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Motivation
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In a SAE context, we are often faced with situations in which the data
are sparse in space, which leads to great uncertainty in calculated
estimates.

Hierarchical models1are designed to alleviate this problem, by
modeling the totality of data from all areas, in order to leverage
similarities in the data.

The key element is coupling the different areas, by assuming this
parameters in these areas are linked through a common probability
distribution.

In this lecture we describe hierarchical models for normal and
binomial data.

1also known as random or mixed effects models
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Simulated Data with Constant Risk Across Areas

Suppose we are collecting samples in King County HRAs to see if the
prevalence, p, of some condition is dangerously high in some areas.

We simulate data (via simple random sampling) with p = 0.2 in every
area (so there is no between-area variability in the true prevalence).

We take sample sizes of ni = 10,25,50,200 in each area and
simulate data from the model

Yi |p = 0.2 ∼ Binomial(ni ,p),

for i = 1, . . . ,48 areas.
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MLEs of Prevalences pi , i = 1, . . . ,48
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Figure 1: Realized proportions (MLEs) in the 48 areas, with different sample
sizes.

For the low sample sizes we see lots of areas that suggest
intervention is required, but this is just sampling variability.
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Motivating Examples: Normal and Binomial Data

We now return to the simulated data we saw in the first lecture.

We have two outcomes, one continuous and one binary, again using
the King County geography.

These data were simulated with non-constant risk across HRAs
(areas).

7 / 71



Motivating Examples: Normal and Binomial Data
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Figure 2: Sample mean weights (top left) and fractions with diabetes (top
right) Standard errors of: mean weights (bottom left) and fractions with
diabetes (bottom right). Gray areas in the right map correspond to areas with
zero counts, and hence an estimated standard error of zero.
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Non-Spatial Hierarchical Model for Normal
Data
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Smoothing Models

Instability of estimates has lead to methods being developed to
impose smoothness on the underlying parameters using
hierarchical/random effects models that use the data from the totality
of areas to provide more reliable estimates in each of the constituent
areas.

Overview of Models:
I Basic Normal Model: No smoothing.
I Random Effects Models:

I Normal likelihood. Random effects with no spatial structure (known
as IID2).

I Normal Likeilhood, Two sets of random effects, one set with no
spatial structure, one set with spatial structure.

I Covariates may be added to each of these in order to smooth
over covariate space.

I Estimation in these models is a separate issue.

2Independent and Identically Distributed
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Basic Hierarchical Model
Let Yik be the weight of the k -th sampled individual in area i .

Three possible models:

1. No between-area variability:

Yik = β0︸︷︷︸
Common Mean

+εik ,

with εik ∼ N(0, σ2
ε).

2. Distinct between-area variability:

Yik = βi︸︷︷︸
Mean of Area i

+εik ,

with εik ∼ N(0, σ2
ε). Known as a fixed effects model. Note: no way to link

different areas.
3. Linked between-area variability:

Yik = β0 + δi︸ ︷︷ ︸
Mean of Area i

+εik ,

with δi ∼ N(0, σ2
δ), εik ∼ N(0, σ2

ε). Known as a random effects model.
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Basic Normal Hierarchical Model
We will concentrate on the linked between-area random effects
model:

Yik = β0 + δi︸ ︷︷ ︸
Mean of Area i

+εik ,

with δi ∼ N(0, σ2
δ) – these are the area-specific deviations (the

random effects) from the overall level β0 – and εik ∼ N(0, σ2
ε ), is the

measurement error.

This model is also known as a Linear Mixed Effects Model (LMEM).

In this model, the totality of data are used to inform on the overall
level β0 and between-area variability σ2

δ .

