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Motivation for Mixed Models and Smoothing
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Motivation

In a SAE context, we are often faced with situations in which the data
are sparse in space, which leads to great uncertainty in calculated
estimates.

Mixed models1are designed to alleviate this problem, by modeling the
totality of data from all areas, in order to leverage similarities in the
data – these are examples of indirect estimates because they use
response data from areas other than the area for which an estimate is
required.

The key element is coupling the different areas, by assuming this
parameters in all areas are linked through a common probability
distribution.

In this lecture we describe mixed models for normal data (via linear
mixed models) with spatial smoothing models being included.

1also known as random effects or hierarchical models
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Model-based approaches

Indirect methods provide a link, often with an implicit model, between
different areas; we describe explicit models that provide such a link.

The models we describe are mixed-effects models which aim to
accurately describe between domain (area) differences.

Such models offer several advantages:
• Models can be tuned to the application, building on the existing

theory and practical experience of mixed models, including
non-linear models, such as logistic mixed models.

• Domain-(Area)-specific measures of uncertainty are produced.
• One can attempt to check assumptions using diagnostics.
• A variety of area-specific random effects models, including

spatial versions, are available.
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Model-based approaches

The use of explicit models has not been carried out greatly in survey
sampling, where design-based inference is historically the norm.

Models can be specified at the level of the area or the (observation)
unit.

Disadvantages of mixed models:
• How to incorporate the design weights/acknowledge the design?
• In area-level (Fay-Herriot) models, the design is explicitly

considered while for unit-level models we need terms in the
model.

• It is often difficult to check modeling assumptions.
• Computation can be demanding, though this is improving.
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Motivating Examples: Simulated Normal Data

We consider simulated normal data: using the King County health
reporting areas (HRAs) geography.

These data were simulated with non-constant mean across HRAs
(areas).

Nominally, the outcome will be labeled as weight.
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Motivating Example: Simulated Normal Data
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Figure 1: Sample mean weights (left) and standard errors of mean weights
(right).
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Linear Mixed Effects Models (LMEMs)
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Smoothing Models

Instability of estimates has lead to methods being developed to
impose smoothness on the underlying parameters using mixed
effects models that use the data from the totality of areas to provide
more reliable estimates in each of the constituent areas.

Overview of Models:
• Basic Linear Model: No smoothing.
• Linear Mixed Models:

• Normal likelihood. Random effects with no spatial structure (known
as IID2).

• Normal Likelihood, Two sets of random effects, one set with no
spatial structure, one set with spatial structure.

• Covariates may be added to each of these in order to smooth
over covariate space.

• Estimation in these models is a separate issue.

2Independent and Identically Distributed
10 / 69



Linear Mixed Effects Model
Let Yik be the weight of the k -th sampled individual (unit) in area i .

Three possible models:

1. No between-area variability:

Yik = β0︸︷︷︸
Common Mean

+εik ,

with εik ∼ N(0, σ2
ε). (Most basic synthetic estimates).

2. Distinct between-area variability:

Yik = βi︸︷︷︸
Mean of Area i

+εik ,

with εik ∼ N(0, σ2
ε). Known as a fixed effects model. Note: no way to link

different areas. (Direct estimates).
3. Linked between-area variability:

Yik = β0 + δi︸ ︷︷ ︸
Mean of Area i

+εik ,

with δi ∼ N(0, σ2
δ), εik ∼ N(0, σ2

ε). Known as a mixed effects model.
(Indirect estimates).
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Basic Linear Mixed Effects Model
We will concentrate on the linked between-area mixed effects model:

Yik = β0 + δi︸ ︷︷ ︸
Mean of Area i

+εik ,

with δi ∼ N(0, σ2
δ) – these are the area-specific deviations (the

random effects) from the overall level β0 – and εik ∼ N(0, σ2
ε ), is the

measurement error.

This model is also known as a Linear Mixed Effects Model (LMEM).

In this model, the totality of data are used to inform on the overall
level β0 and between-area variability σ2

δ .

The unknown parameters are:

Overall mean β0

Between-Area Variance σ2
δ

Measurement Error Variance σ2
ε

Random Effects δ1, . . . , δn
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Maximum Likelihood Estimation

The MLEs are the values of the parameters that maximize the
probability of the observed data, under an assumed probability model.

