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Ecological studies

I Data are available on groups of individuals
I rather that the individuals themselves
I common grouping is based on geographic location; areas

I Examine associations at the group-level, rather than at the
individual-level

I Ecological correlation studies compare group-level health
outcome summaries to group-level predictor variables

I Wakefield (2008)
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Ecological Studies

Examples
I Cancer epidemiology

I breast cancer vs dietary fat in different countries (large areas)
I Environmental epidemiology

I water constituents, air pollution (small areas)
I Sociology

I unemployment or crime and socioeconomic factors
I Political science

I voter registration and race
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Some history
I Durkheim (1897)

I illustrated the ecological fallacy in the setting of a study of suicide
rates and religion

I Robinson (1950)
I showed how the correlation between race and literacy ranged from

0.95 to 0.2, depending on the level of aggregation
I Subramanian et al. (2009b); Oakes (2009); Subramanian et al.

(2009a); Wakefield (2009) provide recent analyses of these data.
I Selvin (1958)

I coined the term ecological fallacy
I “relationships between characteristics of individuals are wrongly

inferred from data about groups”
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Advantages

Scientific
I Suitable and appropriate for group-level associations

I regional air/water pollution regulation

Data considerations
I Ecological data are often relatively easy and cheap to obtain

I air/water pollution data
I US Census online

I Ecological data may be the only available information
I lack of high-quality individual-level information
I confidentiality considerations; may be a researchers only recourse
I rely on census information at the census tract level

Statistical considerations
I Exploit large between-group exposure variation

I e.g. dietary fat intake studies conducted in different countries
I increased power for exposure-response trends when within-area

exposure variation is low
I Exposure subject to certain types of measurement error
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Disadvantages

I Extensive epidemiological literature: Greenland (1992);
Greenland and Robins (1994); Richardson and Monfort (2000);
Wakefield (2004, 2008)

I Observational study design
I Range of additional biases unique to the ecological study design

I both within- and between-area confounding and effect modification
I contextual effects
I lack of mutual standardization
I pure specification bias

I Collective impact is often referred to as ecological bias
I May lead to the phenomenon known as the ecological fallacy

I conclusions drawn on the basis of group-level data are opposite to
those based on an analysis which uses individual-level data
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Ecological regression analysis

I Example from CHS: association between education and mortality
I Let Y = 0/1 be an indicator of death

I within 11 years of follow-up
I Let X denote education (grade)

I 0 = no schooling, . . ., 21 = graduate or professional
I Data from zipcodes with at least 30 study participants

I 27 zipcodes with 2,347 people
I Consider a hypothetical ecological study where we observe:

I Nk , the total number of individuals in area k
I Yk , the total number of diseased individuals in area k
I X k , the average grade across individuals in area k

I Unadjusted risk as a function of average grade, across 27
zipcodes

I Yk/Nk vs X k , k = 1, . . . , 27
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Ecological regression analysis
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Ecological regression analysis

I For a non-rare outcome, we might consider a logistic regression
model:

Yk | X k ∼ Binomial(Nk , pk )

where for k = 1, . . . , 27

log
(

pk

1− pk

)
= β∗

0 + β∗
X X k

I This model yields exp{β̂∗
X } = 0.93, with a 95% CI of (0.89, 0.98)
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Ecological regression analysis

Interpretation?
I pk is an ‘average risk’ in area k
I Comparing the average risk between two groups of individuals

(i.e., zipcodes) whose average education differ by one grade
I What is the mechanism here?
I What are the potential sources of bias?
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Individual-level associations

I Distinguish between the biological (or sociological) effect at the
individual level and the ecological effect at the group level

I Ecological effect may depend on
I magnitude of the biological effect
I degree and pattern of exposure within a group

I Ecological studies do not directly assess links between exposure
and outcome at the level of the individual

I interpretation, in terms of a biological effect, is difficult
I Cross-level inference.

