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Overview
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Motivation

• Small area estimation (SAE) entails estimating characteristics of
interest for domains, often geographical areas, in which there
may be few or no samples available – “small” refers to the
number of samples in, and not to the geographical size of, the
areas.

• SAE has a long history and a wide variety of methods have been
suggested, from a bewildering range of philosophical
standpoints.

• Application areas include: epidemiology, public and global
health, agriculture, economics, education,...

• The classic text is Rao (2003) which was updated to Rao and
Molina (2015).
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Data

Examples we discuss include:

• Subnational variation in the under 5 mortality rate (U5MR) in low-
and middle-income countries (LMIC).

• Diabetes prevalence in King County health reporting areas.

• Corn and Soy crop yield in Iowa counties.

• Poverty mapping in Spanish regions.
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Health and Demographic Indicators

My own research focusses on health/demographic indicators in
LMICs:

• Charactering and understanding subnational variation is an
important public health endeavor.

• For example, in the Sustainable Development Goals (SDGs),
Goal 3.2 states, “By 2030, end preventable deaths of newborns
and children under 5 years of age, with all countries aiming to
reduce neonatal mortality to at least as low as 12 per 1,000 live
births and under-5 mortality to at least as low as 25 per 1,000
live births”.

• Many other indicators have SDG targets, including poverty.
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Prevalence Mapping and Geostatistics

• Examination of proportions across space, is known as
prevalence mapping – we may map continuously in space, or
across discrete administrative areas – we focus on the latter.

• SAE methods provide one approach to performing prevalence
mapping, for administrative areas.

• “The term geostatistics is a short-hand for the collection of
statistical methods relevant to the analysis of geolocated data, in
which the aim is to study geographical variation throughout a
region of interest, but the available data are limited to
observations from a finite number of sampled locations.” (Diggle
and Giorgi, 2019).

• Model-based geostatistics (MBG) provide another approach to
performing prevalence mapping, over continuous space, though
these continuous surfaces can be averaged for area-level
inference.
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Characterization of Methods and Approaches

Some important distinctions:

Area-level versus Unit-level Modeling
Direct versus Indirect Estimation
Linear versus Non-Linear Modeling
No Auxiliary versus Auxiliary Data
Non-spatial versus Spatial Mixed Modeling
Design-based versus Model-based Inference
Frequentist versus Bayesian Inference

In general, the lack of information in small samples is compensated
for by:

• The use of covariates (auxiliary variables) in a regression model.

• Employing smoothing via mixed effects models, perhaps
including spatial smoothing.
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Overview of Short Course

• Data: We consider the common situation in which the available
data arise from surveys with a complex design.

• A Problem: If small sample sizes in some areas/time periods,
there is high instability. In the limit, there may be no data...

• Supplementary Data: On covariates to aid in modeling.
• Survey Sampling Methodology: Required for design and

analysis.
• Shrinkage and Spatial Smoothing: To reduce instability, use the

totality of data to smooth both locally and globally over space.
• Different Approaches to SAE: Both traditional and Bayesian

methods that use spatial smoothing.
• Implementation: In R programming environment, using the
SUMMER package.

• Visualization: Maps of uncertainty, accompanied with
uncertainty, produced using the GIS capabilities of R.
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Overview of Short Course

Lectures:

• Lecture 1: Motivation and approaches to analyzing complex
survey data.

• Lecture 2: Mixed effects area-level models.

• Lecture 3: Mixed effects unit-level models.

Methods illustrated in R, in particular using the sae and SUMMER

packages.

Course website:

http://faculty.washington.edu/jonno/SISCER-SAE.html
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My SAE Background

My own interest in SAE:

• Started with work on BRFSS, with local government.

• Moved to estimating subnational estimation of U5MR, neonatal
mortality, vaccination, HIV prevalence,... in LMIC.

Details on my research is here:

http://faculty.washington.edu/jonno/space-station.html
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Demographic Health Surveys

• Motivation: In many developing world countries, vital registration
is not carried out, so that births and deaths go unreported.

• Objective: To provide reliable estimates of demographic/health
indicators at the (say) Admin1 or Admin2 level1, at which policy
interventions are often carried out.

• We will illustrate using data from Demographic Health Surveys
(DHS).

• DHS Program: Typically stratified cluster sampling to collect
information on population, health, HIV and nutrition; more than
300 surveys carried out in over 90 countries, beginning in 1984.

• The Problem: Data are sparse, at the Admin2 level in particular.
• SAE: Leverage space-time similarity to construct a Bayesian

smoothing model.

1Admin0 = country level boundaries, Admin1 = first level administrative boundaries
(states in US), Admin 2 = second level administrative boundaries (counties in US)
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2014 Kenyan DHS

• The 3 most recent Kenya DHS
were carried out in 2003, 2008
and 2014.

• The DHS use stratified two-stage
cluster sampling. The strata
consist of urban/rural crossed
with geographic administrative
strata.

• In each strata, enumeration
areas (EAs ) are selected with
probability proportional to size
using a sampling frame
developed from the most recent
census.

• In each of the clusters,
households are selected. Within
each household, women between
the ages of 15 and 49 are
interviewed.
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Figure 1: Cluster locations in three
Kenya DHS, with county boundaries.
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2014 Kenya DHS

• In the 2014 Kenya DHS, the
stratification was county (47)
and urban/rural (2).

• Nairobi and Mombasa are
entirely urban, so there are 92
strata in total.

• We have data from a total of
1584 EAs across the 92
strata. In the second stage,
40,300 households are
sampled.

• DHS provides sampling
(design) weights, assigned to
each individual in the dataset.
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Figure 2: Counties of Kenya.
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Aim: Inference for U5MR over Counties and Years

Figure 3: SAE estimates of under-5 mortality risk, across time, and Kenyan
counties. These estimates were obtained using the SUMMER package.
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2013 Nigeria DHS

• As a second DHS example, we
consider measles vaccination
rates in Nigeria, from the 2013
Nigerian DHS.

