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Motivating Example 1: BRFSS

I Arises out of a joint project
between Laina Mercer/Jon
Wakefield and Seattle and King
County Public Health, which lead
to the work reported in Song
et al. (2016).

I We aim to estimate the number
of 18+ individuals with diabetes,
by health reporting areas (HRAs)
in King County in 2011.

I HRAs are city-based sub-county
areas with 48 in King County.

I Some are a single city, some are
a group of smaller cities, and
some are unincorporated areas.
Larger cities such as Seattle and
Bellevue include more than one
HRA.
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Figure 1: Health reporting areas (HRAs) in
King County.

I Data are based on the question, “Has a
doctor, nurse, or other health
professional ever told you that you had
diabetes?”, in 2011.
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Motivating Example 1: BRFSS

I Estimates are used for a variety
of purposes including
summarization for the local
communities and assessment of
health needs.

I Analysis and dissemination of
place-based disparities is of
great importance to allow
efficient targeting of place-based
interventions.

I Because of its demographics,
King County looks good
compared to other areas in the
U.S., but some of its disparities
are among the largest of major
metro areas.

	  	  	  

2012	  

Figure 2: Summaries from Public Health:
Seattle King County.
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BRFSS
I Estimation is based on Behavioral Risk Factor Surveillance

System (BRFSS) data.
I The BRFSS is an annual telephone health survey conducted by

the CDC that tracks health conditions and risk behaviors in the
United States and its territories since 1984.
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Those Mysterious Weights

The BRFSS sampling scheme is complex: it uses a disproportionate
stratified sampling scheme.

The SampleWt, is calculated as the product of four terms

Sample Wt = StratWt× 1
NoTelephones

× NoAdults× PostStratWt

where StratWt is the inverse probability of a “likely” or “unlikely”
stratum being selected (stratification based on county and “phone
likelihood”).

Table 1: Summary statistics for population data, and 2011 King County
BRFSS diabetes data, across health reporting areas.

Mean Std. Dev. Median Min Max Total
Population (>18) 31,619 10,107 30,579 8,556 56,755 1,517,712
Sample Sizes 62.9 24.3 56.5 20 124 3,020
Diabetes Cases 6.3 3.1 6.3 1 15 302
Sample Weights 494.3 626.7 280.4 48.0 5,461 1,491,880
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BRFSS: Sample Sizes

I A total of 3,020 individuals
answered the diabetes
question.

I About 35% of the areas have
sample sizes less than 50
(CDC recommended cut-off),
so that the diabetes
prevalence estimates are
relatively unstable in these
areas.

I We would like to use the
totality of the data to aid in
estimation in the data sparse
areas.

BRFSS Sample Size by HRA

under 25
25 − 50
50 − 75
75 − 100
over 100

Figure 3: Sample sizes across 48 HRAs.
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BRFSS: Comparison of Estimates

Observed prevalence by HRA

under 0.05
0.05 − 0.1
0.1 − 0.15
0.15 − 0.2
over 0.2

Observed prevalence by HRA

under 0.05
0.05 − 0.1
0.1 − 0.15
0.15 − 0.2
over 0.2

Figure 4: Diabetes prevalence by HRAs in 2011: crude proportions (left)
Horvitz-Thompson weighted estimates (right).
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Motivating Example 2: NHANES

Figure 5: Cartoon of sample design in NHANES I; a multistage stratified
clustered sample of civilian, non-institutionalized population.
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NHANES: Study Design

I In NHANES, participants had an
interview, clinical examination
and blood samples were taken
and needed to be stored, and this
required mobile examination
trailers.

I 27,000 individuals were sampled
over 4 years and not practical to
move the trailers to thousands of
locations.

I Figure 6 shows what a SRS of
10,000 looks like; the sampled
individuals live in 1184 counties.

I In NHANES III the design used
involved sampling 81 PSUs
locations (clusters) with a plan to
recruit multiple participants in
each cluster.