The unknown parameters are:

Overall mean β0

Between-Area Variance σ2
δ

Measurement Error Variance σ2
ε

Random Effects δ1, . . . , δn
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The Linear Hierarchical Model

We can write the above model hierarchically as

Yik |β0, δi , σ
2
ε ∼iid N(β + δi , σ

2
ε )

δi |σ2
δ ∼iid N(0, σ2

δ)

β0, σ
2
ε , σ

2
δ ∼ Priors

The posterior, given data y , is obtained as

p(β0, δ1, . . . , δn, σ
2
ε , σ

2
δ |y) = p(y |β0, δ1, . . . , δn, σ

2
ε , σ

2
δ)

× p(β0, δ1, . . . , δn, σ
2
ε , σ

2
δ)/p(y)

=
n∏

i=1

p(y i |β0, δi , σ
2
ε )× p(δi |σ2

δ)

× p(β0, σ
2
ε , σ

2
δ)/p(y)

Marginal distributions, such as p(β0|y), are obtained by integration.
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Estimation in the Normal Hierarchical Model

In general, there are no closed-form (i.e., explicit) forms for the
estimates of the parameters.

Suppose, for simplicity, the variances σ2
δ and σ2

ε are known; this
allows some insight into inference.

The posterior mean for β0 is a weighted least squares estimator, with
the weights depending on the sample sizes in the areas; denote this
by β̂0.
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Estimation in the Normal Hierarchical Model

The posterior mean of the random effect (area-specific adjustment) is:

δ̂i = E[δi |yi ]

=
niσ

2
δ

σ2
ε + niσ

2
δ

(y i − β̂0)

= wi (y i − β̂0)

where

wi =
niσ

2
δ

σ2
ε + niσ

2
δ

≤ 1

and is small (so more shrinkage) if:
I ni is small (not much data in the area), or
I σ2

δ is small (between-area variability is small), or
I σ2

ε is large (within-area variability is large).
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Predicting the Population Total and Mean
Let si and ri denote, respectively, the set of indices of the sampled
and unsampled individuals in area i .

Let Ti =
∑Ni

k=1 yik be the total for the population in area i , where Ni is
the population size.

The average for the population in area i is

Y i =
Ti

Ni

=

∑Ni
k=1 yik

Ni

=

∑
k∈si

yik +
∑

k∈ri
yik

Ni

=

∑
k∈si

yik

ni︸ ︷︷ ︸
Mean of Sampled

× ni

Ni
+

∑
k∈ri

yik

Ni − ni︸ ︷︷ ︸
Mean of Unsampled

×Ni − ni

Ni
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Predicting the Population Total and Mean

Suppose now we have fitted the linear mixed effects model and
obtained posterior medians β̂0 and δ̂i .

The obvious estimate is:

Ŷ i =

∑
k∈si

yik

ni︸ ︷︷ ︸
Mean of Sampled

× ni

Ni
+ (β̂0 + δ̂i )︸ ︷︷ ︸

Estimated Mean

×Ni − ni

Ni

If Ni � ni , then the sampled data provide a small fraction of the total
population in the area and we can estimate the area mean by

Ŷ i = β̂0 + δ̂i . (1)

If an area contains no data, then its mean is assumed to be β0 + δ?,
where δ? ∼ N(0, σ2

δ).
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Motivating Example: Continuous Outcome

In the simulated data example we have very large populations, so we
can neglect finite sampling correction factors (see later).

We can also neglect the observed sample mean in the estimate of
the area mean, and use (1).

Totals can be similarly estimated:

T̂i =
∑
k∈si

yik +
∑
k∈ri

yik

=
∑
k∈si

yik︸ ︷︷ ︸
Total of Sampled

+ (Ni − ni )× (β̂0 + δ̂i )︸ ︷︷ ︸
Estimated Total for Unsampled

.

If Ni � ni ,

T̂i ≈ Ni × (β̂0 + δ̂i ).
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MLEs of Prevalences pi , i = 1, . . . ,48

n = 50 n = 200
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Figure 3: Realized proportions (MLEs) in the 48 areas, with different sample
sizes.

For the low sample sizes we see lots of areas that suggest
intervention is required, but this is just sampling variability.
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Posterior medians of Prevalences pi , i = 1, . . . ,48
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Figure 4: Posterior medians in the 48 areas, with different sample sizes.