For a LMEM the likelihood to be maximized is,

L(β0, σ
2
δ , σ

2
ε ) =

n∏
i=1

∫
δi

p(y i |β0, δi , σ
2
ε )× p(δi |σ2

δ) dδi .

If a likelihood approach is taken, the random effect estimates δ̂i , are
obtained as the conditional means E[δi |y , β0, σ

2
ε , σ

2
δ ].

These are known as the best linear unbiased predictors (BLUPs).

Known as estimated BLUPs (EBLUPs) when β0 and variance
components σ2

ε , σ
2
δ are estimated.

Technical Note: Restricted ML (REML) is preferred for estimation of
variances – accounts for estimation of β.

13 / 69



Estimation in the Linear Mixed Model

In general, there are no closed-form (i.e., explicit) forms for the
estimates of the parameters.

Suppose, for simplicity, that β0, σ2
δ and σ2

ε are known; this allows
some insight into inference.
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Estimation in the Linear Mixed Model

The posterior mean of the random effect (area-specific adjustment) is:

δ̂i = E[δi |yi , β0, σ
2
ε , σ

2
δ ]

=
niσ

2
δ

σ2
ε + niσ

2
δ

(y i − β0)

= qi(y i − β0)

where

qi =
niσ

2
δ

σ2
ε + niσ

2
δ

≤ 1

and is small (so more shrinkage) if:
• ni is small (not much data in the area), or
• σ2

δ is small (between-area variability is small), or
• σ2

ε is large (within-area variability is large).

δ̂i is the BLUP.
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Inference for Random Effcets
From a frequentist mixed-model perspective:
• The BLUPs are unbiased in the sense that,

E[δ̂i − δi ] = 0,

where the expectation is over δ̂i and δi since both are viewed as
random.

• Uncertainty is measured by var(δ̂i − δi) which is equal to the
mean squared error (MSE), MSE(δ̂i).

• The MSE can also be used for construction of asymptotic
confidence intervals:

δ̂i − δi ∼ N(0,MSE(δ̂i)︸ ︷︷ ︸
var(δ̂i−δi )

).

• The MSE can be estimated analytically, or via the bootstrap (Rao
and Molina, 2015).

• Note that the frequentist coverage is obtained over repeated
sampling of y and δ, which is not what is practically useful, see
Burris and Hoff (2020) for more discussion.
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Predicting the Population Total and Mean
Let Si and Ri denote, respectively, the set of indices of the sampled
and unsampled individuals in area i , with ni sampled individuals.

Let Ti =
∑Ni

k=1 yik be the total for the population in area i , where Ni is
the population size.

The average for the population in area i is

Y i =
Ti

Ni

=

∑Ni
k=1 yik

Ni

=

∑
k∈Si

yik +
∑

k∈Ri
yik

Ni

=

∑
k∈Si

yik

ni︸ ︷︷ ︸
Mean of Sampled

× ni

Ni
+

∑
k∈Ri

yik

Ni − ni︸ ︷︷ ︸
Mean of Unsampled

×Ni − ni

Ni
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Predicting the Population Total and Mean
When we estimate the mean of the unsampled, we are assuming that
we have accounted for systematic differences (such as through
stratification) of sampled and unsampled individuals.

Suppose now we have fitted the linear mixed effects model and
obtained posterior medians β̂0 and δ̂i .

The obvious estimate is:

Ŷ i =

∑
k∈Si

yik

ni︸ ︷︷ ︸
Mean of Sampled

× ni

Ni
+ (β̂0 + δ̂i)︸ ︷︷ ︸

Estimated Mean

×Ni − ni

Ni

If Ni � ni , then the sampled data provide a small fraction of the total
population in the area and we can estimate the area mean by

Ŷ i = β̂0 + δ̂i . (1)

If an area contains no data, then its mean is assumed to be β0 + δ?,
where δ? ∼ N(0, σ2

δ).
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Motivating Example: Continuous Outcome

Totals can be similarly estimated:

T̂i =
∑
k∈Si

yik +
∑
k∈Ri

yik

=
∑
k∈Si

yik︸ ︷︷ ︸
Total of Sampled

+ (Ni − ni)× (β̂0 + δ̂i)︸ ︷︷ ︸
Estimated Total for Unsampled

.

If Ni � ni ,

T̂i ≈ Ni × (β̂0 + δ̂i).

This assumes that population size Ni is known.
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Bayesian Inference
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Bayesian Inference
Bayesian modeling is convenient for implementing notions of
smoothing.