Figure 6: A SRS of 10,000 voter
locations from the USA with circles at
the county centroids and areas
proportional to the number sampled.
Los Angeles County contains the
largest sample of 257.
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Motivating Example 3: DHS

I Motivation: In many developing world countries, vital registration
is not carried out, so that births and deaths go unreported. We
aim to provide reliable U5MR estimates at the Admin 1 level, at
which policy interventions are often carried out. We use data
from Demographic Health Surveys (DHS).

I DHS Program: Typically stratified cluster sampling to collect
information on population, health, HIV and nutrition; more than
300 surveys carried out in over 90 countries, beginning in 1984.

I The Problem: Data are sparse at the Admin 1 level.
I SAE: Leverage space-time similarity to construct a Bayesian

smoothing model.
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Kenyan DHS

I The 3 most recent Kenya DHS
were carried out in 2003, 2008
and 2014.

I These DHS use stratified
(urban/rural, 8 regions),
two-stage cluster sampling
(enumeration areas, and then
households).

I All women age 15 to 49 who
slept in the household the night
before were interviewed in each
selected household.

I DHS provides sampling (design)
weights, assigned to each
individual in the dataset. From
each full birth history information
was obtained.
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Figure 7: Cluster locations in three
Kenya DHS, with county boundaries.
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Small Area Estimation

Small Area Estimation concerns making areal estimates of a quantity
of interest, with the data in some areas being possibly sparse.

Spatial Statistics covers many endeavors:

I Disease Mapping: Spatial dependence is a virtue.
I Spatial Regression: Spatial dependence is a nuisance –

confounding by location.
I Cluster Detection: Spatial pattern of data is of primary interest.
I Assessment of Clustering: Spatial pattern of data is of primary

interest.
I Small Area Estimation: Spatial dependence is a virtue.
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Course Overview

Lectures:

I Complex Survey Data.
I Bayesian Smoothing Models.
I Small-Area Estimation.
I Examples with the SUMMER package.

Website:

http://faculty.washington.edu/jonno/CSSS20-Spatial.html
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Overview of Survey Sampling
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Outline

Many national surveys employ stratified cluster sampling, also known
as multistage sampling, so that’s where we’d like to get to.

In this lecture we will discuss:
I Simple Random Sampling (SRS).
I Stratified SRS.
I Cluster sampling.
I Multistage sampling.
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Some Reference Books

I Lohr, S.L. (2010). Sampling Design and Analysis, Second
Edition. Brooks/Cole Cengage Learning. Very well-written and
clear mix of theory and practice.

I Lumley, T. (2010). Complex Surveys: A Guide to Analysis Using
R, Wiley. Written around the R survey package. Great if you
already know a lot about survey sampling.

I Korn, E.L. and Graubard, B.I. (1999). Analysis of Health
Surveys. Wiley. Well written but not as comprehensive as Lohr.

I Särndal, Swensson and Wretman (1992). Model Assisted
Survey Sampling. Springer. Excellent on the theory though steep
learning curve and hard to dip into if not familiar with the
notation. Also, anti- model-based approaches.
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Requirements

I We have a question concerning variables in a well-defined finite
population (e.g., 18+ population in Washington State).

I What is required of a sample plan?
I We want:

I Accurate answer to the question (estimate).
I Good estimate of the uncertainty of the estimate (e.g., variance).
I Reasonable cost for the study (logistics).

I We may be interested in this particular finite population only, or in
generalizing to other populations/situations, i.e., the process.

I If the former, then if we sample the complete population (i.e., we
have a census), we are done! No statistics needed...

I A random sample is almost always better than a non-random
sample, because the former allows a more straightforward
assessment of uncertainty.
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Design-Based Inference

I We will focus on design-based inference: in this approach the
population values of the variable of interest:

y1, . . . , yN

are viewed as fixed, what is random is the indices of the
individuals who are sampled.

I Imagine a population of size N = 4 and we sample n = 2
I Possible samples, with sampled unit indices in red and

non-sampled in blue: y1, y2, y3, y4

y1, y2, y3, y4

y1, y2, y3, y4

y1, y2, y3, y4

y1, y2, y3, y4

y1, y2, y3, y4

I Different designs follow from which probabilities we assign to
each of these possibilities.
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Design-Based Inference

Design-based inference is frequentist, so that properties are based
on hypothetical replications of the data collection process; hence, we
require a formal description of the replication process.