We clearly see the effect of the shrinkage!
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Posterior Medians of Prevalences pi , i = 1, . . . ,48

n = 50 n = 200

n = 10 n = 25

0.200

0.205

0.210

value

Figure 5: Posterior medians in the 48 areas, with different sample sizes, now
on a different scale.
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Motivating Example: Continuous Outcome
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Figure 6: Top row: Estimates of area averages of weight via MLE’s (left) and
posterior medians (right). Bottom row: Uncertainty of estimates with standard
errors (left) and posterior standard deviations (right).
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Motivating Example: Continuous Outcome
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Figure 7: Comparison of area averages: Posterior medians versus MLEs
(left). Posterior standard deviations versus standard errors associated with
the MLEs (right).

The posterior medians are shrunk from the MLEs towards the overall
mean, with the extreme values undergoing the most shrinkage.

In general, the Bayes measures of uncertainty (the posterior standard
deviations) are smaller than the standard errors of the MLEs, with the
greatest difference occurring for those areas with the large standard
errors (which have the smallest sample sizes).
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Basic Normal Hierarchical Model

See (Rao and Molina, 2015, Section 4.3) for a description of the
model

Yik = β0 + δi︸ ︷︷ ︸
Mean of Area i

+εik , (2)

under the heading “Basic Unit Level Model” (also referred to as a
nested error model).

The driving assumption is that this model is appropriate for the
individuals (units) in area i , and in particular for those that were
sampled yik , k ∈ si ; specifically, there is no selection bias.

Let x i = (x i1, . . . ,x iNi ) denote a set of covariates measured on all
members of the population in area i .

Also let r i = (ri1, . . . , riNi ) denote response indicators, i.e., rik = 1 if
i ∈ si and = 0, otherwise.
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Basic Normal Hierarchical Model
Model (2) is assumed for the population and let θ = (β0, δ, σ

2
δ , σ

2
ε ),

with δ = (δ1, . . . , δn).

The sampling model for the observed data is,

p(yOBS
i , r i |x i ,θ,φ) =

∫
p(yOBS

i ,yMIS
i , r i |x i ,θ,φ) dyMIS

i

=

∫
p(yOBS

i ,yMIS
i |x i ,θ)× p(r i |yOBS

i ,yMIS
i ,x i ,φ)︸ ︷︷ ︸

Selection Model

dyMIS
i

If we assume that selection does not depend on the data,

p(r i |yOBS
i ,yMIS

i ,x i ,φ) = p(r i |x i ,φ),

then there is no selection bias, and

p(yOBS
i , r i |x i ,θ) =

∫
p(yOBS

i ,yMIS
i |x i ,θ)︸ ︷︷ ︸

Population Model (2)

dyMIS
i × p(r i |x i ,φ)

= p(yOBS
i |x i ,θ)× p(r i |x i ,φ),

so conditionally independent and can concentrate on p(yOBS
i |x i ,θ).

25 / 71



Basic Normal Hierarchical Model

Under simple random sampling the selection does not depend on the
response and we can use (2), i.e.,

Yik = β0 + δi + εik .

Under stratified simple random sampling within area i (for example,
based on urban/rural) then we would not want to fit model (2).

Suppose we oversample individuals in urban regions (say) in area i ,
and the response is associated with urbanicity, then if we ignore this
aspect when modeling the responses, we will introduce bias.

This is because the assumption that selection is independent of
outcome is violated.

If the mean response in urban regions is lower than in rural regions
and we oversample urban regions, we will underestimate the mean.
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Basic Normal Hierarchical Model

In the stratified SRS case, with sampling based on urban/rural, we
could use the covariate version of this model,

Yik = β0 + x T
ikβ1︸ ︷︷ ︸

Regression Model for Individual k

+ δi︸︷︷︸
Adjustment for Area i

+εik ,

where in this case x ik is univariate and consists of an urban/rural
indicator.

Now we are fine, because

p(r i |yOBS
i ,yMIS

i x i ,φ) = p(r i |x i ,φ).
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Basic Normal Hierarchical Model

Suppose there are Ni0 and Ni1 individuals in rural and urban regions
in area i .

