.
I We denote the force of infection (risk) of an individual who was

susceptible at time t − 1 becoming infected by time t in area i , by
λit .
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A Discrete Time SIR Model
I Assuming a constant hazard of infection between time steps, the

probability of a susceptible individual in area i and time t − 1
becoming infected by time t is determined by the hazard rate λit .
That is,

Pr (infection in (t − 1, t ] |no infection by t − 1, area i) = 1− e−λit .

I Additionally assume that time until infection is independent for all
susceptible individuals; hence, the number of new infectives in
area i at time t can be modeled as

Yit |λit ∼ Binomial
(
Si,t−1,1− e−λit

)
.

I When λit is small, the Taylor expansion,

1− exp(−λit) ≈ λit .

I When the number of susceptibles, Si,t−1 is large, and the
probability of infection is small, the binomial distribution can be
approximated by a Poisson distribution so that

Yit |λit ∼ Poisson (Si,t−1λit).
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Measles in Germany
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Figure 2: Weekly counts of measles infections by district in the Weser-Ems
region of Lower Saxony, Germany, 2001–2002, from the surveillance

package.

16 / 38



03460 03461 03462

03456 03457 03458 03459

03452 03453 03454 03455

03402 03403 03404 03451

2001−012001−072002−012002−072003−012001−012001−072002−012002−072003−012001−012001−072002−012002−072003−01

2001−012001−072002−012002−072003−01

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

Time

No
. in

fec
ted

Figure 3: Time series of measles infections by district in the Weser-Ems
region of Lower Saxony, Germany, 2001–2002. Only those areas with cases
are shown (two areas have zero counts throughout).
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Figure 4: Map of measles infections by district in the Weser-Ems region of
Lower Saxony, Germany, 2001–2002.
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Decomposition of Risk

I In general, a susceptible may become infected from:
I an infective in their own area,
I an infective in another area, or
I an environmental reservoir or infective external to the study region.

I One specific model (Held et al., 2005) takes a linear combination
of three terms that are labeled autoregressive, neighborhood and
endemic.

I A competing risk framework gives,

λit = λAR?
it + λNE?

it + λEN?
it

and under the approximation

1− exp(−λit) ≈ λit

= λAR?
it + λNE?

it + λEN?
it .
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Decomposition of Risk
I For the self-area term:

λAR?
it = c(Si,t−1)×

yi,t−1

Ni
× p,

where
I c(Si,t−1) is the rate of contact between a susceptible and the

infective,
I yi,t−1/Ni is the current prevalence,
I p is the per-contact probability of infection.

I Assume density dependent transmission, i.e., c(Si,t−1) ∝ Si,t−1,
and suppose Si,t−1 ≈ Ni , then

λAR?
it = λAR

it yi,t−1

I Similarly, assume the model

λNE?
it = λAR

it

n∑
i′=1

wi′ iyi,t−1

I The neighborhood rate λNE
i determines the contribution from the

neighboring areas.
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An epidemic/endemic model

Under the model of Held et al. (2005) it is assumed that

Yit |µit ∼ Poisson(µit).

This was later extended to,

Yit |µit ∼ NegativeBinomial(µit , ψ)

to allow for overdispersion via:

var(Yit) = µit(1 + µit/ψ),

with parameter ψ > 0.

In either case the mean µit is decomposed into the three
terms:autoregressive (AR), neighborhood (NE) and endemic (EN)
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An epidemic/endemic model

Specifically,

µit = λAR
it yi,t−1 + λNE

i

n∑
i′=1

wi′ iyi′,t−1 + Niλ
EN
it , (1)

where:
I The autoregressive rate λAR

i dictates the contribution to the risk
from the cases in area i in the previous time period.

I The neighborhood rate λNE
i determines the contribution from the

neighboring areas.
I The endemic component λEN

it is a catch all term for contributions
not catered for by the autoregressive and neighborhood
components and, for example, includes seasonality. Note the Ni
population multipliers.
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An epidemic/endemic model

For the autoregressive self area rate, a general model is:

log λAR
it = αAR

0 + zT
itβ

AR + bAR
i ,

where
I z it represent a q × 1 vector of area-time specific bases,
I βAR is a q × 1 vector of association parameters, and
I bAR

i ∼iid N(0, σ2
AR) is an area-level autoregressive random effect.

For the neighborhood area rate a general model is:

log λNE
i = αNE

0 + bNE
i ,

with
I bNE

i ∼iid N(0, σ2
NE) an area-level neighborhood random effect.
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An epidemic/endemic model

For the endemic component we might include seasonality:

log λEN
it = αEN

0 + bEN
i + βsin sin

(
t

52
2π
)
+ βcos cos

(
t

52
2π
)
,

where
I bEN

i ∼iid N(0, σ2
EN) is the area-level endemic random effect.

I Seasonality is modeled via the sin/cos terms.
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Figure 5: Seasonality estimate for measles data.
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Modeling the weights

I The weights may be taken as simply 1 for neighbors (defined
through a common boundary) and 0 otherwise.

