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Motivation
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Motivation

Area-level models based on Fay and Herriot (1979), cannot always
be used since the weighted estimates, or their variances, may be
ill-defined at the geographical level (and time scale) required.

There is also the possibility of getting more informative analyses if
one models at the unit-level.

An early important reference on unit-level models is Battese et al.
(1988).

We describe unit-level models for normal and binomial data.
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Basic Unit-Level Model for Normal Data
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Basic Unit-Level Model
Suppose area i Ni units and in each area the indices of the sampled
indices is Si with number of elements |Si | = ni .

For a continuous response, yik , the basic unit-level model (Rao and
Molina, 2015, Chapter 7) is

yik = β0 + x T
ikβ1 + δi + εik

where
• x ik are unit-level covariates, for example age, sex, race, with

associated regression parameters β1.
• Area-specific random effects:

δi |σ2
δ ∼iid N(0, σ2

δ),

which forms the second stage of the model.
• Unit-level errors:

εik |σ2
ε ∼iid N(0, σ2

ε ).

Model is also known as the basic nested error linear regression
model.
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Where are the weights?

• No mention of weights!

• The required assumption is that the selection probabilities in
area i do not depend on yik , but may depend on x ik .

• For example, for a stratified SRS we should include the
stratification (design) variables amongst the x ik variables.

• This model would not be appropriate for data sampled via a
cluster design – for such a design, we would expect dependence
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Basic Unit-Level Modeling

Inference may be carried out via likelihood or Bayes, with the latter
placing priors on β0,β1, σ

2
δ , σ

2
ε .

If a likelihood approach is taken, the random effect estimates δ̂1, are
obtained as best linear unbiased predictors (BLUPs), know as
Estimated BLUPs (EBLUPs) when β0,β1 and variance components
σ2
δ , σ

2
ε are estimated.

If there are no data in particular areas we can still make predictions, if
we assume the model holds for all areas, but the random effect will be
estimated as δ̂i = 0, and so we would expect bias.

Spatial random effects can be added to the model, to smooth over
neighboring areas, and these may help to alleviate the bias, since
they are based on local data.

But, results should be viewed skeptically if many areas with no data.
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Aggregation for Normal Model

An additional significant complication when using unit-level models, is
how to make inference for areas.

Aggregation to obtain the mean follows from,

Y i =
1
Ni

Ni∑
k=1

Yik

where Ni is the population size in area i .

In the following we assume the sampled fraction of units in each area
is negligible.

Remember the model:

yik = β0 + x T
ikβ1 + δi + εik .
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Aggregation for Normal Model
The obvious estimator, under the model, is

Ŷ i =
1
Ni

Ni∑
k=1

Ŷik

=
1
Ni

Ni∑
k=1

(
β̂0 + x T

ik β̂1 + δ̂i

)
= β̂0 + x T

i β̂1 + δ̂i

where
• x i is the mean, across the complete population, of the covariates

in area i .
• δ̂i are the estimated random effects (can be EBLUP or Bayes).

The εik are viewed as measurement error, and so not included in the
predictions for the areas.

Note that if we thought the εik were “real signal” then we would need
to include in the area-level prediction.
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Aggregation for Normal Model

Suppose we have a stratified design where the stratification variable
is urban/rural.

Let:
• x1ik = 1 is unit k in area i is urban, and x1ik = 0 if rural.
• x2ik = 1 is unit k in area i is rural, and x2ik = 0 if urban.
• Note that x1ik = 1− x2ik .
• Let x1i and x2i be the proportions of urban and rural units in area

i , respectively.

Model:
yik = x1ikβ1 + x2ikβ2 + δi + εik .

The area mean, under the model, is obtained through aggregation:

Y i = x1iβ1 + x2iβ2 + δi .
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Basic Unit-Level Model for Bernoulli Data
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BernoulliModel

Suppose we sample indices Si in area i with |Si | = ni units, out of Ni ,
and we record a binary outcome for each.