The population mean in area i can be written as

Y i = Y i0︸︷︷︸
Rural Mean

×Ni0

Ni
+ Y i1︸︷︷︸

Urban Mean

×Ni1

Ni
,

where Y i0 and Y i1 are the population means over the rural and urban
regions.
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Basic Normal Hierarchical Model

If Ni0 � ni0 and Ni1 � ni1, then we can estimate this mean by

Ŷ i = Ŷ i0
Ni0

Ni
+ Ŷ i1

Ni1

Ni

= (β̂0 + δ̂i )
Ni0

Ni
+ (β̂0 + β̂1 + δ̂i )

Ni1

Ni

Note: a key assumption here is that the random effect δi is common
to both rural and urban individuals.

[Aside: we can contrast this with the weighted estimator∑
k∈si

wik yik∑
k∈si

wik
= y i0

Ni0

Ni
+ y i1

Ni1

Ni
,

where wik = Ni0/ni0 for sampled urban individuals and = Ni1/ni1 for
sampled rural individuals, which we will see later.]
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Non-Spatial Hierarchical Model for Binomial
Data
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Smoothing Models

The above considerations of instability led to methods being
developed to smooth the risks using hierarchical/random effects
models that use the data from the totality of areas to provide more
reliable estimates in each of the constituent areas.

Overview of Models:
I Basic Binomial Model: No smoothing.
I Random Effects Models:

I Binomial Beta: Non-spatial smoothing.
I Binomial IID GLMM3: Non-spatial smoothing.
I Binomial Spatial GLMM: Spatial and non-spatial smoothing.

I Covariates may be added to each of these in order to smooth
over covariate space.

I Estimation in these models is a separate issue.

3Generalized Linear Mixed Model
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Overview of Models

The individual responses are the binary random variables Yik , for the
sampled individuals k ∈ si .

If we take Yi =
∑

k∈si
Yik , the obvious sampling model (likelihood) is:

Yi |θi ∼ Binomial (ni , θi ) .

Having unconstrained θi and taking the MLE’s leads to θ̂i = Yi/ni .

We briefly describe a Beta Binomial model in which the probabilities
are assumed to arise from a common beta distribution:

θi ∼ Beta(a,b).
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Overview of Models

The simplest GLMM assumes the odds in area i are of the form

θi

1− θi
= exp(β0)× exp(δi ),

with exp(δi ) are area-specific adjustments that multiply the overall
odds exp(β0).

This model is equivalent to a linear model on the logistic scale:

log

(
θi

1− θi

)
= β0 + δi .

The random effects δi are assumed to follow a normal distribution,
that is, δi ∼iid N(0, σ2

δ).

33 / 71



Beta-Binomial Model

We begin by describing a simple Beta Binomial two-stage model that
offers analytic tractability and ease of estimation.

I A very simple model is

Yi |θ ∼ind Binomial (ni , θ) ,

so that the risk is constant across all areas, and equal to θ (the
overall risk).

I We would like a model between the above form with one
parameter and the n distinct, unrelated risks model, which leads
to the empirical risks, θ̂i = Yi/ni ; a random effects model
provides this compromise.
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Beta-Binomial Model
We assume there are no covariates and assume the first stage
likelihood is given by

Yi |θi ∼ind Binomial (ni , θi ) . (3)

At the second stage the random effects θi are assigned a distribution.

We initially assume that θi are modeled by

θi |a,b ∼iid Beta(a,b), (4)

a beta distribution with mean

E[θi ] =
a

a + b
,

and variance
var(θi ) =

E[θi ](1− E[θi ])

a + b + 1
.

If a + b is small we have a narrow beta distribution, and we would
expect large shrinkage of an area’s risk estimate to the overall level,
but if a + b is large we have a more spread out distribution and low
shrinkage is anticipated.
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Beta-Binomial Model

The rationale here is that we expect some similarity of risks θi across
the map.

How do we decide upon values for a and b, which determines the
location and spread of the θi?

I We might hope that the totality of data might aid in estimating the
θi in each area.

I One possibility would be to simply fix a, b, based on the
context/historical data.

I However, estimating a and b from the data will often lead to an
appropriate measure of the spread of the distribution.