A complex random sample may be:
I Better than a SRS in the sense of obtaining the same precision

at lower cost.
I May be worse in the sense of precision, but be required

logistically.
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Probability Samples

Notation for random sampling, in a single population (and not
distinguishing areas):

I N, population size.
I n sample size.
I πk , sampling probability for a unit (which will often correspond to

a person) k , k = 1, . . . ,N.

Random does not mean “equal chance”, but means that the choice
does not depend on variables/characteristics (either measured or
unmeasured), except as explicitly stated via known sampling
probabilities.

For example, in stratified random sampling, certain groups may have
fixed numbers sampled.
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Common sampling designs

I Simple random sampling: Select each individual with probability
πk = n/N.

I Stratified random sampling: Use information on each individual
in the population to define strata h, and then sample nh units
independently within each stratum.

I Probability-proportional-to-size sampling: Given a variable
related to the size of the sampling unit, Zk , on each unit in the
population, sample with probabilities πk ∝ Zk .

I Cluster sampling: All units in the population are aggregated into
larger units called clusters, known as primary sampling units
(PSUs), and clusters are sampled initially, with units within
clusters then being sampled.

I Multistage sampling: Stratified cluster sampling, with multiple
levels of clustering.
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Probability Samples

I The label probability
sample is often used
instead of random
sample.

I Non-probability samples
cannot be analyzed with
design-based
approaches, because
there are no πk .

Non-probability sampling approaches include:

I Convenience sampling (e.g., asking for
volunteers). Also known as accidental or
haphazard sampling.

I Purposive (also known as judgmental)
sampling in which a researcher users
their subject knowledge to select
participants (e.g, selecting an “average”
looking individual).

I Quota sampling in which quotas in
different groups are satisfied (but unlike
stratified sampling, probability sampling
is not carried out, for example, the
interviewer may choose friendly looking
people!). 24 / 75



Design-Based Inference
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Overview of approaches to inference

In general, data from survey samples may be analyzed using:

1. Design-based inference.
2. Model-based inference.
3. Model-assisted inference.

We focus on 1. and 2.
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Probability Samples: Point Estimation

For design-based inference:

I To obtain an unbiased estimator, every individual k in the

population to have a non-zero probability

πk

of being sampled, k = 1, . . . ,N.
I To carry out inference, this probability πk must be known only for

every individual in the sample.
I So not needed for the unsampled individuals, which is key to

implementation, since we will usually not know the sampling
probabilities for those not sampled.
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Probability Samples: Variance Estimation

For design-based inference:

I To obtain a form for the variance of an estimator: for every pair of

individuals, k and l , in the sample, there must a non-zero

probability of being sampled together, call this probability,

πkl

for k = 1, . . . ,N, l = 1, . . . ,N, k 6= l .
I The probability πkl must be known for every pair in the sample.
I in practice, these are often approximated, or the variance is

calculated via a resampling technique such as the jackknife.
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Inference

I Suppose we are interested in a variable denoted y , with the
population values being y1, . . . , yN .

I Random variables will be represented by upper case letters, and
constants by lower case letters.

I Finite population view: We have a population of size N and we
are interested in characteristics of this population, for example,
the mean:

yU =
1
N

N∑
k=1

yk .
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Model-Based Inference

I Infinite population view: The population variables are drawn from
a hypothetical distribution, the model, p(·) with mean µ.

I In the latter (model-based) view, Y1, . . . ,YN are random variables
and properties are defined with respect to f (·); often we say Yk
are independent and identically distributed (iid) from p(·).

I As an example, we take the sample mean:

Y =
1
n

n∑
k=1

Yk

is a random variable because Y1, . . . ,Yn are each random
variables.

I Assume Yk are iid observations from a distribution, p(·), with
mean µ and variance σ2.