I Paul et al. (2008) use,

wi′ i =
1

|ne(i ′)|
for i ′ ∈ ne(i),

where ne(i) is the set of neighbors of area i , and wi′ i = 0 for
i ′ /∈ ne(i).
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Modeling the weights

I Alternatively, the weights can be assumed to follow a power law
(Meyer and Held, 2014),

wi′ i =
o−θi′ i∑n

k=1 o−θki

where oi′ i is the number of areas that must be crossed when
moving between areas i and i ′, and θ is a power which may be
estimated.

I The limit θ →∞ corresponds to first-order dependency, and
θ = 0 gives equal weight to all areas.

I The normalization ensures that
∑n

k=1 wki = 1 for all rows of the
weight matrix (infecteds are being allocated to neighbors).

I The power law allows “contact” between areas that are a large
distance apart since it is “heavy-tailed”.
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Basic model
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Figure 6: Fits from simple model with no random effects. The AR component
dominates. We only show fits for areas with more than 50 cases, and for all
areas combined.
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Model Comparison

I The above model is very flexible and so in practice many models
may be fitted.

I In terms of interpretation it is difficult to assess what is “big”
I Interval estimates on regression coefficients β may be examined

to assess significance (do the intervals contain zero?).
I Seeing if random effects are needed is more difficult.
I Using AIC or BIC is not straightforward in a mixed model

framework – alternatives include DIC and WAIC, or CPO (all
available in INLA, but the epidemic/endemic models can’t be
fitted in this software).

I Paul and Held (2011) compare models by comparing one-step
ahead predictions (with the point to be predicted removed) with
the observed value.
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Relationship to TSIR Model

I In the Xia et al. (2004) time series SIR (TSIR) framework with a
gravity model for movement between areas:

E[Yit |yi,t−1] = λit

λit =
βtSit(yi,t−1 + δit)

α

Ni

δit ∼ Gamma(mit ,1)
E[δit ] = mit

= θNτ1
it

n∑
i′=1

yτ2
i′,t−1

dρi′ i

I So with α = τ1 = τ2 = 1 and Sit ≈ Ni , we could write

λit = λAR
t yi,t−1 + λNENit

n∑
i′=1

yi′,t−1

dρi′ i

where λAR
t = βt , λNE = θ and we have a distance-based weighting

scheme.
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Space-Time Models for Point Data
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A model for plantation data

I We now turn our attention to the situation in which point data are
available.

I Brown et al. (2014) describe a spatial susceptible-infectious (SI)
model in which the intensity at time t and location x i is

λ(x i , t) = µ+
∑

j:τj<t

θf (x i − x j ;σ)

where τj is the infection time of individual j and

θf (x i − x j ;σ)

is the transmission rate from individual j to individual i , and µ is
the environmental contribution.
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A model for plantation data

I The data concern plant infections transmitted by aphids and the
Gaussian function is chosen to represent spatial connection:

f (d ;σ) = (2πσ2)−1/2 exp

(
− d2

2σ2

)
.

I As usual with models such as these, the likelihood is not
straightforward to calculate, and an auxiliary variable method is
used.
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A model for plantation data

Point data:
I A Bayesian approach to inference is taken.
I The likelihood, given known infection times τ1, . . . , τn (total

observation period is [0,T ]), is

L(µ, θ, σ2) =

 ∏
i:τi≤T

exp

{
−
∫ τi

0
λ(x i , t)dt

}
λ(x i , τi)


×

∏
i:τi>T

exp

{
−
∫ τi

0
λ(x i , t)dt

}
I The data are interval censored (plants are surveyed on six

occasions) and so the unobserved times are imputed via an
auxiliary variable scheme.

I Much of Brown et al. (2014) concerns computation.
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Figure 7: Raw data, from Brown et al. (2014).
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Figure 8: Predictions, from Brown et al. (2014).
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Animal applications

I Animal disease epidemics: A number of authors have considered
data in the form of the infectious status of farms.

I For example, data on foot and mouth disease (FMD) have been
analyzed by a number of authors including Keeling et al. (2001),
Lawson and Zhou (2005), Diggle (2006) and Jewell et al. (2009).

I In the latter, a Susceptible-Infected-Notified-Removed model is
assumed.

I Likelihood is constructed from a time inhomogenous Poisson
point process with rates that depend on the states of each farm
over time.

I Spatial transmission is modeled using a Cauchy-type kernel and
computation is via RJMCMC, again with auxiliary variables.
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Conclusions

I This lecture has largely concentrated on spatio-temporal models
for aggregated count data (though we touched on point data at
the end) – with such data much fine detail is lost and so
biologically motivated models are difficult to fit.

I The full SIR formulation (and its spin offs, such as SEIR) are
computationally hard to fit since the likelihood is analytically
intractable.

I Spatio-temporal methods may be used to assess the effect of
intervention programs, see for example Azman et al. (2012).

I The space-time models within the surveillance package do not
currently allow adjustment for age and gender, i.e. different
transmission dynamics for different stratum, which is problematic.

I Much work to be done!!!
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