I Estimation may be carried out using empirical Bayes or full
Bayes methods.

Before we discuss estimation of a and b we see how we would
proceed, if they were known.
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Beta-Binomial Model

The model is

Yi |θi ∼ind Binomial (ni , θi )

θi |a,b ∼iid Beta(a,b)

This leads to a beta posterior for θi :

θi |yi ,a,b ∼ Beta(a + yi ,b + ni − yi ).

Hence, the posterior mean risk estimate is

θ̂i =
a + yi

a + b + ni

=
a

a + b︸ ︷︷ ︸
Prior Mean

a + b
a + b + ni

+
yi

ni︸︷︷︸
Observed Risk

ni

a + b + ni

Notice behavior at yi = 0 or yi = ni .
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Beta-Binomial Model

The estimated variance of the sample average in area i is estimated
as

θ̂i (1− θ̂i )

ni
,

so the variance can grow without bound as ni decreases.

Also, problems when θ̂i = 0/1.

For the smoothed estimate the variance is obtained from the
biasposterior – recall the variance of a Beta(a,b) is

E[θi ]× (1− E[θi ])

a + b + 1
.
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Beta-Binomial Model

The posterior variance is

E[θi |yi ](1− E[θi |yi ])

a + b + ni + 1

showing that the posterior variances are bounded above.

Also,
E[θi |yi ] =

a + yi

a + b + ni
,

can’t equal 0 or 1 when a,b > 0.

The question of how we estimate a and b is considered in a Technical
Appendix.
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Binomial GLMM Model
The beta prior model is computationally convenient but cannot easily
be extended to allow for residual spatial dependence.

A Binomial GLMM non-spatial random effect model is given by:

Yi |θi ∼ind Binomial(ni , θi )

log

(
θi

1− θi

)
= β0 + δi

δi |σ2
δ ∼iid N(0, σ2

δ)

where δi are area-specific random effects that capture the residual or
unexplained (logit) risk in area i , i = 1, . . . ,n.

It is straightforward to add area-level covariates to this model via

log

(
θi

1− θi

)
= β0 + x T

i β1 + δi .

Same arguments for selection bias given for normal-normal hold for
Beta-Binomial and Binomial GLMM models.
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SAE Inference

We may wish to estimate the total number of cases or the average
(prevalence) in area i :

Ti =
∑
k∈si

yik +
∑
k∈ri

yik

Ti

Ni
=

∑
k∈si

yik +
∑

k∈ri
yik

Ni
.

Estimates:

T̂i =
∑
k∈si

yik + (Ni − ni )× θ̂i

T̂i

Ni
=

∑
k∈si

yik

ni
× ni

Ni
+ θ̂i ×

Ni − ni

Ni
.
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SAE Inference

If Ni � ni :

T̂i = Ni θ̂i

T̂i

Ni
= θ̂i .

In the Binomial GLMM:

θ̂i =
exp(β̂0 + δ̂i )

1 + exp(β̂0 + δ̂i )
.
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Motivating Example: Binary Outcome
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Figure 8: Top row: Estimates of area proportions with diabetes via MLE’s
(left) and posterior medians (right). Bottom row: Uncertainty of estimates with
standard errors (left) and posterior standard deviations (right).
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Motivating Example: Binary Outcome
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Figure 9: Comparison of area averages: Posterior medians versus MLEs on
the logistic scale (left). Posterior standard deviations versus standard errors
associated with the MLEs on the logistic scale (right).

As in the normal model case, we see that the Bayesian estimates are
shrunk relative to the MLEs, and the uncertainty of the Bayesian
estimates is in general smaller.
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Discussion
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Discussion

Random effects models:
I use all the data to shrink area-level estimates,
I this introduces bias,
I but the use of all the data, usually gives a reduction in variance,

and this can be substantial.

The Beta-Binomial model is useful to introduce the smoothing
concept and for non-spatial random effects, but cannot be extended
easily to the spatial case; hence, in practice I would use the
Binomial-GLMM model.