I The sample mean is an unbiased estimator, and has variance
σ2/n.
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Model-Based Inference

Unbiased estimator:

E[Y ] = E

[
1
n

n∑
k=1

Yk

]
=

1
n

n∑
k=1

E [Yk ]︸ ︷︷ ︸
=µ

=
1
n

n∑
k=1

µ = µ

Variance:

var(Y ) = var

(
1
n

n∑
k=1

Yk

)
=︸︷︷︸
iid

1
n2

n∑
k=1

var (Yk )︸ ︷︷ ︸
=σ2

=
1
n2

n∑
k=1

σ2 =
σ2

n

In general, can write down a sampling model and then proceed with
likelihood or Bayesian inference.
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Design-Based Inference

I In the design-based approach to inference the y values are
treated as unknown but fixed.

I To emphasize: the y ’s are not viewed as random variables, so we
write

y1, . . . , yN ,

and the randomness, with respect to which all procedures are
assessed, is associated with the particular sample of individuals
that is selected, call the random set of indices S.

I Minimal reliance on distributional assumptions.
I Sometimes referred to as inference under the randomization

distribution.
I In general, the procedure for selecting the sample is under the

control of the researcher.
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Design-Based Inference

I Define design weights as

wk =
1
πk
.

I The basic estimator is the weighted form (Horvitz and
Thompson, 1952; Hájek, 1971)

Ŷ U =

∑
k∈S wk yk∑

k∈S wk
.
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Simple Random Sampling
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Simple random sample (SRS)

I The simplest probability sampling technique is simple random s
without replacement, or SRSWOR.

I Suppose we wish to estimate the population mean in a particular
population of size N.

I In everyday language: consider a population of size N; a random
sample of size n ≤ N means that any subset of n people from
the total number N is equally likely to be selected.

I This is known as simple random sampling.

35 / 75



Simple random sample (SRS)

I We sample n people from N, choosing each person
independently at random and with the same probability of being
chosen:

πk =
n
N
,

k = 1, . . . ,N.
I Note: sampling without replacement and the joint sampling

probabilities are

πkl =
n
N
× n − 1

N − 1
for k , l = 1, . . . ,N, k 6= l .

I In this situation:
I The sample mean is an unbiased estimator.
I The uncertainty, i.e. the variance in the estimator can be easily

estimated.
I Unless n is quite close to N, the uncertainty does not depend on N,

only on n (see later for numerical examples).
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The Indices are Random!

I Example: N = 4,n = 2 with SRS. There are 6 possibilities:

{y1, y2}, {y1, y3}, {y1, y4}, {y2, y3}, {y2, y4}, {y3, y4}.

I The random variable describing this design is S, the set of
indices of those selected.

I The sample space of S is

{(1,2), (1,3), (1,4), , (2,3) (2,4), (3,4)},

and under SRS, the probability of sampling one of these
possibilities is 1/6.

I The selection probabilities are

πk = Pr( individual i in sample ) =
3
6
=

1
2
,

which is of course n
N .

I In general, we can work out the selection probabilities without
enumerating all the possibilities!
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Design-based inference

I Fundamental idea behind design-based inference: An individual
with a sampling probability of πk can be thought of as
representing 1/πk individuals in the population.

I Example: in SRS each person selected represents N
n people.

I The sum of the design weights,∑
k∈S

wk = n × N
n

= N,

is the total population.
I Sometimes the population size may be unknown and the sum of

the weights provides an unbiased estimator.
I In general, examination of the sum of the weights can be useful

as if it far from the population size (if known) then it can be
indicative of a problem with the calculation of the weights.
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Estimator of yU and properties under SRS

I The weighted estimator is

Ŷ U =

∑
k∈S wk yk∑

k∈S wk

=

∑
k∈S

N
n yk∑

k∈S
N
n

=

∑
k∈S yk

n
= yS,

the sample mean.

I This is an unbiased estimator, i.e., E[Ŷ U ] = Y U , where we
average over all possible samples we could have drawn,
i.e., over S.
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Unbiasedness

I For many designs:
∑

k∈S wk = N so we demonstrate with the
estimator

Ŷ U =
1
N

∑
k∈S

wk yk .