There are two key elements that must be specified:
• The sampling model (likelihood) describes the distribution of the

data – this model depends on unknown parameters, that we will
denote p.

• The prior distribution expresses beliefs about the parameters p
and provides a mechanism by which penalization/smoothing can
be imposed.

These elements are probabilistically combined via Bayes Theorem:

p(p|y)︸ ︷︷ ︸
Posterior

∝ L(p)︸︷︷︸
Likelihood

×π(p)︸︷︷︸
Prior

.

On the log scale:

log p(p|y)︸ ︷︷ ︸
Updated Beliefs

= log L(p)︸ ︷︷ ︸
Sampling Model

+ log π(p)︸ ︷︷ ︸
Penalization

.
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Bayesian Inference

• In a Bayesian analysis the complete set of unknowns
(parameters) is summarized via the multivariate posterior
distribution – one or two dimensional marginal posterior
distributions can be vizualised.

• The marginal distribution for each parameter may be
summarized via its mean, standard deviation, or quantiles.

• It is common to report the posterior median and a 90% or 95%
posterior range for parameters of interest.

• The range that is reported is known as a credible interval.
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Bayesian Computation

• The computations required for Bayesian inference (integrals) are
often not trivial and may be carried out using a variety of
analytical, numerical and simulation based techniques.

• We use the integrated nested Laplace approximation (INLA),
introduced by Rue et al. (2009).

• R-INLA is a package that implements the INLA approach.
• The SUMMER package uses INLA for all Bayesian computation.
• Book-length treatments on INLA:

• Blangiardo and Cameletti (2015) – space-time modeling.
• Wang et al. (2018) – general modeling.
• Krainski et al. (2018) – advanced space-time modeling.
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Bayes Example

• Imagine the data model is normal with an unknown mean µ:

yi | µ ∼ N(µ, σ2),

i = 1, . . . ,n, with σ2 assumed known.
• This is equivalent to:

y | µ ∼ N(µ, σ2/n),

where σ/
√

n is the standard error.
• Suppose a normal prior is appropriate:

µ ∼ N(m, v),

so that values of the mean µ that are (relatively) far from m are
penalized – v is the smoothing parameter, more/less smoothing
if small/big.

• The log posterior is:

log p(µ | y︸ ︷︷ ︸
Updated Beliefs

) = − n
2σ2 (y − µ)

2︸ ︷︷ ︸
Data Model

− 1
2v

(µ−m)2︸ ︷︷ ︸
Penalization

.
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Figure 2: Normal data model with n = 10, y = 19.3 and standard error 1.41.
The prior for µ has mean m =15 and v = 32. The posterior for the parameter
µ is a compromise between the two sources of information: the posterior
mean is 18.5 and the posterior standard deviation is 1.28.
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The Bayesian Linear Mixed Model

The LMEM with priors is:

Yik |β, δi , σ
2
ε ∼iid N(β0 + x T

i β1 + δi , σ
2
ε )

δi |σ2
δ ∼iid N(0, σ2

δ)

β, σ2
ε , σ

2
δ ∼ Priors

The posterior, given data y , is obtained as

p(β, δ1, . . . , δn, σ
2
ε , σ

2
δ |y) = p(y |β, δ1, . . . , δn, σ

2
ε , σ

2
δ)

× p(β, δ1, . . . , δn, σ
2
ε , σ

2
δ)/p(y)

=
n∏

i=1

p(y i |β, δi , σ
2
ε )× p(δi |σ2

δ)

× p(β, σ2
ε , σ

2
δ)/p(y)

Marginal distributions, such as p(β0|y), are obtained by integration.

In the SUMMER package, the INLA approach is used (Rue et al., 2009).
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Simulated Data
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Motivating Example: Linear Model
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Figure 3: Top row: Estimates of area averages of weight via MLE’s (left) and
posterior medians (right). Bottom row: Uncertainty of estimates with standard
errors (left) and posterior standard deviations (right).
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Motivating Example: Linear Model
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Figure 4: Comparison of area averages: Posterior medians versus MLEs
(left). Posterior standard deviations versus standard errors associated with
the MLEs (right).

The posterior medians are shrunk from the MLEs towards the overall
mean, with the extreme values undergoing the most shrinkage.