We haven’t talked about priors, the analyses reported here were
obtained using the INLA R package, and the default priors in this
implementation are usually reliable (but see the technical appendix
for a discussion of prior choice in the Binomial GLMM model.
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Discussion

We have also not talked about model comparison or model checking.

Model comparison may be compared out with INLA using a variety of
measures:

I Bayes factors.
I Deviance Information Criteria (DIC).
I Widely Applicable Information Criteria (WAIC).
I Conditional Predictive Ordinate (CPO).

These are described in a Technical Appendix; Bayes factors, DIC and
CPO were used in the context of SAE for U5MR by Mercer et al.
(2015).

Model checking for hierarchical models is described in Chapters 8
and 9 of Wakefield (2013).
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Empirical Bayes Estimation in the Beta Binomial Model

In an empirical Bayes approach the random effects δi are eliminated
from the model to give a negative binomial likelihood that depends on
a and b only:

Pr(Yi |a,b) =

∫
Pr(Yi |θi )× p(θi |a,b)dθi

=

(
ni

yi

)
Γ(a + b)

Γ(a)Γ(b)

Γ(a + yi )Γ(b + ni − yi )

Γ(a + b + ni )
.

The likelihood is

L(a,b) =
n∏

i=1

Pr(Yi |a,b),

which is maximized as a function of a and b.

We then proceed as if a,b are known, i.e., the posterior mean
estimates are

E[θi |yi , â, b̂].
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Full Bayes Estimation in the Beta Binomial Model
The full Bayes approach assigns a (hyper) prior to the (hyper)
parameters a,b to give the three stage hierarchical model:

Stage 1: Yi |θi ∼ind Binomial(ni , θi ), i = 1, . . . ,n.

Stage 2: θi |a,b ∼iid Beta(a,b), i = 1, . . . ,n.

Stage 3: Priors for a,b.

The posterior is

p(θ1, . . . , θn,a,b|y) ∝

[
n∏

i=1

p(yi |θi )p(θi |a,b)

]
p(a,b).

This model is not analytically tractable and we do not discuss further,
since the Binomial GLMM model we describe shortly is more flexible.

What do we gain by full Bayes? Uncertainty in a,b can be
acknowledged.
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Full Bayes Estimation in the Beta Binomial Model

In general, the posterior distribution is analytically intractable but can
be implemented using:

I Markov chain Monte Carlo (MCMC). WinBUGS and more
specifically the GeoBUGS module is a convenient way to do this.
Other (generic) MCMC environments include JAGS (very similar
to WinBUGS) and Stan.

I This is the method that has been used since the early 1990s
(Besag et al., 1991).

I More recently (Rue et al., 2009) the integrated nested Laplace
approximation (INLA) has been developed — can’t be used for
this model, but for the all the GLMM models we will see later.
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Technical Appendix: Prior Choice for Binomial
GLMM
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Prior Choice for Binomial GLMM

We need to specify priors for:
I The intercept β0 and regression coefficient β1.
I The variance of the normal random effects σ2

ε .
An improper prior4

p(β0, β1) ∝ 1

may often be used, but in some circumstances such a choice may
lead to an improper posterior.

If there are a large numbers of covariates, or high dependence
amongst multiple covariates then more informative priors will be
beneficial.

If an informative prior is required, then a multivariate normal
distribution is the natural choice.

This is equivalent to a multivariate lognormal distribution for the
relative risks.

4This means that it doesn’t integrate to 1
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Prior Choice for Binomial GLMM
It is convenient to specify lognormal priors for a positive parameter
exp(β) (i.e., the odds exp(β0) or odds ratio exp(β1)), since one may
specify two quantiles of the distribution, and directly solve for the two
parameters of the lognormal.

Denote by LogNormal(µ, σ) the lognormal distribution for a generic
parameter θ with

E[log(θ)] = µ, var(log(θ)) = σ2,

and let θ1 and θ2 be the q1 and q2 quantiles of this prior.

In our example, θ = exp(β).

Then it is straightforward to show that

µ = log(θ1)

(
zq2

zq2 − zq1

)
− log(θ2)

(
zq1

zq2 − zq1

)
,

σ =
log(θ1)− log(θ2)

zq1 − zq2

.
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exp(β0)

As an example, suppose that for the ecological relative risk

θ = exp(β)

we believe there is a 50% chance that the odds ratio is less than 1
and a 95% chance that it is less than 5.

