2021 SISMID Module 5 Lecture 8: Ecological Studies

Jon Wakefield and Lance Waller

Departments of Statistics and Biostatistics University of Washington

Motivation

Confounding and Collapsibility

Ecological Bias

Other Issues

Motivation

Data are available on groups of individuals

- rather that the individuals themselves
- common grouping is based on geographic location; areas
- Examine associations at the group-level, rather than at the individual-level
- Ecological correlation studies compare group-level health outcome summaries to group-level predictor variables
 - Wakefield (2008)

Examples

- Cancer epidemiology
 - breast cancer vs dietary fat in different countries (large areas)
- Environmental epidemiology
 - water constituents, air pollution (small areas)
- Sociology
 - unemployment or crime and socioeconomic factors
- Political science
 - voter registration and race

Some history

- Durkheim (1897)
 - illustrated the ecological fallacy in the setting of a study of suicide rates and religion
- Robinson (1950)
 - showed how the correlation between race and literacy ranged from 0.95 to 0.2, depending on the level of aggregation
 - Subramanian et al. (2009b); Oakes (2009); Subramanian et al. (2009a); Wakefield (2009) provide recent analyses of these data.
- Selvin (1958)
 - coined the term ecological fallacy
 - "relationships between characteristics of individuals are wrongly inferred from data about groups"

Advantages

Scientific

- Suitable and appropriate for group-level associations
 - regional air/water pollution regulation

Data considerations

- Ecological data are often relatively easy and cheap to obtain
 - air/water pollution data
 - US Census online
- Ecological data may be the only available information
 - lack of high-quality individual-level information
 - confidentiality considerations; may be a researchers only recourse
 - rely on census information at the census tract level

Statistical considerations

- Exploit large between-group exposure variation
 - e.g. dietary fat intake studies conducted in different countries
 - increased power for exposure-response trends when within-area exposure variation is low
- Exposure subject to certain types of measurement error

- Extensive epidemiological literature: Greenland (1992); Greenland and Robins (1994); Richardson and Monfort (2000); Wakefield (2004, 2008)
- Observational study design
- Range of additional biases unique to the ecological study design
 - both within- and between-area confounding and effect modification
 - contextual effects
 - lack of mutual standardization
 - pure specification bias
- Collective impact is often referred to as *ecological bias*
- ► May lead to the phenomenon known as the *ecological fallacy*
 - conclusions drawn on the basis of group-level data are opposite to those based on an analysis which uses individual-level data

Ecological regression analysis

- Example from CHS: association between education and mortality
- Let Y = 0/1 be an indicator of death
 - within 11 years of follow-up
- Let X denote education (grade)
 - 0 = no schooling, ..., 21 = graduate or professional
- Data from zipcodes with at least 30 study participants
 - 27 zipcodes with 2,347 people
- Consider a hypothetical ecological study where we observe:
 - N_k , the total number of individuals in area k
 - Y_k , the total number of diseased individuals in area k
 - \overline{X}_k , the average grade across individuals in area k
- Unadjusted risk as a function of average grade, across 27 zipcodes
 - Y_k/N_k vs \overline{X}_k , k = 1, ..., 27

Ecological regression analysis

Average grade

For a non-rare outcome, we might consider a logistic regression model:

$$Y_k | \overline{X}_k \sim \text{Binomial}(N_k, p_k)$$

where for k = 1, ..., 27

$$\log\left(\frac{p_k}{1-p_k}\right) = \beta_0^* + \beta_x^* \overline{X}_k$$

• This model yields $\exp{\{\hat{\beta}_x^*\}} = 0.93$, with a 95% CI of (0.89, 0.98)

Interpretation?

- p_k is an 'average risk' in area k
- Comparing the average risk between two groups of individuals (i.e., zipcodes) whose average education differ by one grade
- What is the mechanism here?
- What are the potential sources of bias?