For binary data, we may assume the model:

Yik |pik ∼ Bernoulli(nik ,pik )

pik = expit(β0 + x T
ikβ1 + δi).

for k ∈ Si with:
• expit(z) = exp(z)/(1 + exp(z)).
• yik being the k -th response in area i , k ∈ Si , i = 1, . . . ,n.
• pik is the probability of the event of interest – we will refer to this

as the risk.
• x ik is a vector of unit-level covariates, with associated regression

coefficients β1.
• δi ∼iid N(0, σ2

δ) are area-specific random effects.
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Aggregation for the Bernoulli Model

Aggregated prevalence, under the model,

pi =
1
Ni

Ni∑
k=1

pik

=
1
Ni

Ni∑
k=1

expit(β0 + x T
ikβ1 + δi)

where
• Ni is the total population size in area i .
• Note that we need the covariates for each member of the

population, not just the average (which was all that was required
for the normal model).

We have assumed the sampled fraction of units in the area is
negligible.
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Spatial Models

It is straightforward to convert the above models into spatial models.

We simply replace the IID δi terms by BYM2 random effects.

The computation is now a bit trickier, but Bayesian inference through
INLA is relatively easy, as we will see!
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Two-Fold Nested Error Regression Model
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Two-Fold Nested Error Regression Model: Normal

In the two-fold nested error regression model Ki primary units (or
clusters) are selected in area i and then within these clusters a
sample of nik units are sampled.

For simplicity, assume that units in the same cluster have the same
covariates, and the same geographical location.

Normal Model:
Yikj = β0 + x T

ikβ1 + δi[k ] + εikj ,

where
• δi are BYM2.
• measurement error is εikj ∼iid N(0, σ2

ε ).
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Two-Fold Nested Error Regression Model: Binomial
Binomial Model: Let Yi =

∑nik
j=1 are the total number of events of

interest.
Yik |qik ∼ Binomial(nik ,qik ),

where
• the prevalence model is:

qik = expit(β0 + x T
ikβ1 + δi + εik )

where
• δi are area-level random effects, for example, having BYM2

structure.

• the terms εik ∼iid N(0, σ2
ε ) may reflect:

• Measurement error, i.e., recording errors.
• Overdispersion.
• “True signal”, i.e., each cluster has its own unique prevalence,

beyond that determined by the spatial random effect and the
covariates.
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Binomial Model
The interpretation of εik will affect how we obtain the prevalence pik in
cluster k .

If measurement error, then we can leave off and qik = pik .

If we assume the εik are modeling overdispersion then we need to
integrate out to obtain the marginal probability of the event in cluster
k via

pik =

∫
ε

expit(β0 + x T
ikβ1 + δi + ε)N(ε|0, σ2

ε ) dε.

One way of thinking about overdispersion is that imaginary repeated
sampling from the same cluster, we are sampling different groups of
units, and the prevalence of these groups is qik , which is drawn from
some distribution – the prevalence we want, pik , is the average over
all possible qik .

Shortly, we will see an alternative way of modeling overdispersion, via
a beta-binomial model.

For more discussion see Dong and Wakefield (2021).
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Notation

• Initially we describe the model
in space only.

• Suppose Ki clusters are
sampled within area i ,
i = 1, . . . ,n of a study area.

• Let sik represent the
geographical location of
cluster k within area i with
k = 1, . . . ,Ki so that
K =

∑
i Ki is the total number

of clusters.
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Figure 1: Cluster locations in three
Kenya DHS, with county boundaries.
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Beta-Binomial Unit-Level Model

• It is common to see overdispersion with spatial health and
demographic data.

• One approach to modeling this phenomenon is to assume the
cluster-level prevalence qik that is producing the survey data we
see in cluster c, is drawn from a probability distribution.

• If we were to go back in time and draw another random sample,
a different qik would result.

• The common qik to all units sampled, induces correlation
between the responses.

• Overdispersion can be modeled using a random effects
distribution for the prevalence.
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Beta-Binomial Unit-Level Model

• Here, we suppose the cluster level variability is described by the
random effects distribution:

qik |aik ,bik ∼ Beta(aik ,bik ),

with aik = dpik , bik = d(1− pik ) so that d = aik + bik , and

pik = E[qik ] =
aik

d

var(qik ) =
pik (1− pik )

d + 1
.