I There’s a neat trick in here, we introduce an indicator random
variable of selection Ik ∼ Bernoulli(πk ):

E[Ŷ U ] = E

[
1
N

∑
k∈S

wk yk

]
︸ ︷︷ ︸

S is random in here

= E

[
1
N

N∑
i=1

Ik wk yk

]
︸ ︷︷ ︸

Ik are random in here

=
1
N

N∑
i=1

E [Ik ]wk yk =
1
N

N∑
i=1

πk wk yk =
1
N

N∑
i=1

yk = Y U
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Estimator of yU and properties under SRS
Variance is

var(yS) =
(

1− n
N

) S2

n
, (1)

where,

S2 =
1

N − 1

N∑
k=1

(yk − yU)
2.

Contrast this with the model-based variance which is σ2/n.

The factor
1− n

N
is the finite population correction (fpc).

Because we are estimating a finite population mean, the greater the
sample size relative to the population size, the more information we
have (relatively speaking), and so the smaller the variance.

In the limit, if n = N we have no uncertainty, because we know the
population mean!
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Estimator of yU and properties under SRS

I The variance of the estimator depends on the population
variance S2, which is usually unknown, so instead we estimate
the variance using the unbiased estimator:

s2 =
1

n − 1

∑
k∈S

(yk − yS)
2.

I Substitution into (1) gives an unbiased estimator of the variance:

v̂ar(yS) =
(

1− n
N

) s2

n
. (2)

I The standard error is

SE(yS) =

√(
1− n

N

) s2

n
.

I Note: S2 is not a random variable but s2 is.
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Estimator of yU and properties under SRS

I If n, N and N − n are “sufficiently large”1, a 100(1− α)%
confidence interval for yU is[

yS − zα/2

√
1− n

N
s√
n
, yS + zα/2

√
1− n

N
s√
n

]
, (3)

where zα/2 is the (1− α/2)th percentile of a standard normal
random variable.

I The interval in (3) is random (across samples) because yS and
s2 (the estimate of the variance) are random.

I In practice therefore, if n� N, we obtain the same confidence
interval whether we take a design- or a model-based approach to
inference (though the interpretation is different).

1so that the normal distribution provides a good approximation to the sampling
distribution of the estimator
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Stratified Simple Random Sampling
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Stratified simple random sampling

I Simple random samples are rarely taken in surveys because
they are logistically difficult and there are more efficient designs
for gaining the same precision at lower cost.

I Stratified random sampling is one way of increasing precision
and involves dividing the population into groups called strata and
drawing probability samples from within each one, with sampling
from different strata being independent.

I The stratified simple random sampling without replacement
design is sufficiently popular to merit a ridiculous acronym,
STSRSWOR.

I An important practical consideration of whether stratified
sampling can be carried out is whether stratum membership is
known (for whatever variable is defining the strata) for every
individual in the population.
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Reasons for Stratified Simple Random Sampling

I Protection from the possibility of a “really bad sample”, i.e., very
few or zero samples in certain stratum giving an
unrepresentative sample.

I Obtain known precision required for subgroups (domains) of the
population.

I Convenience of administration since sampling frames can be
constructed differently in different strata.

I The different stratum may contain units that differ greatly in
practical aspects of response, measurement, and auxiliary
information, and so being able to treat each stratum individually
in terms of design and estimation, may be beneficial.
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Reasons for Stratified Random Sampling

I More precise estimates can be obtained if stratum can be found
that are associated with the response of interest, for example,
age and gender in studies of human disease.

I The most natural form of sampling may be based on
geographical regions, and treating each region as a separate
stratum is then suggested.

I Due to the independent sampling in different stratum, variance
estimation straightforward (so long as within-stratum sampling
variance estimators are available).

See Lohr (2010, Section 3.1) for further discussion.
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Example: Washington State

I According to

http://quickfacts.census.gov/qfd/states/53000.html

there were 2,629,126 households in WA in 2009–2013.
I Consider a simple random sample of 2000 households, so that

each household has a

2000
2629126

= 0.00076,

chance of selection.
I Suppose we wish to estimate characteristics of household in all

39 counties of WA.
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Example: Washington State

I King and Garfield counties had 802,606 and 970 households so
that under SRS we will have, on average, about 610 households
sampled from King County and about 0.74 from Garfield county.

I The probability of having no-one from Garfield County is about
22%, (binomial experiment) and the probability of having more
than one is about 45%.