• Across African countries, there is
great variability in the number of
Admin2 areas.

• In Nigeria, the Admin2 areas
correspond to Local Government
Areas (LGAs) and there are 774
in total – with such a large
number there are many LGAs
with little/no data.

• There are no clusters in 255
LGAs.

Figure 4: Vaccination prevalence for
LGAs in Nigeria. LGAs with no data
are in white.
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Motivating Example: Diabetes in King County

Arises out of a joint project between me and Laina Mercer and
Seattle and King County Public Health, which lead to the work
reported in Song et al. (2016).

Aim we will concentrate on here is to estimate the number of 18 years
or older individuals with diabetes, by health reporting areas (HRAs) in
King County in 2011.

HRAs are city-based sub-county areas with a total of 48 HRAs in
King County. Some of these are as are a single city, some are a
group of smaller cities, and some are unincorporated areas. Larger
cities such as Seattle and Bellevue include more than one HRA.

Data are based on the question, “Has a doctor, nurse, or other health
professional ever told you that you had diabetes?”, in 2011.
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Figure 5: Health reporting areas (HRAs) in King County.
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Motivating BRFSS Example

Estimates are used for a variety of purposes including summarization
for the local communities and assessment of health needs.

Analysis and dissemination of place-based disparities is of great
importance to allow efficient targeting of place-based interventions.

Because of its demographics, King County looks good compared to
other areas in the U.S., but some of its disparities are among the
largest of major metro areas.

Estimation is based on Behavioral Risk Factor Surveillance System
(BRFSS) data.

The BRFSS is an annual telephone health survey conducted by the
Centers for Disease Control and Prevention (CDC) that tracks health
conditions and risk behaviors in the United States and its territories
since 1984.
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Figure 6: Public Health: Seattle and King County website.
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Motivating BRFSS Example

The BRFSS sampling scheme is complex: it uses a disproportionate
stratified sampling scheme.

The Design-Wt, is calculated as the product of four terms

Design-Wt = Strat-Wt× 1
No-Telephones

× No-Adults

where Strat-Wt is the inverse probability of a “likely” or “unlikely”
stratum being selected (stratification based on county and “phone
likelihood”).

Then a raking adjustment. From the documentation, “BRFSS rakes
the design weight to 8 margins (age group by gender, race/ethnicity,
education, marital status, tenure, gender by race/ethnicity, age group
by race/ethnicity, phone ownership). If BRFSS includes geographic
regions, four additional margins (region, region by age group, region
by gender, region by race/ethnicity) are included.”
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Motivating BRFSS Example

Table 1: Summary statistics for population data, and 2011 King County
BRFSS diabetes data, across health reporting areas.

Mean Std. Dev. Median Min Max Total
Population (>18) 31,619 10,107 30,579 8,556 56,755 1,517,712
Sample Sizes 62.9 24.3 56.5 20 124 3,020
Diabetes Cases 6.3 3.1 6.3 1 15 302
Sample Weights 494.3 626.7 280.4 48.0 5,461 1,491,880

About 35% of the areas have sample sizes less than 50 (CDC
recommended cut-off), so that the diabetes prevalence estimates are
unstable in these areas.

We would like to use the totality of the data to aid in estimation in the
data sparse areas.
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BRFSS Sample Size by HRA

under 25
25 − 50
50 − 75
75 − 100
over 100

Figure 7: Sample sizes across 48 HRAs in 2011.

23 / 96



Observed prevalence by HRA

under 0.05
0.05 − 0.1
0.1 − 0.15
0.15 − 0.2
over 0.2

Observed prevalence by HRA

under 0.05
0.05 − 0.1
0.1 − 0.15
0.15 − 0.2
over 0.2

Figure 8: Diabetes prevalence by HRAs in 2011. Left: Crude proportions.
Right: Horvitz-Thompson weighted estimator.
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Two Approaches to Spatial Smoothing

• Model at the area level
using a discrete spatial
model. These are the SAE
models that are
implemented in the
SUMMER package.

• Model at the point level
using a continuous spatial
model. Model-based
geostatistics is a popular
approach.
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2013 Nigeria DHS
• Recall that almost a third of the LGAs in Nigeria have no data

(left plot below).
• We fit a discrete spatial model in which the rates in neighboring

areas (as defined by sharing a boundary) are “encouraged” to be
similar (right plot below).

Figure 9: Vaccination prevalences in Nigeria in 2013. Left: Weighted
estimates. Right: Estimates from a discrete spatial smoothing model.
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Survey Sampling
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Outline

Many national surveys employ stratified cluster sampling, also known
as multistage sampling, so that’s where we’d like to get to.

We will discuss:
• Simple Random Sampling (SRS).
• Stratified SRS.
• Cluster sampling.
• Multistage sampling.

First, we briefly explain why taking account of the survey design (data
collection process) is important.
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Acknowledging the Design: Stratification

Figure 10: In the DHS,
stratification is based on
counties (the solid lines) and
on a binary urban/rural
variable (urban indicated in
blue, the white is rural).

• Suppose we are interested in the
proportion of women aged 20–29
who complete secondary education
– this is much higher in urban areas

• If we oversample urban areas but
ignore this when we analyze the data
we will overestimate the fraction of
women who complete secondary
education, i.e., we will introduce bias.

• Taking into account of the
stratification also reduces the
variance of the estimator.

• In the design-based approach to
inference, the stratification is
accounted for via design weights.

• In the model-based approach to
inference, the stratification is
accounted for in the mean model.
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Acknowledging the Design: Cluster Sampling

• The DHS also employs cluster sampling, in which multiple units
(individuals) within the same cluster are interviewed.

• Units within the same cluster tend to be more similar than units in
different clusters, which reduces the information content of the
clustered sample, relative to independently sampled units.

• The dependence can be measured via the intraclass correlation
coefficient.