- Distinguish between the *biological* (or sociological) effect at the individual level and the *ecological* effect at the group level
- Ecological effect may depend on
 - magnitude of the biological effect
 - degree and pattern of exposure within a group
- Ecological studies do not directly assess links between exposure and outcome at the level of the individual
 - interpretation, in terms of a biological effect, is difficult
- Cross-level inference.
 - transfer estimation/inference to the individual level
- Generally, we assess bias with respect to individual-level associations

Confounding and Collapsibility

Confounding and non-collapsability

Causal inference

Suppose we wish to evaluate the impact of exposure X on outcome Y in some target population A

Define

$$\mu_{A0} = \mathsf{E}[Y|\text{population } A, X = 0]$$

$$\mu_{A1} = \mathsf{E}[Y|\text{population } A, X = 1]$$

• The *causal effect* is the difference between μ_{A0} and μ_{A1}

- for convenience, consider the ratio: μ_{A1}/μ_{A0}
- other choices; risk difference and odds ratio
- We cannot observe both of these, but we could observe μ_{A1} and, say,

 $\mu_{B0} = E[Y|population B, X = 0]$

population B is the control or reference population

Confounding

- We estimate μ_{A1}/μ_{A0} via μ_{A1}/μ_{B0}
- Confounding occurs when $\mu_{B0} \neq \mu_{A0}$
 - due to differences between populations A and B
 - distorted view of the impact of X on Y
- Greenland et al. (1999)

Practical definition of Confounding

- ► A variable *C* which is associated to both *X* and *Y*, but not in the causal pathway and not caused by *Y*.
- Causal diagram:

Example I

- Association between exposure X and outcome Y, controlling for a confounder (smoking):
 - Smokers:

	Y=1	<i>Y</i> =0	Total	P(Y=1 X)
X=1	8	2	10	0.80
<i>X</i> =0	18	12	30	0.60

Non-smokers:

	Y=1	<i>Y</i> =0	Total	P(<i>Y</i> =1 <i>X</i>)
<i>X</i> =1	9	21	30	0.30
X=0	2	8	10	0.20

Exposure is harmful

Suppose we aggregate over the smoking variable:

	<i>Y</i> =1	<i>Y</i> =0	Total	$P(Y=1 \mid X)$
X=1	17	23	40	0.43
X=0	20	20	40	0.50

- Exposure is protective
- Direction of the association is reversed:
 - imbalance of smoking among the exposure groups

	<i>C</i> =1	<i>C</i> =0	Total	P(<i>C</i> =1 <i>X</i>)
<i>X</i> =1	10	30	40	0.25
X=0	30	10	40	0.75

► Known as *Simpson's paradox* (Simpson, 1951).

Example II

- Greenland et al. (1999)
 - Smokers:

	Y=1	Y=0	Total	$P(Y=1 \mid X)$
X=1	80	20	100	0.80
<i>X</i> =0	60	40	100	0.60

Non-smokers:

	Y=1	Y=0	Total	$P(Y=1 \mid X)$
X=1	40	60	100	0.40
<i>X</i> =0	20	80	100	0.20

- Exposure is harmful
 - odds ratio = 2.66 in both stratum
- Smoking is not a confounder here
 - exposure distribution is the same among smokers and non-smokers

Aggregating yields:

	<i>Y</i> =1	<i>Y</i> =0	Total	$P(Y=1 \mid X)$
X=1	120	80	200	0.60
X=0	80	120	200	0.40

Exposure is still harmful but now the odds ratio = 2.25

- difference even though there is no confounding!
- Phenomenon known as non-collapsability
- Specific to the choice of 'association'
 - non-linearity of the odds ratio
 - risk difference is not affected

Bottom line

When we deal with aggregated data, both confounding and non-collapsability can result in a 'distorted' view of the impact of X on Y.

Ecological Bias

Between-area confounding

- In an ecological study the unit of analysis is a group or area
- Between-area confounding is analogous to conventional confounding
 - control for imbalances in group-level confounder distribution

Within-area confounding

- ► In an ecological study, only observe marginal information
 - binary exposure X and binary confounder C

- observe the total number of smokers, M₁
- observe the total number exposed, N₁
- Unfortunately, don't observe the number of exposed smokers
 - internal cells of the 2×2 table
- Need to be able to control for imbalances in the within-area distribution of exposures/confounders
 - in particular, across areas
- Many ways of filling in the table if we observe just the margins

$$\begin{array}{c|cccc} & C = 1 & C = 0 \\ X = 1 & \hline ?? & ?? \\ X = 0 & \hline ?? & ?? \\ \hline M_1 & M_0 \end{array} N_0$$

We have 3 unknown probabilities but just two pieces of information (the marginal proportions).

