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Overview of Clustering

Background reading: Chapter 8 of Elliott et al. (2000) and Chapters 6
and 7 of Waller and Gotway (2004).

We begin with an obvious statement: the distribution of the population
across space is not uniform, and so even if cases occur completely at
random amongst the population, the pattern of cases will not be
uniform.

Informally clustering occurs when the spatial pattern of the cases is
more “clumped” than the non-cases.

Mechanisms for clustering:
I Infectious diseases.
I Genetics.
I Risk factors, measured or unmeasured.
I Data anomalies (which may have spatial pattern).
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A Definition of Clustering

(My) Definition of clustering: A disease exhibits spatial clustering
if there is epidemiologically-significant local spatial variation in
residual risk.

I Residual here acknowledges that known risk factors (e.g. age,
gender) have been accounted for.

I Local recognizes that clustering is not simply large-scale trends.
This is a subjective description.

I The epidemiologically-significant part is clearly also subjective
but acknowledges that there will always be some level of residual
variability.

I This definition is relative to the data we collect, and is not
necessarily an intrinsic characteristic of the disease. For
example, a particular set of data may have missing confounders,
which induce clustering.
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A Definition of a Cluster

(My) Definition of a cluster: If a disease has increased residual risk
in an area then this will lead in expectation to an ‘excess’ of
cases – such a collection of cases is what we define as a cluster.

I With this definition a cluster may be over a very large
geographical area – some previous epidemiological definitions of
a cluster are in terms of a realization of cases that are close in
space.

I For example, Knox (1989) gives the definition, “a cluster is a
geographically bounded group of occurrences of sufficient size
and concentration to be unlikely to have occurred by chance”.

I If a disease exhibits clustering then this may result in multiple
clusters.

I Surveillance systems are built around cluster detection.
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Running Example

We analyze data previously examined by Cressie (1991).

The data set also contains a neighbor list and data are available on
the numbers of cases and on the number of births, both dichotomized
by a binary indicator of race.
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Figure 1: SIDS SMRs in North Carolina.
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Clustering for Count Data
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Overdispersion and Spatial Dependence

We first look at measures of overdispersion and spatial dependence
for count data.

Due to unmeasured risk factors, data anomalies and within-area
variability in confounders/exposures, it is usual for count data to
exhibit overdispersion.

Overdispersion with rare events in the form of counts is often known
as excess-Poisson variability, that is, independent counts with
var(Yi ) > E[Yi ] for i = 1, . . . ,n.

Spatial dependence is a different concept, namely, dependence
between Yi and Yj that depends on the geographical positions of
areas indexed by i and j , i , j = 1, . . . ,n, i 6= j .
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Overdispersion

If we find evidence in the data that overdispersion is present then this
is telling us that the data are not following the (Poisson) model that is
often assumed.

The discrepancies may occur due to:
I unmeasured risk factors,
I the latter include infectious agents (which will often lead to

spatial dependence also),
I data anomalies include under/count of disease cases and

populations at risk,
I inaccurately measured exposures,
I model inadequacies.

We describe a number of statistics that may be used in exploratory
analyses.
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Methods for Detecting Overdispersion: Pearson’s χ2

I Pearson’s chi-squared statistic is one measure of overdispersion.
I Suppose we fit the quasi-likelihood model:

E[Yi ] = Eiθi

var(Yi ) = κ× E[Yi ],

where θi = exp(β0 + x T
i β1) with dim(β1) = p − 1.

I Then a common approach (for example, as described in
McCullagh and Nelder, 1989) is to estimate the overdispersion
via Pearson’s chi-squared statistic

κ̂ =
1

n − p

n∑
i=1

(Yi − Ei θ̂i )
2

Ei θ̂i
. (1)

where p is the number of parameters in β = [β0,β1].
I A large value of κ means subnational variation in risk, which may

be subsequently analyzed to gauge spatial dependence.
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Autocorrelation Statistics for Assessment of Clustering
of Count Data

A number of approaches have been suggested for measuring spatial
autocorrelation – these are global measures and so address
“clustering” and not “cluster detection”.

A large number of statistics have been suggested to assess global
clustering, and are typically of the form:

T = c

∑n
i=1
∑n

j=1 wij × Similarij∑n
i=1
∑n

j=1 wij
(2)

where
I c does not depend on the area i ,
I n is the number of areas,
I wij is a weight reflecting the proximity between areas i and j , and
I Similarij is a measure of the similarity between data values Zi

and Zj in areas i and j .
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Assessing Significance

For many common choices the mean and variance of the statistics
under the null of no clustering are available, and asymptotic normality
may be appealed to under certain assumptions – not reliable and to
be avoided.

In a permutation test approach (also known as a randomization or
exact test) a test statistic is evaluated under all possible permutations
of the data.