• In the design-based approach to inference, the clustering is
accounted for in the variance calculation that is carried out.

• In the model-based approach to inference, the clustering is
accounted for by including a cluster-specific random effect in the
model.
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Modes of Inference

• Surveys can be analyzed using design- and model-based
inference. In this lecture, the former will be focused upon.

• The target of inference are the set of means for areas indexed by
i (e.g., Admin2 regions).

• Let yik be the binary indicator on the k -th unit sampled in area i ,
for k ∈ Si (the set of selected individuals) and i = 1, . . . ,n.

Design-Based Inference
• Labels Si of sampled units

are random.
• Responses yik are fixed.
• Asymptotic inference,

perhaps using resampling.

Model-Based Inference
• Condition on units that are

actually sampled.
• Responses Yik are random.
• Exact inference, conditional

on model.
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Model-Based Inference

Suppose we carry out stratified cluster sampling, with one-stage of
clusters, and the outcome is continuous.

Let yck be the outcome from sampling unit k in sampled cluster c, and
sc the location of cluster c,

Suppose the data were collected within two strata, urban and rural.

A model-based approach to inference might begin with

Yck = α + γ I(sc ∈ rural )︸ ︷︷ ︸
indicator for rural

+εc + υck ,

where
• α is the mean for urban and α + γ is the mean for rural.
• within-cluster dependence is modeled via the random effect
εc ∼iid N(0, σ2

ε ).
• Measurement error is υck ∼iid N(0, σ2

υ).
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Design-Based Inference

• We will focus on design-based inference: in this approach the
population values of the variable of interest:

y1, . . . , yN

are viewed as fixed, while the indices of the individuals who are
sampled are random.

• Imagine a population of size N = 4 and we sample n = 2
• There are 6 possible samples, with sampled unit indices in red

and non-sampled in blue:
y1, y2, y3, y4

y1, y2, y3, y4

y1, y2, y3, y4

y1, y2, y3, y4

y1, y2, y3, y4

y1, y2, y3, y4

• Different designs are possible, and the probabilities we assign to
each sample depend on which is used.
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Design-Based Inference

Design-based inference is frequentist, so that properties are based
on hypothetical replications of the data collection process; hence, we
require a formal description of the replication process.

A complex random sample may be:

• Better than a simple random sample (SRS) in the sense of
obtaining the same precision at lower cost, e.g., stratified
sampling.

• May be worse in the sense of precision, but be required
logistically, e.g., cluster sampling.
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Probability Samples

Notation for random sampling, in a single population (and not
distinguishing areas):

• N is population size.
• n is sample size.
• πk is the sampling probability for a unit (which will often

correspond to a person) k , k = 1, . . . ,N.

Random does not mean “equal chance”, but means that the choice
does not depend on variables/characteristics (either measured or
unmeasured), except as explicitly stated via known sampling
probabilities.

For example, in stratified random sampling, the probabilities of
selection differ, in different strata.
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Common sampling designs

• Simple random sampling: Select each individual with probability
πk = n/N.

• Stratified random sampling: Use information on each individual
in the population to define strata h, and then sample nh units
independently within each stratum.

• Probability-proportional-to-size sampling: Given a variable
related to the size of the sampling unit, Zk , on each unit in the
population, sample with probabilities πk ∝ Zk .

• Cluster sampling: All units in the population are aggregated into
larger units called clusters, known as primary sampling units
(PSUs). Clusters are then sampled from this the set of PSUs,
with units within these clusters being subsequently sampled.

• Multistage sampling: Stratified cluster sampling, with multiple
levels of clustering.
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Probability Samples

• The label probability
sample is often used
instead of random
sample.

• Non-probability samples
cannot be analyzed with
design-based
approaches, because
there are no πk .

Non-probability sampling approaches include:

• Convenience sampling (e.g., asking for
volunteers). Also known as accidental or
haphazard sampling.

• Purposive (also known as judgmental)
sampling in which a researcher uses
their subject knowledge to select
participants (e.g, selecting an “average”
looking individual).

• Quota sampling in which quotas in
different groups are satisfied (but unlike
stratified sampling, probability sampling
is not carried out, for example, the
interviewer may choose friendly looking
people!).
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Probability Samples: Point Estimation

For design-based inference:

• To obtain an unbiased estimator, every individual k in the
population needs to have a non-zero probability πk of being
sampled, k = 1, . . . ,N.

• To carry out inference, this probability πk must be known only for
every individual in the sample.

• So not needed for the unsampled individuals, which is key to
implementation, since we will usually not know the sampling
probabilities for those not sampled.
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Probability Samples: Variance Estimation

For design-based inference:

• To obtain a form for the variance of an estimator: for every pair of
units, k and l , in the sample, there must a non-zero probability of
being sampled together, call this probability, πkl for units k and l ,
k = 1, . . . ,N, l = 1, . . . ,N, k 6= l .

• The probability πkl must be known for every pair in the sample.

• in practice, these are often approximated, or the variance is
calculated via a resampling technique such as the jackknife.
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Inference

• Suppose we are interested in a variable denoted y , with the
population values being y1, . . . , yN .

• Random variables will be represented by upper case letters, and
constants by lower case letters.

• Finite population view: We have a population of size N and we
are interested in characteristics of this population, for example,
the mean:

yU =
1
N

N∑
k=1

yk .
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Model-Based Inference

• Infinite population view: The population variables are drawn from
a hypothetical distribution, with mean µ.

• In the model-based view, Y1, . . . ,YN are random variables and
properties are defined with respect to p(·); often we say Yk are
independent and identically distributed (iid) from p(·).

• As an estimator of µ, we may take the sample mean:

µ̂ =
1
n

n∑
k=1

Yk .

• µ̂ is a random variable because Y1, . . . ,Yn are each random
variables.

• Assume Yk are iid observations from a distribution, p(·), with
mean µ and variance σ2.

