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Overview of Lecture

In this lecture, we will first describe a first time model for estimating
area-level U5MR over time, using a discrete hazards model.

So far we have carried out spatial modeling using discrete spatial
models, sometimes referred to as Markov Random Field (MRF)
models.

In this lecture we will also describe continuous spatial models, that
allow estimation at a finer scale.

At the moment I view these as an elegant way of inducing spatial
dependence between areal units (avoiding the arbitrariness of the
neighbors in an MRF model), but others are promoting these models
as a way of producing pixel-level surfaces, and so I will provide a
critique of this approach.

4 / 74



U5MR Estimation in Space and Time
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Kenyan Demographic Health Surveys

We base analyses on three Kenya DHS from 2003, 2008 and 2014.

These DHS use stratified (urban/rural, 8 regions), two-stage cluster
sampling (enumeration areas, and then households).

All women age 15 to 49 who slept in the household the night before
were interviewed in each selected household and response rates
were high (above 95% for households in all surveys); these women
asked to give what is known as full birth history:

I Birth dates of all children.
I Death dates for children who died.

DHS provides sampling (design) weights, assigned to each individual
in the dataset, along with (jittered) GPS coordinates of the clusters.

The aim is small area estimation, in particular the U5MR and total
deaths at the county level.
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Figure 1: Cluster locations in the three Kenya DHS that we consider, with
provincial (left) and Admin 1 (right) county boundaries.
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Figure 2: KDHS 2003: Number of births by Admin 1 area and 5-year period.
Greyed out areas have no data hatched areas have less than 20 individual
children. 8 / 74
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Figure 3: KDHS 2008: Number of births by Admin 1 area and 5-year period.
Greyed out areas have no data hatched areas have less than 20 individual
children. 9 / 74
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Figure 4: KDHS 2014: Number of births by Admin 1 area and 5-year period.
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Modeling Strategy

We will first describe the discrete hazard model which leads to an
estimator of U5MR for a particular area i and time period t ; call this
estimator yit , with design-based variance V̂DES,it .

Hierarchical Model:
1. The Data Model:

yit | λit ∼ N
(
λit , V̂DES,it

)
︸ ︷︷ ︸

Survey design acknowledged here

.

2. The Space-Time (Random Effects) Prior:

λit = f ( space i , time t)︸ ︷︷ ︸
Smoothing here

.
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Discrete Hazards Model
As in Mercer et al. (2015) we assume a discrete hazard model, with
six hazards for each of the age (monthly) bands: [0,1), [1,12), [12,24),
[24,36), [36,48), [48,60].

For a generic period, area and survey:

Survival to 60 months = Survival in month 1

× Survival in month 2 | survived to end of month 1

· · ·
× Survival in month 60 | survived to end of month 59.

In demography speak, and now for area i , period t and survey s:

1− q60 0,its =
59∏

m=0

(1− q1 m,its)

= (1− q1 0,its)× (1− q1 1,its)× (1− q1 2,its)× · · · × (1− q1 59,its).

12 / 74



Discrete Hazards Model

We calculate,

U5MRits = q60 0,its

= 1−
59∏

m=0

(1− q1 m,its)

= 1− (1− q1 0,its)× (1− q1 1,its)× (1− q1 2,its)× · · · × (1− q1 59,its)︸ ︷︷ ︸
60 terms

= 1−
[

1
1 + exp(β1,its)

]
×
[

1
1 + exp(β2,its)

]11

× · · · ×
[

1
1 + exp(β6,its)

]12

︸ ︷︷ ︸
1+11+12+12+12+12 = 60 terms

Bottom line:
I For more complex designs we use weighted logistic regression

(Binder, 1983) and obtain the hazards as the ratio of weighted
deaths to weighted at risk in each month, with a standard error
based on the design.
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Discrete Hazards Model
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“Meta-Analysis” Estimator
Combine survey information from St surveys in area i , period t :

q̂60 0,it = expit


St∑

s=1

[
V̂−1

DES,its∑St
s=1 V̂−1

DES,its

]
︸ ︷︷ ︸

Weight for survey s is
proportional to precision

of the survey

logit( q̂60 0,its)


. (1)

This is the same estimator as the fixed-effects estimator used in
meta-analysis.