- A contextual effect is a characteristic of individuals in a shared group
- Intuitively, it is not just your own exposure that determines your own risk but also the exposures of those surrounding you.
 - in measurement of school test scores, IQ of classmates is an example
- Causal interpretation:
 - are they real?
 - perhaps reflect unmeasured confounders?
- In the social sciences, this aspect has been emphasized

Contextual effects

- In an aggregate study, one cannot distinguish between individual-level and contextual effects
 - in political science, Y is Republican/Democrat and X is White/Non-White (say): not possible to distinguish between individual and contextual race
 - Specifically, consider the individual-level models:

$$\begin{aligned} \mathsf{E}[Y_{ki} | X_{ki}] &= \beta_0 + \beta_I X_{ki} \\ \mathsf{E}[Y_{ki} | \overline{X}_k] &= \beta_0 + \beta_C \overline{X}_k \end{aligned}$$

for individual's *i* in areas *k*

Under aggregation:

$$\mathsf{E}[\overline{Y}_k | \overline{X}_k] = \beta_0 + \beta_1 \overline{X}_k$$

so we can't tell which individual model is appropriate from the ecological data alone

Contextual effects

Example

- Suppose interest lies in the association between income, X, and blood pressure, Y
- Consider the linear model

$$\mathsf{E}[Y_{ki}|X_{ki},\overline{X}_{k}] = \beta_{0} + \beta_{W}(X_{ki}-\overline{X}_{k}) + \beta_{B}\overline{X}_{k}$$

- *ith* individual in area k
- Parameter interpretation:
 - β_W is the effect of *within*-group income
 - β_B is the effect of *between*-group income, i.e. the contextual effect
- In the setting of an ecological study, we would aggregate to obtain the *induced* model:

$$\mathsf{E}[Y_k | \overline{X}_k] = \beta_0 + \beta_B \overline{X}_k$$

only estimate the contextual effect

Mutual standardization

- Standardization is a common technique to adjusting potential confounding.
- In some circumstances, disease rates are published after having been standardized to a particular population
 - care need to be taken to ensure that the ecological exposure data is also standardized to the same population
 - likely be an issue when data are obtained from different sources
- For example, suppose we wish to examine the association between poverty and disease risk, controlling for age (*J* age bands)
- Area-specific, age-standardized disease rate

$$R_k^* = \sum_{j=1}^J w_j R_{kj}$$

- *w_j* is the proportion of a standard population in age band *j*
- R_{kj} is the disease rate in the j^{th} age band in the k^{th} area

- Let X_k denote the (raw) proportion below the poverty line in area k
 - if we use this to estimate an association, bias will result
 - must standardize X to the same population
 - need to calculate

$$X_k^* = \sum_{j=1}^J w_j X_{kj}$$

• X_{kj} is the proportion below the poverty line in the j^{th} age band in the k^{th} area

Pure specification bias

Suppose the individual-level disease model is of the form:

$$\mathsf{P}(Y_{ki} = 1 | X_{ki}) = \exp\{\beta_0 + \beta_X X_{ki}\}$$

ith individual in area k

• $\exp{\{\beta_X\}}$ is the relative risk associated with a unit increase in X

In an ecological study we may only observe

Total diseased :
$$Y_k = \sum_{i=1}^{N_k} Y_{ki}$$

Average exposure : $\overline{X}_k = \frac{1}{N_k} \sum_{i=1}^{N_k} X_{ki}$

N_k is the total number of individuals in area k

Tempting to fit a log-linear model on the group-level data

$$\mathsf{E}[Y_k | \overline{X}_k] = N_k \exp\{\beta_0^* + \beta_x^* \overline{X}_k\}$$

Pure specification bias

Question When is $\beta_x^* = \beta_x$?

- Consider the aggregate risk model induced by the individual-level model
 - average risk in area k

$$P(Y = 1 | \text{ area } k) = \frac{1}{N_k} \sum_{i=1}^{N_k} \exp\{\beta_0 + \beta_X X_{ki}\}$$

- depends on all the X_{ki} within area k
- For large N_k , the *induced* aggregate risk model is approximately

$$\mathsf{P}(Y=1| \operatorname{area} k) \approx \exp\left\{\beta_0 + \beta_{\mathsf{X}} \overline{X}_k + \frac{\beta_{\mathsf{X}}^2 \sigma_k^2}{2}\right\}$$

- if $\sigma_k^2 = 0$ then we can fit the ecological regression model
- we could fit this model if we observed information on the within-area exposure variability, σ²_k
- need more than just the area-specific mean exposure, \overline{X}_k

Pure specification bias

Suppose the variance is a function of the mean (often b > 0 for environmental pollutants):

$$\sigma_k^2 = a + b\overline{X}_k$$

The aggregate risk model reduces to

$$\mathsf{E}[Y_k | \overline{X}_k] = N_k \exp\{\beta_0^* + \beta_x^* \overline{X}_k\}$$

where

$$\beta_{0}^{*} = \beta_{0} + \frac{a\beta_{x}^{2}}{2}, \quad \beta_{x}^{*} = \beta_{x} + \frac{b\beta_{x}^{2}}{2}$$