• The sample mean is an unbiased estimator, and has variance
σ2/n.
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Model-Based Inference

• Unbiased estimator:

E[µ̂] = E

[
1
n

n∑
k=1

Yk

]
=

1
n

n∑
k=1

E [Yk ]︸ ︷︷ ︸
=µ

=
1
n

n∑
k=1

µ = µ

• Variance:

var(µ̂) = var

(
1
n

n∑
k=1

Yk

)
=︸︷︷︸
iid

1
n2

n∑
k=1

var (Yk )︸ ︷︷ ︸
=σ2

=
1
n2

n∑
k=1

σ2 =
σ2

n
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Model-Based Inference

• The variance σ2 is unknown so we estimate by the unbiased
estimator

s2 =
1

n − 1

n∑
k=1

(yk − µ̂)2.

• A 95% asymptotic confidence interval is,

µ̂± 1.96× s√
n
.

• In practice, “asymptotic” means that n is sufficiently large that the
sampling distribution of µ̂ (i.e., it’s distribution in hypothetical
repeated samples) is close to normal.
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Design-Based Inference

• In the design-based approach to inference the y values are
treated as unknown but fixed.

• To emphasize: the y ’s are not viewed as random variables, so we
write

y1, . . . , yN ,

and the randomness, with respect to which all procedures are
assessed, is associated with the particular sample of individuals
that is selected, call the random set of indices S.

• Minimal reliance on distributional assumptions.
• Sometimes referred to as inference under the randomization

distribution.
• In general, the procedure for selecting the sample is under the

control of the researcher.
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Design-Based Inference

• Define design weights as

wk =
1
πk
.

• The basic estimator is the weighted mean (Horvitz and
Thompson, 1952; Hájek, 1971)

ŷU =

∑
k∈S wk yk∑

k∈S wk
.

• This is an estimator of the finite population mean yU .
• So long as the weights are correctly calculated, and the sample

size is not small, this estimator is appealing, though it may have
high variance, if n is small.

The weighted mean is the basic direct estimator that is the
first choice for SAE.
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Simple Random Sample (SRS)

• The simplest probability sampling technique is simple random
sampling without replacement.

• Suppose we wish to estimate the population mean in a particular
population of size N.

• In everyday language: consider a population of size N; a random
sample of size n ≤ N means that any subset of n people from
the total number N is equally likely to be selected.
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Simple Random Sample (SRS)

• We sample n people from N, choosing each person
independently at random and with the same probability of being
chosen:

πk =
n
N
,

k = 1, . . . ,N.
• Since sampling without replacement the joint sampling

probabilities are

πkl =
n
N
× n − 1

N − 1
for k , l = 1, . . . ,N, k 6= l .

• In this situation:
• The sample mean is an unbiased estimator.
• The uncertainty, i.e. the variance, of the estimator can be easily

estimated.
• Unless n is quite close to N, the uncertainty does not depend on N,

only on n.
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The Indices are Random!

• Example: N = 4,n = 2 with SRS. There are 6 possibilities:

{y1, y2}, {y1, y3}, {y1, y4}, {y2, y3}, {y2, y4}, {y3, y4}.

• The random variable describing this design is S, the set of
indices of those selected.

• The sample space of S is

{(1,2), (1,3), (1,4), (2,3) (2,4), (3,4)}

and under SRS, the probability of sampling one of these
possibilities is 1/6.

• The selection probabilities are

πk = Pr( individual k in sample ) =
3
6

=
1
2

which is of course n
N .

• In general, we can work out the selection probabilities without
enumerating all the possibilities!
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Design-Based Inference

• Fundamental idea behind design-based inference: An individual
with a sampling probability of πk can be thought of as
representing wk = 1/πk individuals in the population.

• Example: in SRS each person selected represents N
n people.

• The sum of the design weights,∑
k∈S

wk = n × N
n

= N,

is the total population.
• Sometimes the population size may be unknown and the sum of

the weights provides an unbiased estimator.
• In general, examination of the sum of the weights can be useful

as if it far from the population size (if known) then it can be
indicative of a problem with the calculation of the weights.
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Estimator of yU and Properties under SRS

• The weighted estimator is

ŷU =

∑
k∈S wk yk∑

k∈S wk

=

∑
k∈S

N
n yk∑

k∈S
N
n

=

∑
k∈S yk

n
= y ,

the sample mean, which is reassuring under SRS!
• This is an unbiased estimator, i.e.,

E
[
ŷU

]
= yU ,

where we average over all possible samples we could have
drawn, i.e., over S.
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Unbiasedness

• For many designs:
∑

k∈S wk = N so we examine the estimator

ŷU =
1
N

∑
k∈S

wk yk .

• There’s a neat trick in here, we introduce an indicator random
variable of selection Ik ∼ Bernoulli(πk ):

E
[
ŷU

]
= E

[
1
N

∑
k∈S

wk yk

]
︸ ︷︷ ︸

S is random in here

= E

[
1
N

N∑
k=1

Ik wk yk

]
︸ ︷︷ ︸

Ik are random in here

=
1
N

N∑
k=1

E [Ik ] wk yk =
1
N

N∑
i=1

πk
1
πk

yk =
1
N

N∑
i=1

yk = yU
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Estimator of yU and Properties under SRS

• It can be shown that the variance is

var(y) =
(

1− n
N

) S2

n
, (1)

where,

S2 =
1

N − 1

N∑
k=1

(yk − yU)2.

• Contrast (1) with the model-based variance which is σ2/n.
• The factor

1− n
N

is the famous finite population correction (fpc) factor.
• Because we are estimating a finite population mean, the greater

the sample size relative to the population size, the more
information we have (relatively speaking), and so the smaller the
variance.

• In the limit, if n = N we have no uncertainty, because we know
the population mean!
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Estimator of yU and Properties under SRS

• The variance of the estimator depends on the population
variance S2, is unknown, and we estimate using the unbiased
estimator:

s2 =
1

n − 1

∑
k∈S

(yk − y)2.