This gives

q1 = 0.5, θ1 = 1.0, q2 = 0.95, θ2 = 5.0,

we obtain lognormal parameters

µ = 0, σ =
log 5
1.645

= 0.98.

The density is shown in Figure 10.
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Figure 10: Lognormal density with 50% point 1 and 95% point 5.
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Prior Choice for Binomial GLMM

The priors τε = σ−2
ε ∼ Ga(1,0.0260) or τε = σ−2

ε ∼ Ga(0.5,0.0005)
will often be suitable in a mapping context.

τε is the precision, i.e., the reciprocal variance.

For the Ga(1,0.026) prior the 2.5%, 50% (median) and 97.5%
quantiles for σε are:

(0.014, 0.047, 1.01).

For the Ga(0.5,0.0005) prior the 2.5%, 50% (median) and 97.5%
quantiles for σε are:

(0.084, 0.194, 1.01).

So the Ga(1,0.026) prior favors smaller values, i.e., more shrinkage is
anticipated.
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Prior Choice for Binomial GLMM

Interpretation is helped by approximation of the residual odds ratio

exp(ε) ≈ 1 + ε

for small ε and so
s.d(eε) = σε

is approximately the standard deviation of the residual relative risks.

Sensitivity of the results to the specification should be carried out,
particularly if the number of areas is not large.
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Empirical Bayes Estimation in the Poisson-Gamma
Model Without Covariates

In an empirical Bayes approach the random effects δi are eliminated
from the model to give a negative binomial likelihood that depends on
β0 and α only:

Pr(Yi |β0, α) =

∫
Pr(Yi |β0, δi )× p(δi |α)dδi

=
Γ(yi + α)

Γ(α)

(
Eieβ0

Eieβ0 + α

)yi ( α

Eieβ0 + α

)α
.

The likelihood is

L(β0, α) =
n∏

i=1

Pr(Yi |β0, α),

which is maximized as a function of β0 and α – R can do this for us
using the glm.nb() function in the MASS library.

We then proceed as if α and β0 are known, i.e. the estimates are
E[δi |yi , α̂, β̂0].
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Full Bayes Estimation in the Poisson-Gamma Model
Without Covariates

The full Bayes approach assigns a (hyper) prior to the (hyper)
parameters α, β0 to give the three stage hierarchical model:

Stage 1: Yi |δi , β0 ∼ind Poisson(eβ0Eiδi ), i = 1, . . . ,n.

Stage 2: δi |α ∼iid Ga(α, α), i = 1, . . . ,n.

Stage 3: Priors for α, β0.

The posterior is

p(δ1, ..., δn, α, β0|y) ∝

[
n∏

i=1

p(yi |δi , β0)p(δi |α)

]
p(α, β0).

This model is not analytically tractable and we do not discuss further
(including the issue of prior choice), since the Poisson-Lognormal
model we describe shortly is more flexible.
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Full Bayes Estimation in the Poisson-Gamma Model
Without Covariates

What do we gain by full Bayes? Uncertainty in α, β0 can be
acknowledged.

The posterior distribution is analytically intractable but can be
implemented using

I Markov chain Monte Carlo (MCMC). WinBUGS and more
specifically the GeoBUGS module is a convenient way to do this.
Other (generic) MCMC environments include JAGS (very similar
to WinBUGS) and Stan.

I This is the method that has been used since the early 1990s
(Besag et al., 1991).

I More recently (Rue et al., 2009) the integrated nested Laplace
approximation (INLA) has been developed — can’t be used for
this model, but for the lognormal models we will see later.

Note: the Poisson-Gamma model is useful to introduce the smoothing
concept and for non-spatially dependent random effects, but cannot
be extended easily.
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Model Comparison
Markov chain Monte Carlo in particular has allowed the fitting of more
and more complex models, often hierarchical in nature with layers of
random effects.

The search for a method to find the “best” of a set of candidate
models has also grown.