Associated design-based variance (assuming independence of
surveys):

V̂DES,it =

(
St∑

s=1

V̂−1
DES,its

)−1

,

or, more informatively,

Precision of summary = Sum of precisions of constituent surveys. 15 / 74



HIV epidemics result in selection bias
Let q5 0 l,k (t) represent the true U5MR and q5 0

?
l,k (t) the biased

(unadjusted for HIV) U5MR in survey k , province l and year t .

Walker et al. (2012) describe a method to provide an estimate of,

BIASl,k (t) =
q5 0
?
l,k (t)

q5 0 l,k (t)
≤ 1. (2)
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Figure 5: HIV adjustment ratios of reported U5MRs to “true” U5MRs, that is
(2), by survey, over time (left is 2003, middle is 2008–2009, right is 2014),
and in eight provinces.
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HIV epidemics result in selection bias

Figure 6: Maps of HIV adjustment ratios of reported U5MRs to “true” U5MRs,
that is (2), by survey, in 1995. The 3 columns represent the adjustments from
the 2003, 2008–2009, 2014 surveys.
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A Smoothed Direct Model

Following Mercer et al. (2015) we use a hybrid model for small-area
estimation (SAE): we will refer to this as the smoothed direct model.

Again, the key step is to take as likelihood the asymptotic sampling
distribution of a suitable estimator.

Let
I yit be the logit of the U5MR weighted estimator q̂60 0,it and

I V̂DES,it the design-based variance
in area i , period t .
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The Smoothed Direct Model

Hierarchical Model:
1. The Data Model:

yit | λit ∼ N
(
λit , V̂DES,it

)
︸ ︷︷ ︸

Survey design acknowledged here

.

2. The Space-Time (Random Effects) Prior:

λit = f ( space i , time t)︸ ︷︷ ︸
Smoothing here

.
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A Smoothed Direct Model

Fitting (so-far) carried out in R using the survey and INLA packages,
these are wrapped in the SUMMER package, along with other plotting
and data preparation functions.

Current implementation:
I Modeled in discrete time (with random walk (RW) models),
I Modeled over discrete space (with ICAR models),
I Independent space-time interaction terms.

Aim is for a simple, transparent, robust model.
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Model
The data model is

yit |λit ∼ N(λit , V̂DES,it ),

where
I yit is the logit of the direct estimator in area i and period t ,
I λit is the logit of the true U5MR in county i and period t , and we

emphasize that V̂DES,it is known.
I Important point: Any estimate can be added to the totality of data

in this way, so long as it has an associated standard error.

We decompose λit into temporal, spatial and space-time components:

λit = µ︸︷︷︸
Intercept

+ αt︸︷︷︸
Independent

+ γt︸︷︷︸
Random Walk

Temporal Model

+ θi︸︷︷︸
Independent

+ φi︸︷︷︸
ICAR

Spatial Model

+ δit︸︷︷︸
Interaction

Space-Time Model
21 / 74



Sanity check of model fit at the national level over time
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Figure 7: Comparison of UN, IHME and smoothed estimates of U5MR.
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Figure 8: Smoothed estimates at the Admin 1 level. 23 / 74