• Substitution into (1) gives an unbiased estimator of the variance:

v̂ar(y) =
(

1− n
N

) s2

n
. (2)

• The standard error is

SE(y) =

√(
1− n

N

) s2

n
.

• Note: S2 is not a random variable but s2 is.
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Estimator of yU and Properties under SRS

• If n, N and N − n are “sufficiently large”2, a 95% asymptotic
confidence interval for yU is

y ± 1.96×
√

1− n
N

s√
n
. (3)

• The interval given by (3) is random (across samples) because y
and s2 (the estimate of the variance) are random.

• In practice therefore, if n� N, we obtain the same confidence
interval whether we take a design- or a model-based approach to
inference (though the interpretation is different).

2so that the normal distribution provides a good approximation to the sampling
distribution of the estimator
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Stratified Sampling

• Simple random samples are rarely taken in surveys because
they are logistically difficult and there are more efficient designs
for gaining the same precision at lower cost.

• Stratified random sampling is one way of increasing precision
and involves dividing the population into groups called strata and
drawing probability samples from within each one, with sampling
from different strata being carried out independently.

• An important practical consideration of whether stratified
sampling can be carried out is whether stratum membership is
known for every individual in the population, i.e., we need a
sampling frame containing the strata variable.
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Rationale for Stratified Sampling

Lohr (2010, Section 3.1) provides a good discussion of the benefits of
stratified sampling, we summarize here.

• Protection from the possibility of a “really bad sample”, i.e., very
few or zero samples in certain stratum giving an
unrepresentative sample.

• Obtain known precision required for subgroups (domains) of the
population – this is usual for the DHS.

• For example, from the Kenya DHS sampling manual (Kenya
National Bureau of Statistics, 2015):

“The 2014 KDHS was designed to produce representative
estimates for most of the survey indicators at the national level,
for urban and rural areas separately, at the regional (former
provincial) level, and for selected indicators at the county level.”

56 / 96



Rationale for Stratified Sampling

• Flexible since sampling frames can be constructed differently in
different strata.

• For example, one may carry out different sampling in urban and
rural areas.

• More precise estimates can be obtained if stratum can be found
that are associated with the response of interest, for example,
age and gender in studies of human disease.

• In a national study, the most natural form of sampling may be
based on geographical regions.

• Due to the independent sampling in different stratum, variance
estimation is straightforward, as long as within-stratum sampling
variance estimators are available.
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Example: Washington State

• According to the census there were 2,629,126 households in
Washington State in the period 2009–2013.

• Consider a simple random sample (SRS) of 2000 households, so
that each household has a

2000
2629126

= 0.00076,

chance of selection.
• Suppose we wish to estimate characteristics of household in all

39 counties of WA.
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Example: Washington State

• King (highlighted left) and Garfield (highlighted right) counties
had 802,606 and 970 households so that under SRS we will
have, on average, about 610 households sampled from King
County and about 0.74 from Garfield county.

• The probability of having no-one from Garfield County is about
22% (binomial experiment), and the probability of having more
than one is about 45%.

• If we took exactly 610 from King and 1 (rounding up) from
Garfield we have an example of proportional allocation, which
would not be a good idea given the objective here.

• Stratified sampling would allow control of the number of samples
in each county.

59 / 96



Notation

• Stratum levels are denoted
h = 1, . . . ,H, so H in total.

• Let N1, . . . ,NH be the known
population totals in the stratum
with

N1 + · · ·+ NH = N,

so that N is the total size of the
population.

• In stratified simple random
sampling, the simplest from of
stratified sampling, we take a
SRS from each stratum with nh

samples being randomly taken
from stratum h, so that the total
sample size is

n1 + · · ·+ nH = n.

• We can view stratified SRS as carrying
out SRS in each of the H stratum; we let
Sh represent the probability sample in
stratum h.

• We also let S refer to the overall
probability sample.
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Estimators

• The sampling probabilities for unit k in strata h are

πhk =
nh

Nh
,

which do not depend on k .
• Therefore the design weights are

whk =
Nh

nh
.

• Note that:

H∑
h=1

∑
k∈Sh

whk =
H∑

h=1

∑
k∈Sh

Nh

nh
=

H∑
h=1

nh
Nh

nh
= N,

so that summing over the weights recovers the population size –
this is consistent with the idea that each sampled individual
represents a number of people (the weight) in the population.
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Estimators

• Weighted estimator:

ŷU =

∑H
h=1

∑
k∈Sh

whk yhk∑H
h=1

∑
k∈Sh

whk
=

H∑
h=1

Nh

N
yh

where

yh =

∑
k∈Sh

yhk

nh
.

• Since we are sampling independently from each stratum using
SRS, we have3

var(ŷU) =
H∑

h=1

(
Nh

N

)2(
1− nh

Nh

)
s2

h
nh
, (4)

where the within stratum variances are:

s2
h =

1
nh − 1

∑
k∈Sh

(yhk − yh)2.

3using the variance formula for SRS, (2)
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Weighted Estimation

Recall: The weight wk can be thought of as the number of people in
the population represented by sampled person k .

Example 1: Simple Random Sampling
Suppose an area contains 1000 people:
• Using simple random sampling (SRS), 100 people are sampled.
• Sampled individuals have weight wk = 1/πk = 1000/100 = 10.

Example 2: Stratified Simple Random Sampling
Suppose an area contains 1000 people, 200 urban and 800 rural.
• Using stratified SRS, 50 urban and 50 rural individuals are

sampled.
• Urban sampled individuals have weight

wk = 1/πk = 200/50 = 4.
• Rural sampled individuals have weight

wk = 1/πk = 800/50 = 16.
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Weighted Estimation

Example 2: Stratified Simple Random Sampling
Suppose an area contains 1000 people, 200 urban and 800 rural.
• Urban risk = 0.1.
• Rural risk = 0.2.
• True risk = 0.18.