In general, the Bayes measures of uncertainty (the posterior standard
deviations) are smaller than the standard errors of the MLEs, with the
greatest difference occurring for those areas with the large standard
errors (which have the smallest sample sizes).
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Fay-Herriot Modeling
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Fay-Herriot Model

What about accounting for complex sampling?

So far we have been (implicitly) assuming the data are gathered
through simple random sampling (SRS).

In a ground-breaking paper, Fay and Herriot (1979) suggested
modeling a transform of the weighted estimator via a linear mixed
model.
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Fay-Herriot Model

Specifically, let yi denote a transformation of the weighted estimator:

yi = g


∑

k∈Si
wk yk∑

k∈Si
wk︸ ︷︷ ︸

Weighted Estimate

 .

and assume
yi |β0, δi ∼ N(β0 + x T

i β1 + δi ,Vi),

with Vi assumed known and being derived from the variance of the
weighted estimator, and

δi |σ2
δ ∼iid N(0, σ2

δ).

Rather than depending completely on the covariate model (synthetic
estimation), we allow an area-specific deviation.
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Fay-Herriot Modeling

• The F-H approach is an extremely popular way of producing
area-level estimates.

• This formulation avoids the need to model the design.

• For a continuous outcome (e.g., child growth measures) it may
suffice to simply take the weighted estimator, with its associated
variance.

• For prevalences, we can work a transform of the weighted
prevalence estimates, p̂i :

yi = g(p̂i) = log

(
p̂i

1− p̂i

)
,

and then use the delta method to obtain the appropriate variance.
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Fay-Herriot Modeling

• For rates, we can work with a transform of the weighted rate
estimates r̂i :

yi = g(r̂i) = log(r̂i + c),

where the constant c is chosen to avoid taking the log of zero,
and again use the delta method to obtain the appropriate
variance.

• Area-level covariates are frequently used – one way of viewing a
F-H model is to start with a synthetic estimator but then add on
an area-specific random effect to account for bias (so like a
composite estimator).
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Fay-Herriot Modeling
• A practical difficulties with this approach is that the direct

estimates may be on the boundary for a summary parameter that
is not on the whole real line.

• For example, in the binary case we may have p̂i equal to 0 or 1.

• In this case, the logit will be undefined.

• Further, a transform of the weighted estimator may not share the
same design-based properties as the untransformed estimator,
such as being design unbiased.

• These problems may be alleviated by using an unmatched
sampling and linking model (You and Rao, 2002).

• A second difficulty is that reliable variance estimates Vi may be
unavailable, particularly for areas with few samples. In this case,
variance smoothing models can be used (Rao and Molina, 2015,
Section 6.4.1).
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Fay-Herriot Modeling

• We describe the Fay and Herriot (1979) model in the context of
estimating a prevalence.

• Let p̂i be the weighted estimator of a prevalence pi , then consider

yi = logit (p̂i) = log

(
p̂i

1− p̂i

)
,

which is on the whole of the real line.
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Fay-Herriot Modeling

• The “data” is taken to be yi and the sampling model is taken as
the asymptotic distribution:

yi ∼ N(θi ,Vi),

where Vi , the variance of the estimator, is known and θi is the
logit of the prevalence.

• For a non-spatial model, the random effects model is

θi = β0 + x T
i β1 + δi ,

where x i are area-level covariates and the random effects have
distribution δi ∼iid N(0, σ2

δ).

• The model acknowledges the design and also smooths to a
global level – it is straightforward to add spatial random effects.
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Spatial Fay-Herriot Modeling

• We now extend to a spatial version, the so-called BYM2 model
(Besag et al., 1991; Riebler et al., 2016).

• The model is
θi = β0 + x T

i β1 + δi

with the random effects defined to smooth over space:

δi = σδ[
√

1− φei +
√
φSi ]

where ei are IID and Si are spatial random effects3.

• This is a spatial area-level Fay-Herriot SAE model.

3specifically, in SUMMER these are taken intrinsic conditional autoregressive (ICAR)
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Simulated Normal Example
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Motivating Example: Normal Data
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Figure 5: Comparison of area averages: Posterior medians from non-spatial
model (described in Lecture 3) versus MLEs (left). Posterior medians from
spatial model versus MLEs (right).

The shrinkage is less predictable with the spatial model, which is
because of the local adaptation.
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Motivating Example: Normal Data
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Figure 6: Spatial (left) and non-spatial (left) random effects from the
spatial+IID model.