Let p(y |θ) represent a generic likelihood for y = [y1, . . . , yn] and let

D(θ) = −2 log[p(y |θ)]

represent the deviance.

For example, in an iid N(µi (θ), σ2) normal the deviance is

1
σ2

n∑
i=1

[yi − µi (θ)]2.

Frequentist model comparison for nested models is often carried out
using likelihood ratio statistics, which corresponds to the comparison
of deviances in generalized linear models (GLMs), see for example
McCullagh and Nelder (1989). 63 / 71



Model Comparison: AIC

One approach to model comparison is based on a model’s ability to
make good predictions.

Such an objective, and predicting the actual observed data, leads to
Akaike’s an information criterion (AIC), derived in Akaike (1973).

In AIC one tries to estimate the (Kullback-Leibler) distance between
the true distribution of the data, and the modeled distribution of the
data.
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Model Comparison: AIC

AIC is given by
AIC = −2 log[p(y |θ̂)] + 2k

where θ̂ is the MLE and k is the number of parameters in the model,
i.e. the size of θ.

Small values of the AIC are favored, since they suggest low prediction
error.

The penalty term 2k penalizes the double use of the data.

In general for prediction: overly complex models are penalized since
redundant parameters “use up” information in the data.
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Model Comparison: BIC

Another approach is based on trying to identify the “true” model.

Schwarz (1978) developed the Bayesian Information Criterion (BIC)
which is given by

BIC = −2 log[p(y |θ̂)] + k log n.

BIC approximates −2 log p(y |θ) under a certain unit information prior
(Kass and Wasserman, 1995).

BIC is consistent5 for finding the true model, if that model lies in the
set being compared.

AIC is not consistent for finding the true model, but recall is intended
for prediction.

5meaning the BIC hones in on the true model as the sample size increases
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Model Comparison: DIC

Spiegelhalter et al. (2002) introduced what has proved to be a very
popular model comparison statistic, the deviance information criterion
(DIC).

To define the DIC, define an “effective number of parameters” as

pi = Eθ|y{−2 log[p(y |θ)]}+ 2 log[p(y |θ)]

= D + D(θ)

where θ = E [θ|y ] is the posterior mean, D(θ) is the deviance
evaluated at the posterior mean and D = E [D|y ].

Hence, pi is the

posterior mean deviance− deviance of posterior means.
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Model Comparison: DIC

The DIC is given by

DIC = D(θ) + 2pi

= D + pi ,

so that we have a measure of goodness of fit + complexity.

DIC is straightforward to evaluate using MCMC or INLA.
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Model Comparison: DIC

DIC has been heavily criticized (Spiegelhalter et al., 2014):
I pi is not invariant to parameterization.
I DIC is not consistent for choosing the correct model.
I DIC has a weak theoretical justification and is not universally

applicable.
I DIC has been shown to under penalize complex models

(Plummer, 2008; Ando, 2007).
I See Spiegelhalter et al. (2014) for an interesting discussion of the

history of DIC, including a summary of attempts to improve DIC.
I According to Google Scholar, as of June 20th, 2014,

Spiegelhalter et al. (2002) has 5251 citations. . .
WAIC (Watanabe, 2013) is growing in popularity.
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Model Comparison: CPO

Another approach based on prediction uses the conditional predictive
ordinate (CPO).

Let
y−i = [y1, . . . , yi−1, yi+1, . . . , yn]

represent the vector of data with the i-th observation removed.

The idea is to predict the density ordinate of the left-out observation,
based on those that remain.

Specifically, the CPO for observation i is defined as:

CPOi = p(yi |y−i )

=

∫
p(yi |θ)p(θ|y−i ) dθ

= Eθ|y−i [p(yi |θ)]
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Model Comparison: CPO

The CPOs can be used to look at local fit, or one can define an
overall score for each model:

log (CPO) =
n∑

i=1

log CPOi .

Good models will have relatively high values of log (CPO).

See Held et al. (2010) for a discussion of shortcuts for estimation
(i.e. avoidance of fitting the model n times) using MCMC and INLA.
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