Take a stratified SRS, 50 urban and 50 rural individuals sampled:

• Urban sampled individuals have weight 4; 5 cases out of 50.
• Rural sampled individuals have weight 16; 10 cases out of 50.
• Simple mean is 15/100 = 0.15 6= 0.18.
• Weighted mean is

4× 5 + 16× 10
4× 50 + 16× 50

=
180
1000

= 0.18.
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Motivation for Cluster Sampling

For logistical reasons, cluster sampling is an extremely common
design that is often used for government surveys.

Two main reasons for the use of cluster sampling:
• A sampling frame for the population of interest does not exist,

i.e., no list of population units.
• The population units have a large geographical spread and so

direct sampling is not logistically feasible to implement for
in-person interviews.

• It is far more cost effective (in terms of travel costs, etc.) to
cluster sample.
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Terminology

• In single-stage cluster sampling or one-stage cluster sampling,
the population is grouped into subpopulations (as with stratified
sampling) and a probability sample of these clusters is taken,
and every unit within the selected clusters is surveyed.

• In one-stage cluster sampling either all or none of the elements
that compose a cluster (PSU) are in the sample.

• The subpopulations are known as clusters or primary sampling
units (PSUs).

• In two-stage cluster sampling, rather than sample all units within
a PSU, a further cluster sample is taken; the possible groups to
select within clusters are known as secondary sampling units
(SSUs).

• This can clearly be extended to multistage cluster sampling.
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Differences Between Cluster and Stratified sampling

Stratified Random Sampling One-Stage Cluster Sampling
A sample is taken from every Observe all elements only within the
stratum sampled clusters
Variance of estimate of yU The cluster is the sampling unit and the
depends on within strata variability more clusters sampled the smaller the

variance – which depends primarily on
between cluster means

For greatest precision, we want low For greatest precision, high within-cluster
within-strata variability but large variability and similar cluster means.
between-strata variability
Precision generally better than SRS Precision generally worse than SRS
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Heterogeneity

• The reason that cluster sampling loses efficiency over SRS is
that within clusters we only gain partial information from
additional sampling within the same cluster, since within clusters
two individuals tend to be more similar than two individuals within
different clusters.

• The similarity of elements within clusters is due to unobserved
(or unmodeled) variables.

• The design effect (deff) is often to summarize the effect on the
variance of the design:

deff =
Variance of estimator under design
Variance of estimator under SRS

,

where in the denominator we use the same number of
observations as in the complex design in the numerator.
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Estimation for One-Stage Cluster Sampling

• We suppose that a SRS of n PSUs is taken.
• The probability of sampling a PSU is n/N, and since all the

SSUs are sampled in each selected PSU we have selection
probabilities and design weights:

πik = Pr( SSU k in cluster i is selected ) =
n
N

wik = Design weight for SSU k in cluster i =
N
n
.

Let S represent the set of sampled clusters.
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Estimation for One-Stage Cluster Sampling

• Let M0 =
∑N

i=1 Mi be the total number of secondary sampling
units (SSUs), i.e., elements in the population, so the population
mean is

yU =
1

M0

N∑
i=1

Mi∑
k=1

yik

• An unbiased estimator is

ŷU =

∑
i∈S
∑

k∈Si
wik yik

M0
.

• Then,

v̂ar(ŷU) =
N2

M2
0

(
1− n

N

) s2
T
n

where s2
T is the estimated variance of the PSU totals.
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Two-Stage Cluster Sampling with Equal-Probability
Sampling

It may be wasteful to measure all SSUs in the selected PSUs, since
the units may be very similar and so there are diminishing returns on
the amount of information we obtain.

We discuss the equal-probability two stage cluster design:

1. Select a SRS of n PSUs from the population of N PSUs.
2. Select a SRS of mi SSUs from each selected PSU, the

probability sample collected will be denoted Si .
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Two-Stage Cluster Sampling Weights

• The selection probabilities are:

Pr( k -th SSU in i-th PSU selected ) = Pr( i-th PSU selected )

× Pr( k -th SSU | i-th PSU selected )

=
n
N
× mi

Mi

• Hence, the weights are

wik = π−1
ik =

N
n
× Mi

mi
.

• An unbiased estimator is

ŷU =

∑
i∈S
∑

k∈Si
wik yik

M0
.

• Variance calculation is not trivial, and requires more than
knowledge of the weights.
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Variance Estimation for Two-Stage Cluster Sampling

• In contrast to one-stage cluster sampling we have to
acknowledge the uncertainty in both stages of sampling; in
one-stage cluster sampling the totals ti are known in the sampled
PSUs, whereas in two stage sampling we have estimates t̂i .

• In Lohr (2010, Chapter 6) it is shown that

var(ŷU) =
1

M2
0

 N2
(

1− n
N

) s2
T
n︸ ︷︷ ︸

One-stage cluster variance

+
N
n

∑
i∈S

(
1− mi

Mi

)
M2

i
s2

i
mi︸ ︷︷ ︸

Two-stage cluster variance


(5)

where
• s2

T is the estimated variance of the cluster totals,
• s2

i is the estimated variance within the i-th PSU.

• In most software packages, the second term in (5) is ignored,
since it is small when compared to the first term, when N is large.
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The Jackknife

• The jackknife is a very general technique for calculating the
variance of an estimator.

• The basic idea is to delete portions of the data, and then fit the
model on the remainder – if one repeats this process for different
portions, one can empirically obtain the distribution of the
estimator.

• The key is to select the carefully select the portion of the data so
that the design is respected.

• We describe in the context of multistage cluster sampling.
• Observations within a PSU should be kept together when

constructing the data portions, which preserves the dependence
among observations in the same PSU.
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The Jackknife for Multistage Cluster Sampling

• Assume we have H strata and nh PSUs in strata h, and assume
PSUs are chosen with replacement.