• The overdispersion is described by the scale parameter d .
• The intraclass correlation coefficient is the correlation between

two binary outcomes in the same cluster and corresponds to
1/(d + 1).

• The parameters aik and bik are not the most intuitive, and it is
useful to instead think about the two free parameters as being
the mean pik and the scale d .
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Beta-Binomial Unit-Level Model

• The sampling model corresponds to

Yik |qik ∼ Binomial(nik ,qik )

qik |aik ,bik ∼ Beta(aik ,bik ).

• We can integrate over qik to give the marginal distribution:

Pr(Yik |pik ,d) =
∫

qik

Pr(Yik |nik ,qik )︸ ︷︷ ︸
Binomial(nik , qik )

×p(qik |pik ,d)︸ ︷︷ ︸
Beta(aik , bik )

dqik ,

with pik = aik/(aik + bik ) and d = 1/(aik + bik ).
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Beta-Binomial Unit-Level Model

• Turning the handle,

Yik |pik ,d ∼ Beta-Binomial(nik ,pik ,d),

with

E[Yik |pik ,d ] = nik pik

var(Yik |pik ,d) = nik pik (1− pik )×
nik + d
1 + d

,

so we have overdispersion for d > 0.
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Beta-Binomial Unit-Level Model

We still need to specify a form for the mean, and a logistic model is
natural.

Under the discrete spatial model,

pik = expit(β0 + x T
ikβ1 + δi),

where

• pik is the prevalence for cluster k in area i .

• x ik may include the strata within which cluster k lies.

• δi can be BYM2.
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Aggregation

• In the DHS application we describe later, we have a single
covariate, the urban/rural classification of cluster k .

• With this simple spatial form, the modeled area prevalence is

pi = ri × expit(β0 + δi)︸ ︷︷ ︸
Prevalence for Rural

+(1− ri)× expit(β0 + β1 + δi)︸ ︷︷ ︸
Prevalence for Urban

,

where

• ri is the proportion of the area that is rural, and
• 1 − ri the proportion that is urban.

• The original sampling frame that contains the proportions of
urban/rural, is unavailable, though some information is typically
available in the DHS reports.

• The proportions ri can be obtained by thresholding population
density surfaces.
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A Case Study: HIV Prevalence in Malawi
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Malawi DHS HIV Prevalence Example

• We consider SAE of HIV prevalence among females aged
15–29, in districts of Malawi, using data from the 2015–16
Malawi DHS – see Wakefield et al. (2020).

• We will refer to the Malawi districts as admin-2 areas; there are 3
admin-1 areas, 28 admin-2 areas and 243 admin-3 areas.

• A two-stage stratified cluster sample was implemented, with the
sampling clusters (enumeration areas) being stratified by district
and urban/rural.

• The Malawi Population and Housing Census (MPHC), conducted
in Malawi in 2008 provided the sampling frame for the survey
(Malawi DHS, 2016)..

• The sample for the 2015–16 Malawi DHS was designed to
provide estimates of key indicators for the country as a whole, for
urban and rural areas separately, and for each of the 28 districts.
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Malawi DHS HIV Prevalence Example

• The sampling frame
contained 12,558 clusters and
our analyses use data from
827 sampled clusters (the
supplementary materials give
more details). In the 2015–16
DHS survey for Malawi, 8,497
women in the age range
15–49 were eligible for HIV
testing, and 93% of them
were tested.

• HIV prevalence data was
obtained from voluntarily
taken blood samples from
survey respondents.
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Figure 2: Cluster locations in 2015–16 Malawi
DHS.
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Spatial Fay-Herriot Model

• An area-level model is,

logit (p̂i) ∼ N(θi ,Vi)

where
• p̂i is the weighted estimate,
• θi is the logit of the true prevalence in area i , and
• Vi is the variance of the logit estimator.

• We model θi via a BYM2 specification:

θi = β0 + xiβ1 + δi ,

where δi are BYM2 random effects.

• We use the HIV prevalence from antenatal care (ANC) clinics, as
covariate xi .
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The Data Aggregated to Districts

Region HIV +ve No. Tested Sampled Clusters Sampling Frame
Urban Rural Urban Rural

Balaka 13 176 6 24 17 275
Blantyre 19 185 19 16 412 381
Chikwawa 4 136 4 27 16 380
Chiradzulu 10 132 2 27 2 334
...