Unless the data set is small this is usually too computationally
expensive, and so under a Monte Carlo test the distribtion of the test
statistic is evaluated under a large number of randomizations.

In a Monte Carlo approach the data Zi , i = 1, . . . ,n, may be
repeatedly randomly assigned to different areas, and the statistic
calculated under each assignment, yielding a comparison distribution.

Under a bootstrap approach the data are sampled, with replacement
from the observed data.
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Measures of Proximity

As with disease mapping there are various ways of measuring the
‘closeness’ of two areas, for example:

I Take wij = 1 if areas i and j are adjacent (i.e. have a boundary in
common) and 0 otherwise.

I In the previous version the weights may be standardized so that
they sum to 1 for each area.

I Take wij = 1 if the centroids of areas i and j are within the q
nearest of each other.

I Take wij = d−1
ij where d−1

ij is the inverse distance between the
area centroids of areas i and j .

I More generally, take wij = d−α
ij for some power α > 0.

I Take wij = 1 if the centroids of areas i and j are within a certain
distance of each other.
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Figure 2: Neighborhood schemes. B has 0/1 corresponding to
non-neighbor/neighbor – this means areas with many neighbors are more
influential. W has rows standardized by the number of neighbors so that the
sum for each row (area) is unity.
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Measures of Proximity

The choice of weights depends on the type of spatial dependence
that one is trying to detect.

For example, a distance-based measure may be appropriate if a
smoothly-varying environmental pollutant is thought to be responsible
for the clustering.

See Bivand et al. (2013, Sections 9.2, 9.3).
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What to use as the “data”?

Considerations:
1. Standardization: We will almost always want to standardize the

observations in some way (and not use the raw counts, since
these are based on different population sizes).

As an example we could take Zi = Yi/Ni if we have counts within
an age-gender stratum (e.g. men over 65).

Alternatively, to control for confounders we might take Zi = Yi/Ei ,
the SMRs, of area i .

Unfortunately the above choices do not yield data, Zi , i = 1, ...,n,
with the same variance which can induce anomalous behavior.

2. Detrending Spatial large-scale trends should be removed before
the statistic is calculated, e.g., look at residuals after putting
latitude and longitude in the model.
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A Time Series Tangent
In a time series context with equally-spaced data the correlation
between observations Zi at lag k = 1,2, . . . is

ρ(k) =
1
n

∑n−k
i=1 (Zi − Z )(Zi+k − Z )

1
n

∑n
i=1(Zi − Z )2

.

This can be rewritten as

ρ(k) =
1

S2

∑n
i=1
∑n

j=1 wij (Zi − Z )(Zj − Z )

n
(3)

where

S2 =
1
n

n∑
i=1

(Zi − Z )2

and wij are weights such that wij = 1 if i + k = j and = 0 otherwise.

The ρ(k) are plotted versus k to give a correlogram.

Space is more complex because it is 2D and the areas are irregular,
but the form (3) suggests a way forward.
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Moran’s I statistic

Moran’s I statistic (Moran, 1950) is,

I =
1

S2

∑n
i=1
∑n

j=1 wij (Zi − Z̄ )(Zj − Z̄ )∑n
i=1
∑n

j=1 wij
, (4)

where

S2 =
1
n

n∑
i=1

(Zi − Z̄ )2.

I If there is no spatial dependence I will be close to zero.
I If there is clustering then areas close together (as defined by wij )

will tend to have responses that are similar and so the term
(Zi − Z̄ )(Zj − Z̄ ) will be positive and the statistic I will be positive.

I The statistic is similar to the regular correlation coefficient though
it need not lie in [−1,+1]. Under the null, E[I] = −1/(n − 1).
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Geary’s c statistic

Geary’s c statistic (Geary, 1954) is closely related to Moran’s statistic
and is,

c =
1
s2

1
2

∑n
i=1
∑n

j=1 wij (Zi − Zj )
2∑n

i=1
∑n

j=1 wij
. (5)

where

s2 =
1

n − 1

n∑
i=1

(Zi − Z̄ )2.

I If there is spatial dependence, terms in the numerator will be
small (similar responses in “close” regions) and the value of the
statistic will be close to zero.

I The absence of spatial dependence leads to c close to 1, with
c = 0/2 corresponding to perfect positive/negative correlation.
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Issues with Assessment of Clustering

I These statistics were designed for situations in which the
variance of Z is constant across space.

I If we use the SMR as our outcome, then the variance is clearly
not constant, because the expected numbers are not constant.

I High or low values of Zi will tend to occur in areas with small
populations, i.e. in rural areas, and these are likely to be close
together, inducing positive dependence.

I The problem is that under permutations under the null the spatial
distribution of the expected numbers is not retained (we permute
(Yi ,Ei ) pairs) which would compensate for the increased
variability.