• To apply the jackknife, delete one PSU at a time.
• Let µ̂(hi) be the estimator when PSU i of stratum h is omitted.
• To calculate µ̂(hi) we define a new weight variable:

wk(hi) =


wk(hi) if observation k is not in stratum h
0 if observation k is in PSU i of stratum h

nh
nh−1 wk if observation k is not in PSU i but in stratum h

Then we can use the weights wk(hi) to calculate µ̂(hi) and

V̂JK(µ̂) =
H∑

h=1

nh − 1
nh

nh∑
i=1

(µ̂(hi) − µ̂)2.
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Multistage Sampling in the DHS

• A common design in national surveys is multistage sampling, in
which cluster sampling is carried out within strata.

• DHS Program: Typically, 2-stage stratified cluster sampling:
• Strata are urban/rural and region.
• Enumeration Areas (EAs) sampled within strata (PSUs).
• Households within EAs (SSUs).

• Weighted estimators are used and a common approach to
variance estimation is the jackknife (Pedersen and Liu, 2012)

• In later lectures, we will show how model-based inference can be
carried out for the DHS.
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Use of Auxiliary Information
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Synthetic Estimator

Many approaches have been suggested to obtain estimators with
greater precision – we give a flavor by discussing some different
approaches to modeling.

We consider estimation of a generic finite population mean, yUi , in
area i .

78 / 96



Synthetic Estimator
The synthetic estimator, based on p − 1 covariates, is

ŷ
syn
Ui =

1
Ni

Ni∑
k=1

x T
ik B̂ = x T

i B̂,

where we have an appropriate weighted estimator,

B̂ =

 n∑
i=1

∑
k∈Si

wik x T
ik x ik

−1
n∑

i=1

∑
k∈Si

wik x T
ik yik .

This is an example of pseudo-likelihood estimation (Binder, 1983).

The area means of covariates needed across all of the population.

This approach assumes the regression model y ik = x T
ik B is

appropriate for all areas.

In general, gives high precision estimates, but with a strong possibility
of large bias as the model assumes all between-area variability arises
from the differences in covariates, which is a heroic assumption.
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Synthetic Estimator

If we fit a logistic regression model that includes auxiliary variables,
then the procedure is more complex, and more information is needed.

• Consider the model
logit y ik = x T

ik B.

• The weighted estimates of B are obtained through solving the
weighted score, another example of pseudo-likelihood
estimation.

• The estimate is:

ŷ
syn
Ui =

1
Ni

Ni∑
k=1

expit
(

x T
ik B̂
)
,

so that the covariates are required for all members of the
population (because of the nonlinear model, we can’t get away
with just the areas means).
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Synthetic Estimator

Synthetic estimation is very naive but if only very few areas are
sampled it can be used (since there aren’t a lot of alternatives) – in
this situation, one would hope there are lots of covariates with strong
predictive power.

If there are sufficient samples within areas, it may be possible to
estimate separate regression coefficients in each area, B̂i , which will
reduce bias.

But we would like a method that allows for area-specific
discrepancies from the regression model – an obvious extension is to
add random effects, and we see methods of this type shortly.

81 / 96



Generalized Regression (GREG) Estimator

Now we consider general estimation of a mean or total when we have
again have p − 1 variables to assist in the modeling, following Lohr
(2010, Section 11.7).

In an SAE context, the GREG estimator attempts to correct for at
least some of the bias in the synthetic estimator.

A detailed account of model-assisted estimators is given by Särndal
et al. (1992).
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The GREG Estimator

Working super-population model:

yik = x T
ik︸︷︷︸

1×p

β︸︷︷︸
p×1

+εik ,

x ik = (xik1, . . . , xikp), varM(εik ) = σ2
k , covM(εik , εi′ j ) = 0 j 6= k ,

i , i ′ = 1, . . . ,n.

Define
B = (X T

UΣ−1
U X U)−1X T

UΣ−1
U yU

with X U = [x1, . . . ,xn]T is the N × p matrix of population covariates,
yU = [y1, . . . ,yn], and ΣU = diag(σ2

11, . . . , σ
2
nNn

), we let N =
∑

i Ni .

B is the finite population estimator of β.
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The GREG Estimator

We have

X T
U︸︷︷︸

p×N

Σ−1
U︸︷︷︸

N×N

X U︸︷︷︸
N×p

=
n∑

i=1

Ni∑
k=1

x ik x T
ik

σ2
ik

, X T
U︸︷︷︸

p×N

Σ−1
U︸︷︷︸

N×N

yU︸︷︷︸
N×1

=
b∑

i=1

Ni∑
k=1

x ik y ik

σ2
ik

The sample survey estimator of B is

B̂ =

 n∑
i=1

∑
k∈Si

wk
x ik x T

ik

σ2
ik

−1
n∑

i=1

∑
k∈Si

wik
x ik y ik

σ2
ik

This is the pseudo-likelihood estimator.

We can obtain predicted values:

ŷik = x T
ik B̂.
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The GREG Estimator
We can write the true area-level mean as,

yUi =
1
Ni

∑
k∈U

yik =
1
Ni

∑
k∈U

ŷik +

(
1
Ni

∑
k∈U

yik −
1
Ni

∑
k∈U

ŷik

)

=
1
Ni

∑
k∈U

ŷik +
1
Ni

∑
k∈U

Rik

where Rik are the residuals.

We can estimate the sum of the residuals using the usual weighted
estimator: ∑

k∈U

R̂ik =
∑
k∈S

wik (yik − ŷik ).

Substituting in the working model we obtain the GREG,

ŷ
greg
Ui =

1
Ni

∑
k∈U

x T
ik B̂ +

1
Ni

∑
k∈S

wik (yik − x T
ik B̂)

Note: adjusts the synthetic estimator (the first term on the RHS).
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The GREG Estimator
We can rewrite the GREG estimator as

ŷ
greg
Ui =

1
Ni

∑
k∈U

x T
ik B̂ +

1
Ni

∑
k∈s

wik yik −
1
Ni

∑
k∈S

wik x T
ik B̂

=
1
Ni

∑
k∈S

wik yik +

(
1
Ni

∑
k∈U

x T
ik B̂ − 1

Ni

∑
k∈S

wik x T
ik B̂

)

= ŷ
ht
Ui +

(
x T

i B̂ − (x̂
ht
Ui )

TB̂
)

= ŷ
ht
Ui +

(
x T

Ui − (x̂
ht
Ui )

T

)
B̂

where x̂
ht
Ui is the weighted (HT) estimator of the vector of means of

the covariates in area i – this estimator is also known as the survey
regression estimator.