I If we took exactly 610 from King and 1 (rounding up) from
Garfield we have an example of proportional allocation.

I Stratified sampling allows control of the number of samples in
each county.
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Notation

I Stratum levels are denoted
h = 1, . . . ,H, so H in total.

I Let N1, . . . ,NH be the known
population totals in the stratum
with

N1 + · · ·+ NH = N,

so that N is the total size of the
population.

I In stratified simple random
sampling, the simplest from of
stratified sampling, we take a
SRS from each stratum with nh

samples being randomly taken
from stratum h, so that the total
sample size is

n1 + · · ·+ nH = n.

I We can view stratified SRS as carrying
out SRS in each of the H stratum; we let
Sh represent the probability sample in
stratum h.

I We also let S refer to the overall
probability sample.
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Estimators

I The sampling probaiblities for unit k in strata h are

πhk =
nh

Nh
,

which do not depend on k .
I Therefore the design weights are

whk =
Nh

nh
.

I Note that:

H∑
h=1

∑
k∈Sh

whk =
H∑

h=1

∑
k∈Sh

Nh

nh
=

H∑
h=1

nh
Nh

nh
= N
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Estimators
I Weighted estimator:

ŷU =

∑H
h=1

∑
k∈Sh

whk yhk∑H
h=1

∑
k∈Sh

whk

=
H∑

h=1

Nh

N
yhS

where

yhS =

∑
k∈Sh

yhk

nh
.

I Since we are sampling independently from each stratum using
SRS, we have

var(ŷU) =
H∑

h=1

(
1− nh

Nh

)(
Nh

N

)2 s2
h

nh
(4)

where the within stratum variances are:

s2
h =

1
nh − 1

∑
k∈sh

(yhk − yhS)
2.
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Weighted Estimation

Recall: The weight wk can be thought of as the number of people in
the population represented by sampled person k .

Example 1: Simple Random Sampling
Suppose an area contains 1000 people:

I Using simple random sampling (SRS), 100 people are sampled.
I Sampled individuals have weight wk = 1/πk = 1000/100 = 10.

Example 2: Stratified Simple Random Sampling
Suppose an area contains 1000 people, 200 urban and 800 rural.

I Using stratified SRS, 50 urban and 50 rural individuals are
sampled.

I Urban sampled individuals have weight
wk = 1/πk = 200/50 = 4.

I Rural sampled individuals have weight
wk = 1/πk = 800/50 = 16.

53 / 75



Weighted Estimation

Example 2 Revisited: Stratified Simple Random Sampling
Suppose an area contains 1000 people, 200 urban and 800 rural.

I Urban risk = 0.1.
I Rural risk = 0.2.
I True risk = 0.18.

Take a stratified SRS, 50 urban and 50 rural individuals sampled:

I Urban sampled individuals have weight 4; 5 cases out of 50.
I Rural sampled individuals have weight 16; 10 cases out of 50.
I Simple mean is 15/100 = 0.15 6= 0.18.
I Weighted mean is

4× 5 + 16× 10
4× 50 + 16× 50

=
180
1000

= 0.18.
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Example: NMIHS

I Korn and Graubard (1999) discuss the National Maternal and
Infant Health Survey (NMIHS) which collected information on live
births, fetal deaths and infant deaths that occurred in 1998 in the
United States (excluding Montana and South Dakota).

I Six strata were used, as the cross of race (black/non-black) and
birthweight of the baby as reported on the birth certificate
(<1500, 1500–2499, ≥2500 grams).

I These strata include groups at risk for adverse pregnancy
outcomes and so they were oversampled in the NMIHS to
increase the reliability of estimates for these subdomains.
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Example: 1988 NMIHS

Table 2: Mother’s age, as reported on birth certificate, and other statistics, by
stratum (race and birthweight, in grams), from 1988 NMIHS. Data reproduced
from Korn and Graubard (1999, Table 2.2-1).

