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Motivation for Smoothing Models
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Smoothing/Penalization

I When looking at estimates over space or time, we want to know if
the differences we see are “real”, or simply reflecting sampling
variability.

I In data sparse situations, when one expects similarity smoothing
local patterns (in time, space, or both) can be highly beneficial.

I This can equivalently be thought of penalization, in which large
deviations from “neighbors”, suitably defined, are discouraged.

I In this section we will generically think of modeling prevalence.
I We start with temporal modeling, since time is easier to think

about! One dimensional and an obvious direction...
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Motivation for Smoothing: Temporal Case

I Temporal setting: Even if the underlying prevalence is the same
over time, we will see differences in the empirical estimates.

I Figure 1 demonstrates: We sampled binomial data with
n = 10,20,200 and p = 0.2 (shown in blue) in all cases.

I In the top plot in particular, we might conclude large temporal
variation, but all we are seeing is sampling variation.

I Figure 2 summarizes estimates from a second simulation in
which there is a real temporal pattern – here we would not want
to oversmooth and remove the trend.

I Later we will apply temporal smoothing models to these two sets
of data.
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Figure 1: Prevalence estimates over time from simulated data with true
prevalence of p = 0.2 (blue solid lines).
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Figure 2: Prevalence estimates over time from simulated data, true
prevalence corresponds to curved blue solid line.
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Motivation for Smoothing: Spatial Case

I We repeat the previous simulation example, but now for spatial
data.

I Counts Yi are simulated for each area i from a binomial
distribution with prevalence pi and sample size ni :

Yi | pi ∼ Binomial(ni ,pi).

I We look at varying sample sizes ni = 50,100,500, so that the
influence of sampling variability can be examined.

I We examine two sets of simulated data:
I Figure 3: Constant prevalence.
I Figure 4: Spatially varying prevalence.
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Figure 3: Prevalence estimates over space for simulated data with sample
sizes of n = 50, 100, 500. True prevalence is 0.2 in all areas.
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Figure 4: Prevalence estimates over space for simulated data with sample
sizes of n = 50, 100, 500. True prevalence is spatially varying.
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Smoothing

When faced with estimation n different quantities of the prevalence
under different conditions, there are three model choices:

I The true underlying prevalence risks are ALL THE SAME.
I The true underlying prevalence risks are DISTINCT but not

linked.
I The true underlying prevalence risks are SIMILAR IN SOME

SENSE.

The third option seems plausible when the conditions are related, but
how do we model “similarity”?
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Smoothing

There are a number of possibilities for SMOOTHING models:

I The prevalences are drawn from some COMMON probability
distribution, but are not ordered in any way. We refer this as the
independent and identically distributed, or IID model. We could
think of this as saying we think the prevalences are likely to be of
the same order of magnitude.

I The prevalences are CORRELATED over time.

These are both examples of HIERARCHICAL or RANDOM
EFFECTS MODELS — a key element is estimating the SMOOTHING
PARAMETER.
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Temporal Smoothing
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Smoothing over Time

Rationale and overview of models for temporal smoothing:
I We often expect that the true underlying prevalence in an area

will exhibit some degree of smoothness over time.
I A linear trend in time is unlikely to be suitable for more than a

small number of years, and higher degree polynomials can
produce erratic fits.

I Hence, local smoothing is preferred.
I Splines and random walk models have proved successful as

local smoothers.
I And to emphasize again, in either approach, the choice of

smoothing parameter is crucial.
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Random Walk Models
We use random walk models which encourage the mean responses
(e.g., prevalences) across time to not deviate too greatly from their
neighbors.

The true underlying mean of the prevalence at time t is modeled as a
function of its neighbors:

µt | µNE(t) ∼ N(mt , vt),

where
I µt is the mean prevalence (or some function of it such as the

logit) at time t .
I µNE(t) is the set of neighboring means – with the number of

neighbors chosen depending on the model used – typically 2 or
4.

I mt is the mean of some set of neighbors – for a first order
random walk or RW1 it is simply 1

2 (µt−1 + µt+1).
I vt is the variance, and depends on the number of neighbors – for

the RW1 model it is σ2/2, where σ2 is a smoothing parameter –
small values give large smoothing.
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Random Walk Models

I The smoothing parameter σ2 is estimated from the data, and
determines the extent deviations from the mean are penalized.

I The penalty term for the RW1 model is:

p(µt | µt−1, µt+1, σ
2) ∝ exp

{
− 1

2σ2

[
µt − 1

2 (µt−1 + µt+1)
]2}

.

I Hence:
I Values of µt that are close to 1

2 (µt−1 + µt+1) are favored (higher
density).

I The relative favorability is governed by σ2 – if this variance is small,
then µt can’t stray too far from its neighbors.