I For a thorough discussion of spatial autocorrelation statistics,
see (Schabenberger and Gotway, 2005, Section 1.3).

I Here we recommend using the residuals from a Poisson
regression model – these have a variance that is closer to
constant, across areas.
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Moran’s Test for North Carolina SIDS Data
Using the residuals from a Poisson regression with no covariates, and
with the W weighting scheme we obtain p-value of 0.0074.

Including Eastings and Northings in the Poisson model (to remove
large scale trend) we get a p-value of 0.016 – still suggests
clustering, but reduced significance.

Under the B neighborhood scheme we obtain a p-value of 0.013.

Geary’s statistic gives results that are consistent with Moran’s.
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Figure 3: Residuals from Poisson model with linear trends.
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Disease Mapping Models

We could fit the model,

Yi |θi ∼ Poisson(Eiθi ),

log θi = β0 + ei

with ei ∼ N(0, σ2
e) and priors on β0, σ

2
e .

We then add ICAR random effects Si , to give a BYM2 model (Riebler
et al., 2016).
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IID model
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Figure 4: Posterior median of relative risks under IID hierarchical model.
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BYM2 model
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Figure 5: Posterior median of relative risks under BYM2 hierarchical model.
The posterior median for the proportion spatial is 0.67 with 95% CI
(0.18,0.97).
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Comparison of hierarchical model
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Figure 6: Comparison of posterior medians. The spatial model is producing
differences in estimates from the IID model.

25 / 47



Comparison of hierarchical model
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Figure 7: Non-spatial (top) and spatial (bottom) random effects. The spatial
standard deviation is estimated as 0.43 with 95% interval (0.30,0.60). The
proportion of the variation that is spatial, φ, is estimated as 0.67 with 95%
interval (0.18,0.97). Hence, there is a large amount of excess Poisson
variation, and the majority is spatial.
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Clustering for Count Data Conclusions

General Approach
I We have defined a pair of statistics (Moran, Geary) to determine

the level of clustering in a set of data.
I In the context of count data in spatial epidemiology these

methods have some drawbacks, due to the non-constant
variance of the response.

I We use the residuals to overcome this difficulty; the use of
residuals from a model also allows the modeling of the mean
function, so that the variable used (the residuals) are closer to
stationary.

I I view these methods as useful in an exploratory first step in an
analysis.

I The hierarchical model provides greater information but is based
on many assumptions.
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Cluster Methods for Count Data
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Overview of Moving Window Methods

In this section we describe methods that superimpose a number of
circular regions onto the study region and then determine the
significance of the number of cases that fall within each circle – these
methods assess cluster detection and may be used for surveillance.

Different methods define the circles in terms of:
I distance (Openshaw).
I the number of cases (Besag and Newell) and,
I the population size (scan statistics).

These methods may be used as screening devices by which
particular regions may be highlighted and subsequently investigated.

We focus on scan statistics.
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Scan statistics

I Scan statistics were originally developed to ‘scan’ across a time
region of interest with the test statistic being the maximum
number of events to occur within windows of constant size

I The fixed window and maximum number of the original
formulation makes it clear that the statistic is being compared to
an underlying intensity that is uniform.

I In a spatial context this is clearly unreasonable.
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Scan statistics

I Turnbull et al. (1990) suggested an approach by which the
‘windows’ are defined to contain a constant population, N∗, and
are centered on each area centroid.

I The maximum number of cases across the windows may then be
used as a test statistic, i.e.

M = max
j

Yj (N∗), (6)

where j indexes the areas as defined via the population N∗.
I As an alternative, Kulldorff and Nargarwalla (1995) suggested

the use of the likelihood ratio test statistic.
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Scan Statistics

I A Monte Carlo test may be performed under random distribution
of cases across the study region.

I The approach therefore differs from those of Openshaw and
Besag and Newell since the most significant circle over the whole
study region is searched for instead of all circles significant at a
certain level.

I Since only a single test is carried out it is straightforward to
determine the correct statistical properties of the procedure.

I We describe for count data, for which numbers of cases and size
of population are required along with the centroids of each area.

I If adjustment for covariates is required, then expected numbers
should replace the population numbers.
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Scan Statistics

I Potential clusters are defined as circles centered on the
centroids of the areas (though grid lines can be given).

I The user is required to specify the maximum circle size – the
default is 50% of the population.

I Responses are examined within circles that are centered on
each centroid and ranging between zero and whatever the
specified maximum is.