...
...

...
...

...
...

Rumphi 8 130 6 20 12 156
Salima 5 168 6 23 22 416
Thyolo 8 177 4 30 12 674
Zomba 19 194 9 26 79 584
Total 278 4427 168 659 1409 11149

Table 1: Summary statistics of Malawi 2015–16 DHS data, by district. These
summaries are for females aged 15–29.
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Figure 3: Estimates of HIV prevalence among females aged 15–29 in districts
of Malawi in 2015–16. Top row estimates are from area-level models: direct
estimates; smoothed direct estimates; smooth direct estimates with antenatal
care (ANC) HIV prevalence covariate. Bottom row estimates are from
unit-level models: no urban/rural adjustment and no covariate; urban/rural
adjustment only; urban/rural adjustment and ANC HIV prevalence covariate.
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Figure 4: Left: Map of ANC prevalence. Right: logit of direct prevalence
estimates versus logit of ANC prevalence estimates.
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Model 2.5% Median 97.5%
No Covariates

BYM2 total variance 0.07 0.19 0.48
Proportion spatial 0.14 0.57 0.94

logit(ANC)
BYM2 total variance 0.00 0.04 0.19
Proportion spatial 0.01 0.17 0.85
logit(ANC): odds ratio 1.59 2.72 4.03

Table 2: Posterior quantiles for the area-level smoothed direct models. The
BYM2 total variance is σ2

b , the proportion spatial is φ, and the logit ANC (odds
ratio) is exp(β1).

The linear predictor is:

θi = β0 + x T
i β1 + δi ,

with total residual variation σ2
δ and proportion spatial φ.
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Unit-Level Model

• Yic and nic are the number of cases and sample sizes for cluster
k = 1, . . . ,Ki , in area i = 1, . . . ,m.

• A crucial assumption here (Rao and Molina, 2015, Section 4.3) is
that the probability of selection, given covariates, does not
depend on the values of the response.

• This implies that if stratified random sampling is used,
stratification variables must be included in the model (urban/rural
here, in addition to Admin1 areas).

• One would expect cluster sampling to lead to correlated
responses within clusters, and cluster-level random effects are
introduced to accommodate this aspect (Scott and Smith, 1969).
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Unit-Level Model

An alternative, overdispersed binomial, unit-level model that we use
for the HIV prevalence data is,

Yik | pik ,d ∼ BetaBinomial(nik ,pik ,d) (1)
pik = expit (β0 + x T

i β1 + zikγ + δi) (2)

where

• zik is the urban/rural status of sampled cluster k in area i .

• d is the overdispersion parameter.

• We take δi as BYM2.
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Unit-Level Model

Aggregation to the area-level is carried out via,

pi = ri × expit (β0 + x T
i β1 + δi)︸ ︷︷ ︸

Rural Prevalence

+ (1− ri)× expit (β0 + x T
i β1 + γ + δi)︸ ︷︷ ︸

Urban Prevalence

where ri is the proportion of the area that is rural.

These fractions need to be estimated, which may not be trivial.
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Model 2.5% Median 97.5%
No Covariates

Overdispersion 0.01 0.02 0.05
BYM2 total variance 0.05 0.14 0.35
Proportion spatial 0.15 0.62 0.96

U/R In
Overdispersion 0.01 0.02 0.04
BYM2 total variance 0.05 0.13 0.33
Proportion spatial 0.20 0.71 0.98
Urban: odds ratio 1.73 2.29 3.00

U/R In, logit(ANC)
Overdispersion 0.01 0.02 0.04
BYM2 total variance 0.00 0.02 0.12
Proportion spatial 0.01 0.22 0.91
Urban: odds ratio 1.70 2.24 2.94
logit(ANC): odds ratio 1.59 2.32 3.35

Table 3: Posterior quantiles for the unit-level betabinomial models. The
overdispersion parameter is d , BYM2 total variance is σ2

b , the proportion
spatial is φ, the odds ratio associated with an urban cluster is exp(γ), and the
logit ANC odds ratio is exp(β1).
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Figure 5: Posterior distributions for HIV prevalence. Top row area-level
models: direct; smoothed direct; smoothed direct with ANC covariate. Bottom
row unit-level (betabinomial) models: no urban/rural, no covariate; urban/rural
only; urban/rural and ANC covariate.
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Figure 6: District prevalence estimates from two unit-level models. On the
y-axis, the prevalence estimates are from a model with no urban/rural
adjustment, while on the x-axis the model has an adjustment.