0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Direct Estimates

S
m

oo
th

 E
st

im
at

es

● ●●
●

●●
●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

● ●
●

●●
●

●●
●●● ●

● ●

●
● ●●

●

●
●

●

●

●
●● ●●

●

●
●●

●
● ●● ●●

●

●

●
●

●

● ●

●

●
●

●

●

●●
●●●

●

●
●

●●

●
●
●

●
●●

●●●

●

●
●

●
●

●

●

●
●

●● ●●
●

●
●●

●
●
●

●
●

●●
●●

●
●●●
●

●●
●●●
●
●

●●
● ●●●●●

●

●

●●

●

●●

●
●

●
●●●

●●●
●

●●
●

●

●

●

●●●
●●

●
●●●● ●●

●
●

●●
●

●●●●

●

●● ●● ●●

●

● ●
●

●
●

●
●●

●
●●

●
●

●

●
●

●●

●

●

●●●

●●
●●

●●●●●

●●●●● ●●
●

●
●●●●●
●

●
●●●●●●●● ●●●●

●
●●●●●

●
●●

● ●●●●●●●
●●

●
●●●

●
●●
●
●●

●

●
●●

●● ●
●

●●●●●●● ●
●●
● ●

●
●

●●
●

●
●●

●

●

●

●

●

●

●

80−84
85−89
90−94
95−99
00−04
05−09
10−14

Figure 9: Posterior standard deviations of U5MR estimates versus standard
errors of direct (weighted) estimates.
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How Does the Variation Apportion?

Median Proportion
RW2 (Time) 0.132 40.1
ICAR (Space) 0.130 39.5
Space Unstructured 0.004 1.2
Time Unstructured 0.004 1.1
Time by Space Interaction 0.059 18.0

Table 1: Proportion of variation contributed by random effects at Admin 1
level.

Very large temporal and spatial contributions to the variation.

26 / 74



1980 1990 2000 2010

0
50

15
0

25
0

35
0

Nyanza

Year

U
5M

R

1980 1990 2000 2010

0
50

15
0

25
0

35
0

Rift Valley

Year

U
5M

R

Figure 10: Smoothed regional U5MR estimates for Nyanza and Rift Valley
from space-time-smoothing model with estimates from constituent Admin 1
county areas.
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Figure 11: Admin 1 estimates within regions.
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Figure 12: Posterior probability of U5MR exceeding 10%.
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Figure 13: Posterior probability that U5MR is less than 33 deaths per 1,000
births (MDG4 target).
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Scaling Up (Li et al., 2018)

We have used this model for 35 African countries, with Type IV
(Knorr-Held, 2000) interactions (RW2 × ICAR).

Spatial scale is Admin 1 and temporal scale is 5-Year periods for
data, 1-year periods for estimates.

Data:
I 121 DHS in 35 countries
I 1.2 million children
I 192 million child-months

UN have endorsed these estimates.

Takes around 2.5 hours to obtain estimates for all countries –
separate models for each country.
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Figure 14: Predictions of U5MR for 2015, in 35 countries of Africa.
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Figure 15: Percentage reduction from 1990 to 2015, in 35 countries of Africa.
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Figure 16: Posterior median estimates for Kenya districts.
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Estimation at the Pixel Level
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Pixel Surfaces

It is now common to construct spatial surfaces of demographic and
health indicators at the “pixel” level:

I Population (Wardrop et al., 2018).
I Malaria (Gething et al., 2016).
I U5MR (Golding et al., 2017).
I Vaccination (Utazi et al., 2018)
I HIV testing in women; stunting in children; anemia in children;

household access to improved sanitation (Gething et al., 2015).
I Child growth failure (Osgood-Zimmerman et al., 2018).
I Educational attainment (Graetz et al., 2018).
I . . .

These maps are based, in large part, on data from surveys, i.e, DHS,
MICS,...
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Small Area Estimation

In traditional SAE the aim is to estimate true counts or population
averages (e.g., fraction with disease) over a group of domains
(areas).

Data arise from surveys, often with a complex design.

Areas historically correspond to administrative regions (in which
people live) rather than pixel regions (in many of which, nobody lives).

Traditional SAE (Rao and Molina, 2015) does not emphasize spatial
smoothing, so no accepted approach as yet (at least not amongst the
statistical community...).

The groups who are producing pixel-level maps, almost universally
use geostatistical models, which are often referred to as Gaussian
process (GP) models.
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A GP Spatial Model
Suppose we have n cluster locations si , i = 1, . . . ,n, at which data is
collected.

Basically, GP models assume that

S = (S1, . . . ,Sn)

arise from a zero mean multivariate normal distribution with variances

var(Si ) = σ2
s

and correlations corr(Si ,Sj ).

The obvious approach in a spatial setting is to assume a form such
that the correlation between Si and Sj decreases as dij , the distance
between the locations at which Si and Sj are measured, decreases.