The IID contribution is much smaller than the spatial contribution.
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Motivating Example: Normal Data
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Figure 7: Non-spatial random effects δi from the non-spatial model (left) and
spatial random effects (right) random effects Si .

The non-spatial model random effects are trying to pick up the spatial
structure!
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Motivating Example: Normal Data
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Figure 8: Estimates of area averages of weight via MLE’s (left) and posterior
medians from spatial model (right).

The extremes are attenuated under the spatial model.
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Motivating Example: Normal Data
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Figure 9: Posterior median estimates of area averages of weight via
non-spatial hierarchical model with β0 + δi (left) and spatial hierarchical
model β0 + δi + Si (right); δi are iid and Si are spatial random effects.

Some differences between the estimates, but relatively minor.
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The SAR Spatial Model
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The SAR Model

Following Marhuenda et al. (2013), in the sae package, a
simultaneous autoregressive (SAR) Fay-Herriot model is available, as
an alternative to the BYM2 model (which is in SUMMER).

The SAR model is given by,

yi = x iβ +
n∑

j=1

Bij(yj − x jβ) + εi ,

for i = 1, . . . ,n, where
• the SAR coefficients Bij are such that Bii = 0,
• εi are independent, zero mean errors terms with variance Vi ,
• Let var(ε) = V be the n × n diagonal matrix with i-th element Vi .
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SAR Models

In vector form:
y − xβ = B(y − xβ) + ε,

or
(In − B)(y − xβ) = ε,

or
y = xβ + (In − B)−1ε,

where the latter assumes that B has been chosen so that In − B is
invertible.

If B = 0 we have an iid model.

So spatial dependence is induced through (In − B)−1.
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SAR Models

Under normality of the errors

Y ∼ N(xβ, [(In − B)TV (In − B)−1]T).

For a well-defined model we require (In − B) to be non-singular,
which puts conditions on B.

A common choice is
B = ρsW ,

for a spatial proximity matrix W with elements 1 for neighbors and 0
otherwise.
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SAR Models: Some Technical Details

Let λ(1), . . . , λ(n) be the ordered eigenvalues of W .

Then, (In − B) will be invertible if

1
λ(1)

< ρs <
1
λ(n)

.

If the row sums of W are standardized to 1 then λ(n) = 1 and
λ(1) ≤ −1 so ρs < 1 but may be less than -1.

For more discussion, see Banerjee et al. (2015, Section 4.4) and
Schabenberger and Gotway (2005, Section 6.2.2.1).
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Fay-Herriot with a SAR Model

• The area-level SAE model has been used by Gutreuter et al.
(2019) in the context of estimating HIV prevalence and burden in
districts of South Africa, using household survey data.

• Among the covariates considered for the prevalence model were:

• prevalence estimates from antenatal clinics data,
• population density,
• percentages of housing units that were “formal dwellings”,
• dependency ratio (ratio of the numbers of residents aged 15–64

years to those younger than 15 years and older than 64 years),
• socio-economic quintile,
• maternal mortality rate.

• A SAR spatial model (Marhuenda et al., 2013) was used.
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Figure 10: Direct and Fay-Herriot estimates of HIV prevalence in South
African districts in 2012, from Gutreuter et al. (2019).
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Figure 11: Estimates of HIV prevalence and people living with HIV in South
African districts in 2012, from Gutreuter et al. (2019).
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Spatio-Temporal Smoothing
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Main Effects and Interactions

• To motivate space-time models, when space is modeled
discretely, we consider simple two-way factor models.

• Suppose we have a univariate continuous response Y .

• Suppose we have two factors, A and B say, with i = 1, . . . ,m and
j = 1, . . . ,T indexing the levels.

• A main effects only model takes the form

E[Yij |β0, ηi , δj ] = β0 + ηi + τj .

• Interpretation: ηi is the effect of being at level i for factor A,
regardless of the level assumed by B, and τj is the effect of being
at level j for factor B, regardless of the level assumed by A,
i.e. there is no interaction.
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Main Effects and Interactions

• An interaction model adds a set of interaction parameters

E[Yij |β0, ηi , τj , δij ] = β0 + ηi + τj + δij .

• Interpretation: δij is the additional effect, beyond ηi + τj of being
simultaneously at levels i and j of factors A and B.