I Predictions from the RW1 are

µT+S|µ1, . . . , µT , σ
2 ∼ N(µT , σ

2 × S).
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Figure 5: Illustration of the RW1 model for smoothing at time 3. The mean of
the smoother is the average of the two adjacent points (and is highlighted as
•), and deviations from this mean are penalized via the normal distribution
shown in red.
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RW1 Model
I Form of the prior density is:

π(µ|σ2) ∝ exp

(
− 1

2σ2

T−1∑
t=1

(µt+1 − µt)
2

)

= exp

(
− 1

2σ2

∑
t∼t′

(µt − µt′)
2

)
= exp

(
−1

2
µTQµ

)
where t ∼ t ′ indicates t is a neighbor of t ′ and the precision is
Q = R/σ2 with

R =



1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1


and zeroes everywhere else.

I This sparsity leads to big gains in computational efficiency.
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RW2 Model

I The second order RW (RW2) model produces smoother
trajectories than the RW1, and has more reasonable short term
predictions, which is desirable for modeling child prevalence.

I In terms of second differences:

(µt − µt−1)− (µt−1 − µt−2) ∼ N( 0, σ2 ),

showing that deviations from linearity are discouraged.
I Forecasts S steps ahead have a normal distribution with mean:

E[µT+S | µ1, . . . , µT ] = µT + S(µT − µT−1)

which is a linear function of the values at the last two time points.
I The variance is

var(µT+S | µ1, . . . , µT ) =
σ2

6
× S(S + 1)(2S + 1)

which is cubic in the number of periods S, so blows up very
quickly.
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RW2 Model

I Form of the prior density is:

π(µ|σ2) ∝ exp

(
− 1

2σ2

T−2∑
t=1

(µt+2 − 2µt+1 + µt)
2

)

= exp

(
−1

2
µTQµ

)
where the precision is Q = R/σ2 with

R =



1 −2 1
−2 5 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

· · · · ·
1 −4 6 −4 1

1 −4 5 −2
1 −2 1


and zeroes everywhere else.
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Figure 6: Nile data with RW1 fits under different priors for smoothing
parameter σ−2.
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Figure 7: Nile data with RW2 fits under different priors for smoothing
parameter σ−2.
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Temporal Smoothing Model Summary

We have three models:

IID MODEL:
µt ∼ N(0, σ2),

smooth towards zero.
RW1 MODEL:

µt − µt−1 ∼ N(0, σ2),

smooth towards the previous value.
RW2 MODEL:

(µt − µt−1)− (µt−1 − µt−2) ∼ N(0, σ2),

smooth towards the previous slope.
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Bayesian Inference
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Bayesian Inference

Bayesian inference is a convenient framework within which to
implement smoothing models.

I A Data Model (Likelihood) is probabilistically combined with
I A Penalization (Prior) that expresses beliefs about the

parameters θ encoding the model.
I Combination occurs via Bayes Theorem:

p(θ|y)︸ ︷︷ ︸
Posterior

∝ L(θ)︸︷︷︸
Likelihood

×π(θ)︸︷︷︸
Prior

.

I On the log scale:

log p(θ|y)︸ ︷︷ ︸
Updated Beliefs

= log L(θ)︸ ︷︷ ︸
Data Model

+ log π(θ)︸ ︷︷ ︸
Penalization

.
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Bayesian Inference

I In a Bayesian analysis the complete set of unknowns
(parameters) is summarized via the multivariate posterior
distribution.

I The marginal distribution for each parameter may be
summarized via its mean, standard deviation, or quantiles.

I It is common to report the posterior median and a 90% or 95%
posterior range for parameters of interest.

I The range that is reported is known as a credible interval.
I The computations required for Bayesian inference (integrals) is

often not trivial and many be carried out using a variety of
analytic, numeric and simulation based techniques.

I We use the integrated nested Laplace approximation (INLA),
introduced by Rue et al. (2009).

I Book-length treatments:
I Blangiardo and Cameletti (2015) – space-time models.
I Wang et al. (2018) – general models.
I Krainski et al. (2018) – advanced space-time models.
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Bayes Example

I Imagine the data model is normal with an unknown mean µ:

y | µ ∼ N(µ, σ2/n),

where σ2/n is assumed known (σ/
√

n is the standard error).
I We also imagine the prior is normal:

µ ∼ N(m, v),

so that values of the mean µ that are (relatively) far from m are
penalized.

I The log posterior is:

log p(µ | y︸ ︷︷ ︸
Updated Beliefs

) = − n
2σ2 (y − µ)

2︸ ︷︷ ︸
Data Model

− 1
2v

(µ−m)2︸ ︷︷ ︸
Penalization

.
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Figure 8: Normal data model with n = 10, y = 19.3 and standard error 1.41.
The prior for µ has mean m =15 and v = 32. The posterior for the parameter
µ is a compromise between the two sources of information: the posterior
mean is 18.5 and the posterior standard deviation is 1.28.
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RW Fitting to Simulated Data

I We illustrate fitting with the RW2 model, using the simulated data
seen earlier.