A model in which the correlations are a function of distance only
between the points is known as isotropic.
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A GP Spatial Model

In its simplest form, the GP model has two parameters, σ2
s , which

determines the scale of the spatial variability, and ρ, which
determines the extent of the spatial variability.

A simple form is,
corr(Si ,Sj ) = ρdij

where
I dij = ||si − sj || is the distance between the centroids of areas i

and j , and
I ρ > 0 is a parameter that determines the extent of the

correlation; ρ is the correlation between the residual spatial
variability in two locations that are one unit of distance apart.

The correlation above is the marginal correlation between the random
variables Si and Sj .
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A GP Spatial Model

More generally, the correlations can be modeled as a Matérn
correlation function (Stein, 1999):

corr(Si ,Sj ) =
1

Γ(υ + 1/2)(4π)1/2κ2υ2υ−1 (κdij )
υKυ(κdij )

where Kυ(·) is a modified Bessel function of the second kind, κ > 0 is
a scale parameter and υ > 0 is a smoothness parameter.

In general, difficult to estimate many parameters in a spatial model
and often υ is fixed.

Requires estimation of a spatial variance parameter and an effective
range.
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A GP Spatial Model

The multivariate model with correlations of this form is
computationally expensive to fit, because one has to carry out
operations on the n × n covariance matrix, which we call Σ.

The multivariate normal distribution S|Σ ∼ N(0,Σ) is given by

p(S) = (2π|Σ|)−1/2 exp

(
−1

2
STΣ−1S

)
,

so to evaluate the density we need to calculate a determinant and an
inverse.

The covariance matrix Σ depends on the parameters of the spatial
covariance function.

We now show how this model is used in the context of U5MR
estimation.
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Model-Based Geostatistics with a GP Prior
For simplicity consider a binary outcome and let Yik be the number of
individuals out of nik with the characteristic of interest in cluster k of
area i .

Wakefield et al. (2018) describe the geostatistics model:

Yik |θik ∼ Binomial(nik , θik )

log

(
θik

1− θik

)
= β0 + γI(sik ∈ urban ) + βxik + εik + S CONT

ik

where
I θik = θ(sik ) is the risk at location sik ,
I γ describes the association with urban,
I xik are covariates,
I εik ∼ N(0, σ2

ε ) is the nugget,
I S CONT

ik are spatial random effects, assumed to arise from a
Gaussian process.
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Model-Based Inference

Alternatively a discrete spatial model can be used:

log

(
θik

1− θik

)
= β0 + γI(sik ∈ urban ) + βxik + εik + S DISC

i

where
I S DISC

i are discrete spatial random effects that follow an ICAR
(Markov Random Field) model (Besag et al., 1991).
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Model-Based Inference

For either model, area estimates are obtained by averaging point
estimates with respect to the population from:

θi =

∫
s θ(s)d(s) ds∫

s d(s) ds

where d(s) is population density at location s.

In practice, the continuous spatial model is always approximated by
some form of discretization, so the integral is approximated by
summing over a grid.

We need to know all the covariates and urban/rural status of
everywhere on the grid.
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Figure 17: Mesh on which SPDE calculations are carried out (top left),
zoomed in grid on which predictions are performed (right).
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Figure 18: Kenya U5MR estimates in 2000 using discrete spatial model (left),
and continuous spatial model (right).

Point estimates are very similar, but more uncertainty associated with
the discrete spatial model estimates.
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Comparison of Discrete and Continuous Spatial
Models

MSE comparison based on 400 (out of 1600) clusters from 2014
Kenya DHS.

Let:
I Y (1)

ip denote the weighted estimator.
I Y (2)

ip the smoothed estimator from continuous space model.
I Y (3)

ip the smoothed estimator from discrete space model: ICAR ×
AR(1), with the latter having yearly resolution,

p = {1990–1994,1995–1999, 2000–2004, 2005–2009, 2010–2014 },
j = 1,2,3.

We compare these estimates with the weighted estimates from
(approximately) 1200 (left-out) clusters from 2014, yip (the “truth”).