I transfer estimation/inference to the individual level
I Generally, we assess bias with respect to individual-level

associations
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Confounding and Collapsibility
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Confounding and non-collapsability
Causal inference

I Suppose we wish to evaluate the impact of exposure X on
outcome Y in some target population A

I Define

µA0 = E[Y |population A,X = 0]
µA1 = E[Y |population A,X = 1]

I The causal effect is the difference between µA0 and µA1
I for convenience, consider the ratio: µA1/µA0
I other choices; risk difference and odds ratio

I We cannot observe both of these, but we could observe µA1 and,
say,

µB0 = E[Y |population B,X = 0]

I population B is the control or reference population
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Confounding

I We estimate µA1/µA0 via µA1/µB0

I Confounding occurs when µB0 6= µA0
I due to differences between populations A and B
I distorted view of the impact of X on Y

I Greenland et al. (1999)

Practical definition of Confounding
I A variable C which is associated to both X and Y , but not in the

causal pathway and not caused by Y .
I Causal diagram:
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Confounding

Example I
I Association between exposure X and outcome Y , controlling for

a confounder (smoking):
I Smokers:

Y=1 Y =0 Total P(Y =1| X )
X=1 8 2 10 0.80
X=0 18 12 30 0.60

I Non-smokers:
Y=1 Y =0 Total P(Y =1| X )

X=1 9 21 30 0.30
X=0 2 8 10 0.20

I Exposure is harmful
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Confounding

I Suppose we aggregate over the smoking variable:

Y =1 Y =0 Total P(Y =1| X )
X=1 17 23 40 0.43
X=0 20 20 40 0.50

I Exposure is protective
I Direction of the association is reversed:

I imbalance of smoking among the exposure groups

C=1 C=0 Total P(C=1| X )
X=1 10 30 40 0.25
X=0 30 10 40 0.75

I Known as Simpson’s paradox (Simpson, 1951).
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Non-collapsibility

Example II
I Greenland et al. (1999)

I Smokers:
Y=1 Y =0 Total P(Y =1| X )

X=1 80 20 100 0.80
X=0 60 40 100 0.60

I Non-smokers:
Y=1 Y =0 Total P(Y =1| X )

X=1 40 60 100 0.40
X=0 20 80 100 0.20

I Exposure is harmful
I odds ratio = 2.66 in both stratum

I Smoking is not a confounder here
I exposure distribution is the same among smokers and

non-smokers
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Non-collapsibility

I Aggregating yields:

Y =1 Y =0 Total P(Y =1| X )
X=1 120 80 200 0.60
X=0 80 120 200 0.40

I Exposure is still harmful but now the odds ratio = 2.25
I difference even though there is no confounding!

I Phenomenon known as non-collapsability
I Specific to the choice of ‘association’

I non-linearity of the odds ratio
I risk difference is not affected

Bottom line
When we deal with aggregated data, both confounding and
non-collapsability can result in a ‘distorted’ view of the impact of
X on Y .
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Ecological Bias

21 / 42



Ecological confounding

Between-area confounding
I In an ecological study the unit of analysis is a group or area
I Between-area confounding is analogous to conventional

confounding
I control for imbalances in group-level confounder distribution
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Within-area confounding
I In an ecological study, only observe marginal information

I binary exposure X and binary confounder C
C=1 C=0

X=1 N1

X=0 N0

M1 M0
I observe the total number of smokers, M1
I observe the total number exposed, N1

I Unfortunately, don’t observe the number of exposed smokers
I internal cells of the 2×2 table

I Need to be able to control for imbalances in the within-area
distribution of exposures/confounders

I in particular, across areas
I Many ways of filling in the table if we observe just the margins

C=1 C=0
X=1 ?? ?? N1
X=0 ?? ?? N0

M1 M0

We have 3 unknown probabilities but just two pieces of information
(the marginal proportions).
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Contextual effects

I A contextual effect is a characteristic of individuals in a shared
group

I Intuitively, it is not just your own exposure that determines your
own risk but also the exposures of those surrounding you.

I in measurement of school test scores, IQ of classmates is an
example

I Causal interpretation:
I are they real?
I perhaps reflect unmeasured confounders?