- If there is no mean-variance relationship (i.e. b = 0), there is no bias
- Suppose $\beta_x > 0$
 - ▶ if *b* > 0, the relative risk is *overestimated*
 - ▶ if *b* < 0, the relative risk is *decreased* and may change sign
- Suppose $\beta_x < 0$
 - if b > 0, the relative risk is *increased* and may change sign
 - ▶ if *b* < 0, the relative risk is *underestimated*

- Variance increases with the mean; b > 0
 - the values of \overline{X}_k for 3 areas are shown

CHS example

Mean-variance relationship for grade within 27 zipcodes

Variance decreases with the mean; b < 0:

less variation in 'more educated' zipcodes

Mean grade

Ecological regression

Recall that we earlier fitted the logistic model:

$$Y_k | \overline{X}_k \sim \text{Binomial}(N_k, p_k)$$

where

$$\log\left(\frac{p_k}{1-p_k}\right) = \beta_0^* + \beta_x^* \overline{X}_k$$

Individual-level analysis

Now let's fit the individual-level logistic model:

$$\log\left(\frac{p_{ki}}{1-p_{ki}}\right) = \beta_0 + \beta_X X_{ki}$$

- $p_{ki} = P(Y_{ki} = 1 | X_{ki})$; no longer modeling the 'average risk'
- yields: $\exp{\{\hat{\beta}_x\}} = 0.97$; 95% CI (0.95, 0.99)
- ecological study overestimates the protective effect of education

Other Issues

- The fundamental challenge with ecological studies is characterizing within-area exposure/confounder distributions
- Often one might have access to individual-level outcomes and individual-level confounder information, but only group-level exposure information
 - e.g., air pollution studies
- Referred to as a semi-ecological study
 - Kunzli and Tager (1997)
 - they use the term semi-individual study
- Certainly superior to a fully ecological design
- Only having ecological data for the exposure of interest remains a drawback
 - little work has been carried out to understand the implications

Study design summary

- Very useful categorization:
 - at which level do we have information on disease and exposure?

		Exposure		
		Individual	Ecological	
<u>Disease</u>	Individual	Individual	Semi-ecological	
	Ecological	Aggregate	Ecological	

- Sheppard (2003)
- Individual encompasess all the usual designs
 - randomized clinical trial, cohort study, case-control study, etc
- The Aggregate study (Prentice and Sheppard, 1995; Sheppard et al., 1996) assumes knowledge on the joint exposure/confounder distribution
 - obtained via sample survey
 - tackle within-area confounding

- With Leigh Fisher, I've looked at ecological bias in the context of infectious diseases (Fisher and Wakefield, 2020).
- Suppose we have weekly (say) incident counts Y_t, in an area with a proportion vaccinated x.
- A naive model is

 $Y_{t+1}|Y_t \sim \text{Poisson}(\lambda Y_t \exp(-\beta x) + \delta),$

or

$$Y_{t+1}|Y_t \sim \text{Poisson}(\lambda Y_t(1-x)^{\alpha} + \delta),$$

see for example Herzog et al. (2011).

A model that respects the aggregation is

$$Y_{t+1}|Y_t \sim \text{Poisson}(\lambda Y_t(1 - \phi x) + \delta).$$

Cheap and practical design

Data availability (or lack thereof) is the primary motivation

Individual-level associations

- Reconcile the level of scientific interest with the level of analysis
 - if the level of interest is the group level then the ecological design is appropriate
- Fundamental problem of not being able to characterize within-area exposure/confounder distributions
 - cannot control for within-area confounding
 - cannot assess contextual effects
 - cannot perform adequate model checking
- Loss of information is analogous to unmeasured confounding

Statistical Considerations

- Key is to collect additional information
 - use of two-phase methods, e.g. Breslow and Chatterjee (1999), Ross and Wakefield (2013)
 - use of case-control samples within areas (Haneuse and Wakefield, 2007, 2008a,b)
- Multi-level modeling allows dependence/correlation at difference levels of the data
 - towards getting valid standard errors
 - cannot sort out ecological bias

Statistical Considerations

- Much recent work has focused on accounting for 'spatial' correlation
- typically of secondary importance (Wakefield, 2007)
- Doesn't address critical problems of confounding
- Wakefield and Smith (2016) is a recent review of statistical issues for an epidemiological audience