In particular, we calculate,

MSE(j)
p =

1
47

47∑
i=1

(
Y (j)

ip − yip

)2
. (3)
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MSE Comparison

Period Weighted Continuous Space Discrete Space
1990–1994 49 29 29
1995–1999 46 21 21
2000–2004 40 22 22
2005–2009 41 20 20
2009–2014 37 15 15

Table 2: Mean-squared errors (×102) comparing weighted and spatially and
temporally smoothed estimates.

Conclusions:
I Spatial models have very similar predictive ability, with the

continuous model being slightly more accurate.
I Both show a dramatic improvement over the weighted estimates.
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Acknowledging the Complex Survey Design
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Statistical Issues with Complex Sampling
Ignoring the design leads to the possibility of:

I Bias (if stratification variables are associated with the outcome).
I An inappropriate measure of variance (cluster sampling breaks

independence of outcomes).
We report on a limited simulation exercise that investigates the
impact of ignoring the design.

As a simple example, suppose the strata are urban/rural.

If we ignore this aspect then
I area-level estimates will be biased unless:

I the outcome does not depend on strata membership, or
I sampling of strata is in the same proportion as the population

frequencies (so not stratified!).
I pixel-level estimates will be biased unless:

I the outcome does not depend on strata membership.

Note: If population density and/or travel time are in the covariate
model, may get partial correction.
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Model-Based Geostatistics

It has become the norm to ignore stratification and assume the
geostatistics model:

Yik |θik ∼ Binomial(nik , θik )

log

(
θik

1− θik

)
= β0 + βxik + εik + S CONT

ik .

All of the pixel created map references given earlier ignore
urban/rural...

Gething and Burgert-Brucker (2017) reported mixed accuracy for
different outcomes using this model (poor for vaccination surfaces, for
example).
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Accounting for Complex Sampling

We consider the simplified situation in which we have:
I A single survey.
I A binary outcome.

Using Kenya geography, we simulate a single complete population:
I Clusters: 96,251 enumeration areas (EAs), 32% are urban.
I Strata used in DHS in 2014 are 47 counties and urban/rural (92

in total, Nairobi and Mombasa are entirely urban).
I From the Kenya 2014 DHS report we know the numbers of

urban/rural EAs by district and we match these numbers by
thresholding on a population density surface.

I Within each EA, assume 25 households, with one mother in each
household and one birth per mother.
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Accounting for Complex Sampling

We have nj = 25 births at each EA (cluster) location sj , j = 1, . . . ,n,
and we generate neonatal deaths Yj according to

Yj |θ(sj ) ∼ Binomial
(
nj , θ(sj )

)
log

(
θ(sj )

1− θ(sj )

)
= β0 + γI(sj ∈ urban ) + εj + S(sj ),

where
I εj ∼iid N(0, τ2) (the nugget),
I S(s) is a Gaussian Process (GP) with Matérn covariance

function and (effective) range φ and variance σ2.

The nugget term induces within-cluster dependence.
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Accounting for Complex Sampling

Assume inference is at the county level.

Methods to be compared:
I Naive: Assume binomial (unweighted) counts in each county.

This gives an estimate θ̂BIN
i and a variance from which an

asymptotic CI can be calculated.
I Direct estimates: This gives an estimate θ̂DIR

i and a variance from
which an asymptotic CI can be calculated.
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Accounting for Complex Sampling

I Smoothed Direct: Take logit of direct estimates θDIR
i with

appropriate design-based estimator and model as Mercer et al.
(2015),

logit(θ̂ DIR
i ) ∼ N(ηi , V̂i )

ηi = β0 + εi︸︷︷︸
Independent

+ Si︸︷︷︸
ICAR

County smoothed direct estimate

θ̂SDIR
i = expit(β̂0 + ε̂i + Ŝi ).
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Accounting for Complex Sampling
I Smoothed Adjusted Discrete Spatial Model at the cluster level:

Yj |θj ∼ Binomial(nj , θj )

logit(θj ) = β0 + γI(sj ∈ urban ) + εi[j]︸︷︷︸
Independent

+ Si︸︷︷︸
ICAR

+ δj︸︷︷︸
Independent

.