Estimated Sample Sampling Mean Standard
Population Size Fraction Age Deviation

Stratum h Size (Nh) (nh) (nh/Nh) (yhs) Age (sh)
1. Black, <1500 18,130 1295 1/14 24.64 5.84
2. Black, 1500–2499 65,670 1194 1/55 24.42 5.76
3. Black, ≥2500 559,124 4948 1/113 24.41 5.68
4. Non-Black, <1500 27,550 950 1/29 26.44 5.88
5. Non-Black, 1500–2499 150,080 938 1/160 26.11 5.85
6. Non-Black, ≥2500 2,944,800 4090 1/720 26.70 5.45
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Example: 1988 NMIHS

I The target population is live births in the United States in 1988
from mothers who were 15 years or older.

I We estimate the mean as

ŷU =
H∑

h=1

Nh

N
yhS

=
1

3765354
(18130× 24.64 + · · ·+ 2944800× 26.70)

= 26.28 years.

I Notice that the mean is far closer to the non-black summaries,
since the oversampling of black mothers is accounted for.
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Example: 1988 NMIHS

I The variance is estimated, from (4), as

v̂ar(ŷU) =
1

(3765354)2

[
(18130)2

(
1− 1

14

)
(5.84)2

1295
+ · · ·

+ (2944800)2
(

1− 1
720

)
(5.45)2

4090

]
= 0.004647.

I A 95% confidence interval for the average age (in years) of
mothers (15 years or older) of live births in the United States is

26.28± 1.96×
√

0.004647 = (26.15,26.41).
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Defining Strata

I Since we almost always gain in precision over SRS, why not
always use stratification?

I A very good reason is that we need the stratification variable to
be available on all of the population.

I Taking a stratified sample adds to complexity.
I Stratification is best when the stratum means differ greatly;

ideally we would stratify on the basis of y , but of course these
are unknown in the population (that’s the point of the survey!).

I Stratification should aim to produce strata within which the
outcomes of interest have low variance.
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Cluster Sampling
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References on cluster sampling

I Lumley (2010, Chapter 3): not very extensive but describes the
use of the survey package.

I Lohr (2010, Chapters 5 and 6): very good description.
I Särndal et al. (1992, Chapter 4): concentrates on the estimation

side.
I Korn and Graubard (1999, Section 2.3): a brief overview.

61 / 75



Motivation for Cluster Sampling

Cluster sampling is an extremely common design that is often used
for government surveys.

Two main reasons for the use of cluster sampling:
I A sampling frame for the population of interest does not exist,

i.e., no list of population units.
I The population units have a large geographical spread and so

direct sampling is not logistically feasible to implement. It is far
more cost effective (in terms of travel costs, etc.) to cluster
sample.
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Cluster Sampling

The clusters can be:
I Genuine features of the populations, e.g., households, schools,

or workplaces.
I Subsets chosen for convenience, e.g., counties, zipcodes,

telephone number blocks.
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Terminology

I In single-stage cluster sampling or one-stage cluster sampling,
the population is grouped into subpopulations (as with stratified
sampling) and a probability sample of these clusters is taken,
and every unit within the selected clusters is surveyed.

I In one-stage cluster sampling either all or none of the elements
that compose a cluster (PSU) are in the sample.

I The subpopulations are known as clusters or primary sampling
units (PSUs).

I In two-stage cluster sampling, rather than sample all units within
a PSU, a further cluster sample is taken; the possible groups to
select within clusters are known as secondary sampling units
(SSUs).

I For example, if we take a SRS within each PSU sampled, we
have a two-stage cluster sampling design.

I This can clearly be extended to multistage cluster sampling.
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Differences between cluster and stratified sampling

Stratified Random Sampling One-Stage Cluster Sampling
SRS is taken from every stratum Observe all elements only within the

sampled clusters
Variance of estimate of yU Cluster is sampling unit and the more
depends on within strata variability clusters sampled the smaller the variance.

The variance depends primarily on
between cluster means

For greatest precision, low within- For greatest precision, high within-cluster
strata variability but large variability and similar cluster means.
between-strata variability
Precision generally better than SRS Precision generally worse than SRS
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Heterogeneity

I The reason that cluster sampling loses efficiency over SRS is
that within clusters we only gain partial information from
additional sampling within the same cluster, since within clusters
two individuals tend to be more similar than two individuals within
different clusters.