We see that the HT estimator is adjusted by a term that depends on
the strength of the regression association.

The GREG is design consistent, since x̂
ht
Ui → xUi and ŷ

ht
Ui → yUi . 86 / 96



The GREG Estimator
The generalized regression (GREG) estimator of the total is

t̂greg
y = t̂ht

y + (tx − t̂
ht
x )TB̂

=
∑
k∈S

wk gk yk

where we have dropped the subscripts i , since the properties we next
derive are for the total population,

gk =

1 + (tx − t̂
ht
x )T

∑
j∈S

wj
x jx T

j

σ2
j

−1

xk

σ2
k

 .
For any choice of the constants σ2

k , the GREG estimator calibrates
the sample to the population total of each x variable used in the
regression model.

We now show this, i.e., that the estimator calibrates to the complete
population total tx :

t̂
greg
x = tx
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The GREG Estimator

t̂
greg
x =

∑
k∈S

wk gk xk

=
∑
k∈S

wk

1 + (tx − t̂
ht
x )T

∑
j∈S

wj
x jxT

j

σ2
j

−1

xk

σ2
k

 xk

= t̂x +
∑
k∈S

wk

(tx − t̂
ht
x )T

∑
j∈S

wj
x jxT

j

σ2
j

−1

xk

σ2
k


︸ ︷︷ ︸
A scalar, so equal to its transpose

xk

= t̂
ht
x +

∑
k∈S

wk
xk

σ2
k

xT
k

∑
j∈S

wj
x jxT

j

σ−1
j

−1

(tx − t̂x)


= t̂

ht
x + (tx − t̂

ht
x ) = tx

Note that this recovery is at the population and not at the area level –
the latter will only occur if the working model includes area-specific
coefficients.
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Variance of the GREG Estimator

Using linearization:

var(̂tgreg
yi ) = V

(̂
tyi + (txi − t̂

ht
xi )

TB̂
)
≈ V

(̂
tht
yi − (̂t

ht
)T
xiB
)

Let eik = yik − x T
ik B̂ be the k -th residual in the i-th area; then the

variance can be estimated by

v̂ar1(̂tgreg
yi ) = v̂ar

(∑
k∈S

wik eik

)
.

Alternative estimator:

v̂ar2(̂tgreg
yi ) = v̂ar

(∑
k∈S

wik gik eik

)
.

89 / 96



Variance of the GREG Estimator

Now suppose we have SRS.

For the HT estimator:

v̂ar(̂tht
yi ) =

N2
i

ni

(
1− ni

Ni

) ∑
k∈Si

(yik − y i )
2

ni − 1

For the GREG estimator:

v̂ar(̂tgreg
yi ) =

N2
i

ni

(
1− ni

Ni

) ∑
k∈Si

e2
ik

ni − 1
.

So the variance of the estimator is smaller if the regression model
gives smaller residuals than in the original observations (relative to
their mean).
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Generalized Regression (GREG) Estimator

Notes:

• If the synthetic estimator is based on a model with area specific
regression parameters, it is equivalent to the GREG estimator.

• For a linear GREG estimator only the area totals or means for
the x ’s are needed (not unit values for all of the population) – this
is very desirable.

• Logistic GREG (LGREG) is a version that has a logistic working
model (Kennel and Valliant, 2010).
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Generalized Regression (GREG) Estimator

• In general, we have

ŷ
greg
Ui =

1
Ni

∑
k∈U

µ̂ik (x ik ) +
1
Ni

∑
k∈S

wik (yik − µ̂ik (x ik ))

for a general mean prediction model µik (x ik ).

• See Dagdoug et al. (2022) for a random forest prediction model.

• Gao and Wakefield (2022) exploit this in an SAE context, by
using the LGREG estimator as the observed data (as in
Fay-Herriot) and adding random effects.
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Composite Estimator

In Rao and Molina (2015, Section 3.3) describe a composite
estimator of the form

ŷ
com
i = di ŷ

dir
Ui + (1− di )ŷ

syn
Ui ,

with weight 0 ≤ di ≤ 1 – the idea is to trade off the unbiased but

potential high variance of a direct estimator ŷ
dir
Ui and the opposite

properties of the synthetic estimator ŷ
syn
Ui .

The optimal weight di in a design-based framework is a function of

the MSEs of ŷ
dir
Ui and ŷ

syn
Ui .

Rao and Molina (2015, p. 59) report that the estimated weights can
be highly unstable.

Different composite estimators are available, but we prefer to pursue
a random effects representation, to have a formal model for choosing
the weighting parameter.
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Discussion
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Discussion

• SAE is often based on samples collected under a complex
design, and if this case one must account for the design in the
analysis.

• Direct (weighted) estimates are the starting point for analysis,
and will be suitable, if the sample size is sufficiently large.

• Variance estimation that accounts for the design has been a
topic of much research.

• However, for the major designs (e.g., SRS, stratified SRS, cluster
sampling, multistage sampling), weighted estimates and their
variances are available within all the major statistical packages.
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Discussion

• When the variance is large, because of small sample sizes, we
would like to use smoothing methods, with Bayes being a
convenient way to do this – this is the topic of the next lecture.

• We will also consider how covariate information can be used.

• The majority of survey sampling texts take a design-based view
of inference – this is a different paradigm to model-based
inference, for which most spatial statistical models were
developed!

• Later we will see how spatial methods can incorporate the survey
design.
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