Obtain 2 estimates for each county i:

θ̂i1 = expit(β̂0 + ε̂i + Ŝi )

θ̂i2 = expit(β̂0 + γ̂ + ε̂i + Ŝi )

Then
θ̂i = qi θ̂i1 + (1− qi )θ̂i2

where qi is the proportion of the births that occur in rural clusters.
I Smoothed Adjusted Continuous Spatial Model at the cluster

level:

Yj |θj ∼ Binomial(nj , θj )

logit(θj ) = β0 + γI(sj ∈ urban ) + εj︸︷︷︸
Independent

+ Sj︸︷︷︸
GP
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Accounting for Complex Sampling

Methods comparison: bias, MSE, Average of Variance, 80% CI
coverage.

Parameters (in all simulations):
I β0 = −2, γ = −0.5 (so urban lower)
I σ2 = 0.152, effective range φ = 300 km, τ2 = 0.12.

Two simulations:
1. Unstratified sampling.
2. Stratified sampling in which we oversample urban clusters.

Specifically, in each county sample twice as many urban as rural
clusters.
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Preliminary Results1

I Unstratified sampling:

Method Bias MSE Ave. Var. 80% coverage

Naive -0.020 0.060 0.051 0.78
Direct estimates -0.020 0.060 0.053 0.75
Smoothed Direct 0.012 0.018 0.018 0.78
Discrete Spatial -0.014 0.011 0.015 0.84
Continuous Spatial -0.005 0.012 0.010 0.72

I Stratified sampling:

Method Bias MSE Ave. Var. 80% coverage

Naive -0.082 0.069 0.053 0.75
Direct estimates -0.029 0.066 0.058 0.73
Smoothed Direct 0.005 0.021 0.020 0.78
Discrete Spatial -0.015 0.011 0.016 0.86
Continuous Spatial -0.005 0.012 0.010 0.72

1Bias is logit θ̂i − logit θi where θi is truth
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Model Validation
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Model Validation
No consensus on how to validate model, cross-validation is the most
common approach, but details on how splits were made often
sketchy, as are exact ways in which predictions obtained
(supplementary materials hide many sins...).

When bias is reported, what is the “truth”?

By construction, spatial models smooth the covariate mean in areas
with no data.

Wakefield et al. (2018) compared predictions for U5MR in Kenya from
discrete and continuous spatial models:

I “Truth” (direct estimates with small variance) is only available at
Admin-1, 5-year scale.

I Discrete and continuous models performed equally well, but
below Admin-1, who knows?

Now investigating the use of proper scoring rules (Gneiting and
Raftery, 2007).
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Covariate Modeling

Distinguish between:
I Individual-level modeling, for example, for U5MR, Balk et al.

(2004).
I Surface modeling, in which we require covariates to be available

at all prediction points.

Some approaches:
I Often some kind of backward elimination (e.g., Utazi et al., 2018)

or all subsets (e.g., Gething et al., 2015).
I Stacked generalization/super learner (Bhatt et al., 2017; Golding

et al., 2017).

In general, inference/uncertainty estimates do not correctly account
for the selection of the final covariate model.
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Discussion
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Discussion: Comparison of Models

Direct Smoothed Discrete Continuous
Estimation Direct Spatial Spatial

Robustness XXXX XXX XX X
Transparency XXXX XXX XX X
Sparse Data X XX XXXX XXXX
Spatial Scale X X XXXX XXXX
Data Required XXXX XXXX XXX XX
Flexibility X XX XXX XXXX

Table 3: Comparison of approaches to SAE.

General strategy: See if estimates from different models are
consistent with each other.

There is some skepticism of even national estimates (e.g., Boerma
et al., 2018), let alone SAE or pixel level estimation.
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Discussion
Substantive:

I Follow-up to Admin-1 in sub-Saharan Africa paper: Admin-2
including summary birth history data.

I Asia at Admin-1.
I Examination of biases in DHS data.
I Measles: modeling vaccination coverage and spatio-temporal

disease count data.