I In the social sciences, this aspect has been emphasized
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Contextual effects

I In an aggregate study, one cannot distinguish between
individual-level and contextual effects

I in political science, Y is Republican/Democrat and X is
White/Non-White (say): not possible to distinguish between
individual and contextual race

I Specifically, consider the individual-level models:

E[Yki | Xki ] = β0 + βIXki

E[Yki | X k ] = β0 + βCX k

for individual’s i in areas k
I Under aggregation:

E[Y k | X k ] = β0 + β1X k

so we can’t tell which individual model is appropriate from the
ecological data alone
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Contextual effects
Example

I Suppose interest lies in the association between income, X , and
blood pressure, Y

I Consider the linear model

E[Yki | Xki ,X k ] = β0 + βW (Xki − X k ) + βBX k

I i th individual in area k
I Parameter interpretation:

I βW is the effect of within-group income
I βB is the effect of between-group income, i.e. the contextual effect

I In the setting of an ecological study, we would aggregate to
obtain the induced model:

E[Yk | X k ] = β0 + βBX k

I only estimate the contextual effect
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Mutual standardization

I Standardization is a common technique to adjusting potential
confounding.

I In some circumstances, disease rates are published after having
been standardized to a particular population

I care need to be taken to ensure that the ecological exposure data
is also standardized to the same population

I likely be an issue when data are obtained from different sources
I For example, suppose we wish to examine the association

between poverty and disease risk, controlling for age (J age
bands)

I Area-specific, age-standardized disease rate

R∗
k =

J∑
j=1

wjRkj

I wj is the proportion of a standard population in age band j
I Rkj is the disease rate in the j th age band in the k th area
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Mutual standardization

I Let Xk denote the (raw) proportion below the poverty line in area
k

I if we use this to estimate an association, bias will result
I must standardize X to the same population
I need to calculate

X∗
k =

J∑
j=1

wjXkj

I Xkj is the proportion below the poverty line in the j th age band in the
k th area
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Pure specification bias

I Suppose the individual-level disease model is of the form:

P(Yki = 1| Xki) = exp{β0 + βXXki}

I i th individual in area k
I exp{βX} is the relative risk associated with a unit increase in X

I In an ecological study we may only observe

Total diseased : Yk =

Nk∑
i=1

Yki

Average exposure : X k =
1

Nk

Nk∑
i=1

Xki

I Nk is the total number of individuals in area k
I Tempting to fit a log-linear model on the group-level data

E[Yk | X k ] = Nk exp{β∗
0 + β∗

X X k}
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Pure specification bias
Question When is β∗

X = βX ?
I Consider the aggregate risk model induced by the

individual-level model
I average risk in area k

P(Y = 1| area k) =
1

Nk

Nk∑
i=1

exp{β0 + βXXki}

I depends on all the Xki within area k
I Investigate various scenarios by assuming within-area exposures

follow a normal distribution; Normal(X k , σ2
k )

I For large Nk , the induced aggregate risk model is approximately

P(Y = 1| area k) ≈ exp

{
β0 + βXX k +

β2
Xσ

2
k

2

}
I if σ2

k = 0 then we can fit the ecological regression model
I we could fit this model if we observed information on the

within-area exposure variability, σ2
k

I need more than just the area-specific mean exposure, X k
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Pure specification bias

I Suppose the variance is a function of the mean (often b > 0 for
environmental pollutants):

σ2
k = a + bX k

I The aggregate risk model reduces to

E[Yk | X k ] = Nk exp{β∗
0 + β∗

X X k}

where

β∗
0 = β0 +

aβ2
X

2
, β∗

X = βX +
bβ2

X

2
I If there is no mean-variance relationship (i.e. b = 0), there is no

bias
I Suppose βX > 0

I if b > 0, the relative risk is overestimated
I if b < 0, the relative risk is decreased and may change sign

I Suppose βX < 0
I if b > 0, the relative risk is increased and may change sign
I if b < 0, the relative risk is underestimated
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Illustration
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I Variance increases with the mean; b > 0
I the values of X k for 3 areas are shown
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CHS example

Mean-variance relationship for grade within 27 zipcodes

Variance decreases with the mean; b < 0:

I less variation in ‘more educated’ zipcodes
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CHS example

Ecological regression
I Recall that we earlier fitted the logistic model:

Yk | X k ∼ Binomial(Nk , pk )

where

log
(

pk

1− pk

)
= β∗

0 + β∗
X X k

I yields: exp{β̂X
∗} = 0.93; 95% CI (0.89, 0.98)

34 / 42



CHS example

Individual-level analysis
I Now let’s fit the individual-level logistic model:

log
(

pki

1− pki

)
= β0 + βXXki

I pki = P(Yki = 1| Xki); no longer modeling the ‘average risk’
I yields: exp{β̂X} = 0.97; 95% CI (0.95, 0.99)
I ecological study overestimates the protective effect of education
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Other Issues
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Semi-ecological studies

I The fundamental challenge with ecological studies is
characterizing within-area exposure/confounder distributions

I Often one might have access to individual-level outcomes and
individual-level confounder information, but only group-level
exposure information

I e.g., air pollution studies
I Referred to as a semi-ecological study

I Kunzli and Tager (1997)
I they use the term semi-individual study

I Certainly superior to a fully ecological design
I Only having ecological data for the exposure of interest remains

a drawback
I little work has been carried out to understand the implications
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Study design summary

I Very useful categorization:
I at which level do we have information on disease and exposure?

Exposure
Individual Ecological

Disease Individual Individual Semi-ecological
Ecological Aggregate Ecological

I Sheppard (2003)
I Individual encompasess all the usual designs

I randomized clinical trial, cohort study, case-control study, etc
I The Aggregate study (Prentice and Sheppard, 1995; Sheppard

et al., 1996) assumes knowledge on the joint
exposure/confounder distribution

I obtained via sample survey
I tackle within-area confounding
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Infectious Diseases

I With Leigh Fisher, I’ve looked at ecological bias in the context of
infectious diseases (Fisher and Wakefield, 2020).

I Suppose we have weekly (say) incident counts Yt , in an area
with a proportion vaccinated x .

I A naive model is

Yt+1|Yt ∼ Poisson(λYt exp(−βx) + δ),

or
Yt+1|Yt ∼ Poisson(λYt(1− x)α + δ),

see for example Herzog et al. (2011).
I A model that respects the aggregation is

Yt+1|Yt ∼ Poisson(λYt(1− φx) + δ).
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Summary/concluding comments

Cheap and practical design
I Data availability (or lack thereof) is the primary motivation

Individual-level associations
I Reconcile the level of scientific interest with the level of analysis

I if the level of interest is the group level then the ecological design is
appropriate

I Fundamental problem of not being able to characterize
within-area exposure/confounder distributions

I cannot control for within-area confounding
I cannot assess contextual effects
I cannot perform adequate model checking

I Loss of information is analogous to unmeasured confounding
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Summary/concluding comments

Statistical Considerations
I Key is to collect additional information

I use of two-phase methods, e.g. Breslow and Chatterjee (1999),
Ross and Wakefield (2013)

I use of case-control samples within areas (Haneuse and Wakefield,
2007, 2008a,b)

I Multi-level modeling allows dependence/correlation at difference
levels of the data

I towards getting valid standard errors
I cannot sort out ecological bias
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Summary/concluding comments

Statistical Considerations
I Much recent work has focused on accounting for ‘spatial’

correlation
I typically of secondary importance (Wakefield, 2007)
I Doesn’t address critical problems of confounding
I Wakefield and Smith (2016) is a recent review of statistical

issues for an epidemiological audience
Summary

I Ecological studies can add to the totality of evidence, but alone
are susceptible to a broad range of biases

42 / 42



References

Breslow, N. and N. Chatterjee (1999). Design and analysis of
two-phase studies with binary outcomes applied to Wilms’ tumor
prognosis. Applied Statistics 48, 457–468.

Durkheim, E. (1897). Le Suicide. Paris: Alcan.
Fisher, L. and J. Wakefield (2020). Ecological inference for infectious

disease data, with application to vaccination strategies. Statistics in
Medicine 39, 220–238.