• If the factor correspond to nominal levels (e.g., a factor for color
with 2 levels: ”red”, ”blue”) then we would not expect similarity
between adjacent levels.

• In a space-time context the “factors” space and time have an
“ordering” and we might expect similarity.
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Main Effects Model

• First, consider the space-time model for a binary outcome,

Yit |θit ∼ N(θit ,Vit)

θit = expit(β0 + ηi + Si + ωt + τt)

• Components:

• Yit is the weighted estimate with associated design-based variance
Vit .

• Unstructured spatial term ηi ∼iid N(0, σ2
e), i = 1, . . . ,m.

• Smooth spatial term [S1, . . . ,Sm] smooth in space, e.g., from an
ICAR model.

• Unstructured temporal term ωt ∼iid N(0, σ2
ω), t = 1, . . . ,T .

• Smooth temporal term [τ1, . . . , τT ] smooth in time, e.g. follows an
RW1 or RW2 model.

• Notice there is no interaction between space and time.

• The spatial effects are constant across time and temporal trends
are constant across space.
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Space-Time Interaction Models

• Knorr-Held (2000) considered the model:

θit = β0 + ηi + Si + ωt + τt + δit ,

with ηi , Si , ωt , δt are as in the main effects only model.

• Four different models for the interaction δit :

• Type I: Independent interaction.
• Type II: Temporal trends differ between areas but don’t have spatial

structure.
• Type III: Spatial patterns differ between time points but don’t have

temporal structure.
• Type IV: Temporal trends differ between areas but more likely to be

similar for adjacent areas.

We describe the Type IV model only, since it is the most appealing in
a prevalence mapping context.
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Inseparable Space-Time Interaction Models

• Type IV: Temporal trends differ between areas but more likely to
be similar for neighboring areas.

• This will often be the most realistic model if interactions are
present.

• In the case of a RW2 temporal model and an ICAR spatial
model, the joint distribution can be written:

p(δ|σ2
δ) ∝ exp

− 1
2σ2

δ

T∑
t=3

∑
i∼j

(δit − δjt − 2δi,t−1 + 2δj,t−1 + δi,t−2 − δj,t−2)
2


• The Knorr-Held (2000) models are implemented in the SUMMER

package.
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Figure 12: Weighted estimates and smoothed fits over time for 8 provinces of
Kenya.
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Figure 13: Maps of smoothed estimates over time for 8 provinces of Kenya.
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Figure 14: Space-time interactions δit for 8 provinces of Kenya.
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Smoothed Direct Model (Li et al., 2019)

• The space-time Fay-Herriot model has been used for 35 African
countries to estimate U5MR in Admin-1 regions, by year.

• Data enter at the 5-year level (to give stable variances), but the
RWs are defined on the 1-year scale.

• Data:

• 121 DHS in 35 countries.
• 1.2 million children.
• 192 million child-months.

• Takes around 2.5 hours to obtain estimates for all countries –
separate models for each country.

• This smoothed direct model is very reliable for examining Admin1
subnational variation, but the direct estimates are often
unreliable for Admin2 estimation – hence, in the next lecture, we
describe a unit-level model for this endeavor.
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Figure 15: Posterior median estimates for Kenya districts.
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Figure 16: Predictions of U5MR for 2015, in 35 countries of Africa.
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Figure 17: Percent reduction from 1990 to 2015, in 35 countries of Africa.
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Discussion
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Discussion

• If the data are sparse in an area, averages and totals are
unstable because of the small denominators.

• More reliable estimates can be obtained by using the totality of
data to inform on the distribution, both locally and globally, of the
averages across the study region.

• A LMEM can include spatial dependence relatively easily, with
the ICAR model being particularly popular.
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Discussion

Four levels of understanding for hierarchical models, in descending
order of importance:

• The intuition on global and local smoothing.
• The models to achieve this.
• How to specify prior distributions.
• The computation behind the modeling.

Overall Strategy

• First, calculate empirical means and map them. Also look at map
of standard errors and/or confidence intervals.

• Fit non-spatial random effects models.
• Fit the ICAR+IID spatial model.
• Add in covariates if available.
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Discussion: Area-Level Modeling

• Mixed effects models are a common approach for SAE, as they
acknowledge between-area differences in outcomes.

• But one must consider the design (e.g., stratification and
clustering) – Fay-Herriot modeling is a simple way to do this.

• Model-checking is important.
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