Methodological:
I Consensus on estimation at the pixel level.
I Modeling summary birth history.
I Examination of implications of ignoring the design.
I Points/polygons problem (Wilson and Wakefield, 2018).
I Examination of model validation techniques.
I Covariate modeling (how to use information on conflicts?).
I Spatial APC models with survey data.
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Technical Appendix: Individual versus
Ecological Modeling
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Individual versus Ecological Modeling

At this point, we comment briefly on the roles and limitations of
different kinds of spatial modeling in this context. We can distinguish
between individual and ecological modeling.

In the former, one may directly estimate the associations with
individual variables.

In an ecological setting, we are in a very different situation as there is
no individual adjustment for these determinants, but instead we
introduce area (or cluster) level variables which are proxies for
proximate or socioeconomic variables.
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Individual versus Ecological Modeling

In an ecological study for a complex outcome such as U5MR, one will
not have a hope of getting close to mimicking individual-level
associations, due to ecological bias (Wakefield, 2008), but if the areas
are not too large, and if the input variables are well measured, then
one may find variables that can aid in predicting area-level U5MR.

If we wish to obtain predictions for unobserved locations on the basis
of a covariate model, then those covariates must be available.
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Technical Appendix: Random Walk Models
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RW1 model for temporal dependence

We describe a particular limiting autoregressive model that is a
popular tool for nonparametric smoothing.

The model takes the limit of the AR1 model as ρ→ 1 and takes the
form

I Stage 1: Yt = µt + Tt + εt , εt ∼iid N(0, σ2
ε ).

I Stage 2: Tt = Tt−1 + τt , τt ∼iid N(0, σ2
τ ).

This is known as a random walk model of order one, which we write
as RW1.

Note: depends on a single parameter σ2
τ .
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RW1 Model

The undirectional version is

Tt |Tt−1,Tt+1 ∼ N
(

1
2

(Tt−1 + Tt+1),
σ2
τ

2

)
,

for 1 < t < n.

For prediction, future values have the conditional distribution:

Tn+s|T1, . . . ,Tn, σ
2
τ ∼ N

 Tn︸︷︷︸
Predictive Mean

, s × σ2
τ︸ ︷︷ ︸

Predictive Variance

 ,

for s > 0.

Hence, predictions into the future have the same level, and the
variance is linear in s.
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RW2 Model

For the RW1 model, a least squares fit to the two adjacent points Tt−1
and Tt+1 gives a fitted mean of 1

2 (Tt−1 + Tt+1).

The RW2 model gives more smoothing by smoothing over 4
neighbors.

The undirectional version is

Tt |Tt−1,Tt−2Tt+1,Tt+2 ∼ N
{

4
6

(Tt+1 + Tt−1)− 1
6

(Tt+2 + Tt−2),
σ2
τ

6

}
for 1 < t < n.

A least squares fit of a quadratic model to the four adjacent points
Tt−2,Tt−1,Tt+1,Tt+2 gives the above fitted mean,
i.e. 4

6 (Tt+1 + Tt−1)− 1
6 (Tt+2 + Tt−2).
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RW2 Model

For prediction, future values have the conditional distribution:

Tn+s|T1, . . . ,Tn, σ
2
τ ∼ N

(1 + s)Tn − sTn−1︸ ︷︷ ︸
Predictive Mean

, (1 + 22 + · · ·+ s2)× σ2
τ︸ ︷︷ ︸

Predictive Variance

 ,

for s > 0.

Hence, the temporal trend is determined by the last two points, and
we have a linear trend.

So the trend is more flexible, but the variance is larger, when
compared to the RW1 model.
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RW1 and RW2 Models

Figure ?? shows simulated data from a sine curve and then fit using
RW1 and RW2 models.

The resultant fits are in indicated.

Note that the RW2 fit is smoother.

The RW1 and RW2 models are usually fitted using a Bayesian
approach; the prior on σ2

τ can be used to control the amount of
smoothing:

I Giving greater weight to smaller (larger) values of σ2
τ gives more

(less) smoothing.
I In the limit as σ2

τ → 0, the RW1 model tends to a horizontal line,
and the RW2 model tends to a linear trend in time.
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RW1 and RW2 Models
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Figure 21: Simulated data and RW1 and RW2 fits.
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