I Various probability models may be assumed, including Poisson
and Bernoulli.
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Scan Statistics

We concentrate on the Poisson model with adjustment for
confounders within the expected numbers, for which for a given circle

Y1 ∼ Poisson(E1θ1)

Y0 ∼ Poisson(E0θ0)

where
I Y1 and Y0 are the numbers of cases inside and outside the circle,
I E1 and E0 the respective expected numbers, and
I θ1 and θ0 the relative risks.
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Scan statistics

I The approach is to evaluate a likelihood ratio statistic comparing
the hypotheses

H0 : θ1 = θ0, HA : θ1 > θ0

for each circle c.
I The overall test statistic of the significance of the “most likely”

statistic is then the maximum of these statistics, over
c = 1, · · · ,C.

I For the Poisson model, the total number of cases Y+ = Y0 + Y1
is conditioned upon, in which case

Y1|Y+ ∼ Binomial(Y+, π)

where
π =

E1θ1

E1θ1 + E0θ0
.
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Scan statistics

I Under the null, π̂0 = E1/(E1 + E0) and under the alternative
π̂A = Y1/Y+.

I This gives the likelihood ratio statistic:

T =
Pr(Y1|HA)

Pr(Y1|H0)
=

(
Y1

E1

)Y1
(

Y0

E0

)Y0

I(Y1 > E1)

I The significance level is assessed by carrying out a Monte Carlo
procedure in which the pairs

(Yi ,Ei ), i = 1, ...,n,

are randomly relabeled.
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Scan statistics

I If the Poisson model is wrong then the procedure is not
invalidated (since all the Poisson assumption is being used for is
to define the test statistic) – but power will be reduced when
compared to a statistic derived from the true distribution.

I Once the window with the greatest exceedence is identified, the
sampling distribution of T is evaluated using a Monte Carlo test.

I The SatScan software, written by Martin Kulldorff, to implement
the scan test statistic is available from

http://srab.cancer.gov/satscan/
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Difficulties with Scan Statistics

I The choice of population size is somewhat arbitrary and there
are no clear guidelines for a choice, Hjalmars et al. (1996) use
10% of the total population to define the windows while Kulldorff
et al. (1997) use 50%.

I In practice the method is not just used to indicate a single cluster
but a number of potential clusters are highlighted.
Once this is done the properties of the procedure become
unknown.

I The circles are also not completely comparable since it is
populations and not expected numbers that are defining the
choice of radii (although it is straightforward to use expected
numbers).

I For this and all methods the choice of a p-value threshold is
difficult.

I More subtly p-value thresholds should be a function of sample
size, and so there should be different thresholds for different
window sizes.
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Figure 8: Significant clusters under SatScan for the NC SIDS data. Both had
p-value < 0.01.
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Hierarchical modeling

I Disease mapping, hierarchical models, are not designed for
cluster detection.

I If there are isolated areas of high risk (e.g., a single area only),
then unless the expected number is high (in which case the SMR
will be a good summary anyway) then shrinkage will occur, and
the excess will be missed.

I This makes sense intuitively, and has been borne out in
extensive simulation studies (Richardson et al., 2004).
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IID model: relative risk threshold of 1.5
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Figure 9: Posterior probability Pr( RR > 1.5|y).
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IID model: relative risk threshold of 2.5
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Figure 10: Posterior probability Pr( RR > 2.5|y) (note the change of scale
from Figure 9).
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BYM2 model: relative risk threshold of 1.5
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Figure 11: Posterior probability Pr( RR > 1.5|y).
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BYM2 model: relative risk threshold of 2.5
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Figure 12: Posterior probability Pr( RR > 2.5|y).
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Hierarchical Modeling Analysis

I Both the IID and BYM2 analyses suggest that there are clusters
in the centre south (the strongest signal), and also in the
north-east and south-east.

I These conclusions are consistent with those from the SatScan
approach.

I The hierarchical modeling approach is basically estimation,
versus the hypothesis testing approach of SatScan — my
personal preference is always the former.
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Cluster Detection for Count Data Conclusions

Of the frequentist moving window methods the Kulldorff procedure
has the best statistical foundation but it has drawbacks.

How to deal with the possibility of multiple clusters?
I Original version simply compared the p-values of the second,

third,... most significant zone (discarding those with overlap).
I Recent version Zhang et al. (2010) removes a significant zone,

and then repeats...until no more significant zones found.
How to choose a significance level?

The power may be very different in different studies: no balancing of
Type I and Type II errors if significance level α fixed in all studies.
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Cluster Detection for Count Data Conclusions

Can also use hierarchical models for detecting clusters but be wary of
shrinkage which could remove true clusters.

In terms of cluster detection:
I we can threshold the fitted surface and examine those areas that

are highlighted (and the cases in these areas).
I For example, we could only plot those areas in which the odds of

disease is greater than some critical value with a certain
posterior probability.

Bayesian cluster method (Wakefield and Kim, 2013; Kim and
Wakefield, 2016) has a probabilistic foundation, but many prior inputs
required.
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