The estimates from the no adjustment model are too high because of
the oversampling of urban areas, which have higher HIV prevalence.
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Figure 7: Uncertainty estimates (standard errors for direct estimates,
posterior standard deviations for the remainder) of HIV prevalence. Top:
area-level models: direct estimates; smoothed direct estimates with no ANC
covariate; smooth direct estimates with ANC covariate. Bottom: unit-level
models: no urban/rural adjustment, no ANC covariate; urban/rural adjusted,
no ANC covariate; urban/rural covariate and ANC covariate.
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Figure 8: Distributions on the rankings for the smoothed direct estimates with
the ANC covariate. The lines represent 90% intervals based on samples from
the posterior, with rank = 1 on the y-axis corresponding to the lowest HIV
prevalence and rank = 27 corresponding to the highest HIV prevalence.

42 / 49



Model Assessment

• One of the hardest parts of model-based approaches to SAE is
assessment of model assumptions.

• A cross-validation strategy is to systematically remove one area
at a time, and then obtain a prediction of the missing area’s (logit
of the) direct prevalence estimate, based on the remaining areas.

• The asymptotic distribution of this direct estimate is

logit(p̂i) ∼ N(θi ,Vi).
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Model Assessment

• We simulate samples from the approximation to the posterior of
logit(pi) that is provided by INLA, and add IID N(0,Vi) errors to
each sample.

• The result is the predictive distribution of what the model thinks
the direct estimate will be in the area for which the data were
removed.

• We then plot representations of these 27 predictive distributions,
and compare with the observed points logit(p̂HT

i )
(Horvitz-Thompson weighted estimates).
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Figure 9: Leave-one cross-validation predictions for the smoothed direct
models. Black dots are the direct estimates. Left column: 50% predictive
intervals. Right: 80% predictive intervals. Top row: No ANC covariate.
Bottom row: ANC covariate.
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Figure 10: Leave-one CV for betabinomial models. Black dots are direct
estimates. Left: 50% predictive intervals. Right: 80% predictive intervals. Top
row: No urban/rural, no ANC covariate. Middle row: Urban/rural, no ANC
covariate. Bottom row: Urban/rural, ANC covariate. 46 / 49



Takeaways
• Area-level modeling is more straightforward, if the data are

sufficiently abundant.

• Unit-level modeling allow finer-scale modeling, but more
sophisticated, and hence trickier; also more computationally
expensive.

• If pixel maps are displayed, they should be accompanied by a
map of uncertainty. Different methods for showing uncertainty
are described in Dong and Wakefield (2021).

• Discrete spatial models always have an ad hoc neighborhood
specification, which is unfortunate.

• Continuous spatial (Gaussian process (GP)) models are far more
appealing in this respect, and also allow data that are
aggregated to different levels to be combined.

• The non-GP models can be fit in the SUMMER package.
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Recommended Methods for SAE
Sufficient Data

at Desired
Geographical Level?

Reliable Variance
Estimates?

Direct
Estimation

Unit-Level
Model

Fay-
Herriot
Area

Model

no

yes

no
yes
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Discussion
• The spatial Fay-Herriot modell builds on the strengths of direct

(weighted) estimates and spatial smoothing models.

• In the limit, as we obtain larger data in an area, the weighted
estimates will dominate, which is exactly what we want!

• If insufficient samples in areas, then estimated variance is
unacceptably large (or undefined), and then we need to resort to
the cluster-level models:

• Discrete spatial models are easier to fit, and aggregation more
straightforward.

• Continuous spatial models are more challenging to fit, and
aggregation more challenging.

• Model checking techniques are still undeveloped in the SAE
context.

• Prevalence mapping is still in its infancy, and currently no agreed
upon “best” approach.
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