I The similarity of elements within clusters is due to unobserved
(or unmodeled) variables.
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Estimation: Unbiased estimation for one-stage cluster
sampling

I We suppose that a SRS of n PSUs is taken.
I The probability of sampling a PSU is n/N, and since all the

SSUs are sampled in each selected PSU we have selection
probabilities and design weights

πik = Pr( SSU k in cluster i is selected ) =
n
N

wik = Design weight for SSU k in cluster i =
N
n
.

67 / 75



Estimation: Unbiased estimation for one-stage cluster
sampling

I Let M0 =
∑N

i=1 Mi be the total number of secondary sampling
units (SSUs) (i.e., elements in the population) so the population
mean is

yU =
1

M0

N∑
i=1

Mi∑
k=1

yik

I An unbiased estimator is

ŷU =

∑
i∈S
∑

k∈Si
wik yik

M0
.

I Then,

v̂ar(ŷ) = =
N2

M2
0

(
1− n

N

) s2
T
n

where s2
T is the estimated variance of the PSU totals.
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Two-stage cluster sampling with equal-probability
sampling

It may be wasteful to measure all SSUs in the selected PSUs, since
the units may be very similar and so there are diminishing returns on
the amount of information we obtain.

Here, we discuss the equal-probability two stage cluster design:

1. Select an SRS S of n PSUs from the population of N PSUs.
2. Select an SRS of mi SSUs from each selected PSU, the

probability sample collected will be denoted Si .
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Two-Stage Cluster Sampling Weights

I The inclusion probabilities are:

Pr( k -th SSU in i-th PSU selected ) = Pr( i-th PSU selected )

× Pr( k -th SSU | i th PSU selected )

=
n
N
× mi

Mi

I Hence, the weights are

wik = π−1
ik =

N
n
× Mi

mi
.

I An unbiased estimator is

ŷU =

∑
i∈S
∑

k∈Si
wik yik

M0
.

I Variance calculation is not trivial, and requires more than
knowledge of the weights.
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Variance Estimation for Two-Stage Cluster Sampling

I In contrast to one-stage cluster sampling we have to
acknowledge the uncertainty in both stages of sampling; in
one-stage cluster sampling the totals ti are known in the sampled
PSUs, whereas in two stage sampling we have estimates t̂i .

I In Lohr (2010, Chapter 6) it is shown that

M2
0 var(ŷU) = N2

(
1− n

N

) s2
T
n︸ ︷︷ ︸

one-stage cluster variance

+
N
n

N∑
i=1

(
1− mi

Mi

)
M2

i
s2

i
mi︸ ︷︷ ︸

two-stage cluster variance
(5)

where
I s2

T are the estimated variance of the cluster totals,
I s2

i is the estimated variance within the i-th PSU.
I If all SSUs are included in the sampled PSU, i.e. mi = Mi , we

return to one-stage cluster sampling as the second term in (5) is
zero.
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Multistage Sampling
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Multistage Sampling in the DHS

I A common design in national surveys is multistage sampling, in
which cluster sampling is carried out within strata.

I DHS Program: Typically, 2-stage stratified cluster sampling:
I Strata are urban/rural and region.
I Enumeration Areas (EAs) sampled within strata (PSUs).
I Households within EAs (SSUs).

I Information is collected on population, health, HIV and nutrition;
more than 300 surveys carried out in over 90 countries,
beginning in 1984.

I We will not go into inference for this design, but basically
weighted estimates are readily available, and accompanying
variance estimates can be calculated.

I Weighted estimators are used and a common approach to
variance estimation is the jackknife (Pedersen and Liu, 2012)
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Discussion
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Discussion

I The majority of survey sampling texts are based on
design-based inference, which is a different paradigm to
model-based inference!

I However, for the major designs (SRS, stratified SRS, cluster
sampling, multistage sampling), weighted estimates and their
variances are available within all the major statistical packages.

I What is required in the data are the weights, and the design
information for each individuals, for example, the strata and
cluster membership.

I We will exclusively use the survey package in R.
I When the variance is large, we would like to use Bayesian

methods to smooth, but where’s the likelihood?
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