Greenland, S. (1992). Divergent biases in ecologic and
individual-level studies. Statistics in Medicine 11, 1209–1223.

Greenland, S. and J. Robins (1994). Ecologic studies – Biases,
misconceptions, and counterexamples (Disc: p761-771). American
Journal of Epidemiology 139, 747–760.

Greenland, S., J. Robins, and J. Pearl (1999). Confounding and
collapsability in causal inference. Statistical Science 14, 29–46.

Haneuse, S. and J. Wakefield (2007). Hierarchical models for
combining ecological and case-control data. Biometrics 63,
128–136.

Haneuse, S. and J. Wakefield (2008a). The combination of ecological
and case-control data. Journal of the Royal Statistical Society,
Series B 70, 73–93.

42 / 42



Haneuse, S. and J. Wakefield (2008b). Geographic-based ecological
correlation studies using supplemental case-control data. Statistics
in Medicine 27, 864–887.

Herzog, S., M. Paul, and L. Held (2011). Heterogeneity in vaccination
coverage explains the size and occurrence of measles epidemics in
German surveillance data. Epidemiology and Infection 139,
505–515.

Künzli, N. and I. B. Tager (1997). The semi-individual study in air
pollution epidemiology: A valid design as compared to ecological
studies. Environmetal Health Perspectives 105(10), 1078–1083.

Oakes, J. (2009). Commentary: Individual, ecological and multilevel
fallacies. International Journal of Epidemiology 38, 361–368.

Prentice, R. L. and L. Sheppard (1995). Aggregate data studies of
disease risk factors. Biometrika 82, 113–125.

Richardson, S. and C. Monfort (2000). Ecological correlation studies.
In P. Elliott, J. Wakefield, N. Best, and D. Briggs (Eds.), Spatial
Epidemiology: Methods and Applications, pp. 205–220. Oxford:
Oxford University Press.

Robinson, W. (1950). Ecological correlations and the behaviour of
individuals. Am. Sociol. Rev. 15, 351–357.

42 / 42



Ross, M. and J. Wakefield (2013). Bayesian inference for two-phase
studies with categorical covariates. Biometrics 69, 469–477.

Selvin, H. (1958). Durkheim’s ‘suicide’ and problems of empirical
research. American Journal of Sociology 63, 607–619.

Sheppard, L. (2003). Insights on bias and information in group-level
studies. Biostatistics 4, 265–278.

Sheppard, L., R. L. Prentice, and M. A. Rossing (1996). Design
considerations for estimation of exposure effects on disease risk,
using aggregate data studies. Statistics in Medicine 15,
1849–1858.

Simpson, E. (1951). The interpretation of interaction in contingency
tables. Journal of the Royal Statistical Society, Series B 13,
238–241.

Subramanian, S., K. Jones, A. Kaddour, and N. Krieger (2009a).
Response: The value of a historically informed multilevel analysis
of robinson’s data. International Journal of Epidemiology 38,
379–373.

Subramanian, S., K. Jones, A. Kaddour, and N. Krieger (2009b).
Revisiting Robinson: the perils of individualistic and ecologic
fallacy. International Journal of Epidemiology 38, 342–360.

42 / 42



Wakefield, J. (2004). A critique of statistical aspects of ecological
studies in spatial epidemiology. Environmental and Ecological
Statistics 11, 31–54.

Wakefield, J. (2007). Disease mapping and spatial regression with
count data. Biostatistics 8, 158–183.

Wakefield, J. (2008). Ecologic studies revisited. Annual Review of
Public Health 29, 75–90.

Wakefield, J. (2009). Multi-level modelling, the ecologic fallacy, and
hybrid study designs. International Journal of Epidemiology 38,
330–336.

Wakefield, J. and T. Smith (2016). Ecological modeling: general
issues. In A. Lawson, S. Banerjee, R. Haining, and L. Ugarte
(Eds.), Handbook of Spatial Epidemiology, pp. 112–130. CRC
Press.

42 / 42


	Motivation
	Confounding and Collapsibility
	Ecological Bias
	Other Issues