Summary

 Ecological studies can add to the totality of evidence, but alone are susceptible to a broad range of biases

References

- Breslow, N. and N. Chatterjee (1999). Design and analysis of two-phase studies with binary outcomes applied to Wilms' tumor prognosis. *Applied Statistics 48*, 457–468.
- Durkheim, E. (1897). Le Suicide. Paris: Alcan.
- Fisher, L. and J. Wakefield (2020). Ecological inference for infectious disease data, with application to vaccination strategies. *Statistics in Medicine 39*, 220–238.
- Greenland, S. (1992). Divergent biases in ecologic and individual-level studies. *Statistics in Medicine 11*, 1209–1223.
- Greenland, S. and J. Robins (1994). Ecologic studies Biases, misconceptions, and counterexamples (Disc: p761-771). *American Journal of Epidemiology 139*, 747–760.
- Greenland, S., J. Robins, and J. Pearl (1999). Confounding and collapsability in causal inference. *Statistical Science* 14, 29–46.
- Haneuse, S. and J. Wakefield (2007). Hierarchical models for combining ecological and case-control data. *Biometrics 63*, 128–136.
- Haneuse, S. and J. Wakefield (2008a). The combination of ecological and case-control data. *Journal of the Royal Statistical Society, Series B 70*, 73–93.

- Haneuse, S. and J. Wakefield (2008b). Geographic-based ecological correlation studies using supplemental case-control data. *Statistics in Medicine 27*, 864–887.
- Herzog, S., M. Paul, and L. Held (2011). Heterogeneity in vaccination coverage explains the size and occurrence of measles epidemics in German surveillance data. *Epidemiology and Infection 139*, 505–515.
- Künzli, N. and I. B. Tager (1997). The semi-individual study in air pollution epidemiology: A valid design as compared to ecological studies. *Environmetal Health Perspectives 105*(10), 1078–1083.
- Oakes, J. (2009). Commentary: Individual, ecological and multilevel fallacies. *International Journal of Epidemiology 38*, 361–368.
- Prentice, R. L. and L. Sheppard (1995). Aggregate data studies of disease risk factors. *Biometrika 82*, 113–125.
- Richardson, S. and C. Monfort (2000). Ecological correlation studies. In P. Elliott, J. Wakefield, N. Best, and D. Briggs (Eds.), *Spatial Epidemiology: Methods and Applications*, pp. 205–220. Oxford: Oxford University Press.
- Robinson, W. (1950). Ecological correlations and the behaviour of individuals. *Am. Sociol. Rev.* 15, 351–357.

- Ross, M. and J. Wakefield (2013). Bayesian inference for two-phase studies with categorical covariates. *Biometrics 69*, 469–477.
- Selvin, H. (1958). Durkheim's 'suicide' and problems of empirical research. *American Journal of Sociology 63*, 607–619.
- Sheppard, L. (2003). Insights on bias and information in group-level studies. *Biostatistics* 4, 265–278.
- Sheppard, L., R. L. Prentice, and M. A. Rossing (1996). Design considerations for estimation of exposure effects on disease risk, using aggregate data studies. *Statistics in Medicine 15*, 1849–1858.
- Simpson, E. (1951). The interpretation of interaction in contingency tables. *Journal of the Royal Statistical Society, Series B 13*, 238–241.
- Subramanian, S., K. Jones, A. Kaddour, and N. Krieger (2009a). Response: The value of a historically informed multilevel analysis of robinson's data. *International Journal of Epidemiology 38*, 379–373.
- Subramanian, S., K. Jones, A. Kaddour, and N. Krieger (2009b). Revisiting Robinson: the perils of individualistic and ecologic fallacy. *International Journal of Epidemiology 38*, 342–360.

- Wakefield, J. (2004). A critique of statistical aspects of ecological studies in spatial epidemiology. *Environmental and Ecological Statistics* 11, 31–54.
- Wakefield, J. (2007). Disease mapping and spatial regression with count data. *Biostatistics 8*, 158–183.
- Wakefield, J. (2008). Ecologic studies revisited. *Annual Review of Public Health 29*, 75–90.
- Wakefield, J. (2009). Multi-level modelling, the ecologic fallacy, and hybrid study designs. *International Journal of Epidemiology 38*, 330–336.
- Wakefield, J. and T. Smith (2016). Ecological modeling: general issues. In A. Lawson, S. Banerjee, R. Haining, and L. Ugarte (Eds.), *Handbook of Spatial Epidemiology*, pp. 112–130. CRC Press.