I The model is:

Yt |pt ∼ Binomial(nt ,pt)
pt

1− pt
= exp(α+ φt)

(φ1, . . . , φT ) ∼ RW2(σ2)

σ2 ∼ Prior on Smoothing Parameter
α ∼ Prior on Intercept

I Fit using R-INLA.
I On Figures 9 and 10 the fitted values are shown in red – in both

the constant prevalence and curved prevalence cases, the
reconstruction is reasonable.
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Figure 9: Prevalence estimates over time from simulated data, true
prevalence p = 0.2 (blue solid lines). Smoothed random walk estimates in
red.
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Figure 10: Prevalence estimates over time from simulated data, true
prevalence corresponds to curved blue solid line. Smoothed random walk
estimates in red.
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Spatial Smoothing
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Spatial Modeling

Two approaches to modeling spatial dependence:
1. Covariance matrix approach (Stein, 1999):

I Kriging is the label attached to prediction using this approach,
I Intuitive isotropic correlation models based on distance, leads to

dense matrices.
I Unfortunately, if n is large, computation is a nightmare, because we

need to manipulate n × n matrices, which involves O(n3) operation
(Rue and Held, 2005).

I A large number of approximations have been proposed: fixed rank
Kriging, lattice Kriging, predictive processes, SPDE,...

I Known as Gaussian Process (GP), or geostatistical, models.

2. Precision matrix approach (Besag, 1974):
I Model local structure, leads to sparse matrices but less intuition on

the implied covariances.
I Computation is very efficient with either MCMC, INLA (Rue et al.,

2009) or TMB.

Each of these approaches can be used for point or area data.
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The Two Approaches to Spatial Smoothing

I Model at the area level
using a discrete spatial
model.
These are the models that
are implemented in the
SUMMER package.

I Model at the point level
using a continuous spatial
model.
Gaussian Process (GP)
models abound and have
many different
implementations.

34 / 65



Spatial Models for Binomial Data

Point Data: For a cluster at sc :

Y (sc)|p(sc) ∼ Binomial(N(sc),p(sc)).

I Continuous spatial random effects:

p(sc) = expit(β0 + x(sc)
Tβ1 + S(sc)︸ ︷︷ ︸

Continuous
Spatial

+ εc︸︷︷︸
“Nugget”
Random

Noise

).

I Discrete spatial random effects:

p(sc) = expit(β0 + x(sc)
Tβ1 + S(si[c])︸ ︷︷ ︸

Discrete
Spatial

+ εi[c]︸︷︷︸
Discrete
Random

Noise

),

where i[c] is the spatial area within which cluster c lies.
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Spatial Models for Binomial Data
Aggregate Data: For area i ,

Yi |pi ∼ Binomial(Ni ,pi).

I Discrete spatial random effects:

pi = expit(β0 + x T
i β1 + Si︸︷︷︸

Discrete
Spatial

+ εi︸︷︷︸
Discrete
Random

Noise

).

I Continuous spatial random effects:

pi =

∫
s∈Ai

p(s)d(s) ds

=

∫
s∈Ai

expit( β0 + x(s)Tβ1 + S(s)︸ ︷︷ ︸
Continuous

Spatial

) d(s) ds,

where d(s) is population density at location s.
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Spatial Models for Binomial Data

I Key Point: The area-level prevalence is not,

pi = expit(β0 + x T
i β1 + Si),

with

Si =

∫
s∈Ai

S(s)︸ ︷︷ ︸
Continuous

Spatial

d(s) ds

x i =

∫
s∈Ai

x(s) d(s) ds

which is what some have done.
I Classic ecological fallacy (Wakefield, 2008).
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Discrete Spatial Models
In spatial epidemiology in regions with disease registries, the data are
available as aggregates and so area-based models are popular:

I Besag, York and Mollié (1991), the famous BYM model – see
also reparameterized version in Riebler et al. (2016), known as
BYM2.

I The Leroux model (Leroux et al., 1999) model is increasing in
popularity – another reparameterized version in Riebler et al.
(2016).

I Proper conditional autoregression (CAR) (Cressie and Wikle,
2011).

I Multivariate normal model with points taken as centroids of each
area: computationally expensive and not appealing for area-level
data. Little used.

I Simultaneous Autoregression (SAR) models (LeSage and Pace,
2009). Popular in econometrics, less so in health and
demographic modeling.

Difference between BYM2, Leroux and CAR is often small, but
expertise required for priors specification – penalized complexity
priors have good theoretical basis and work well in practice (Simpson
et al., 2017). 38 / 65



The BYM Model
In the BYM model:

pi = expit(β0 + x T
i β + Si + εi),

where
I εi ∼iid N(0, σ2

ε ).
I The spatial effects Si are modeled conditional on the neighbors.

Specifically,

Si |{Sj = sj , j ∼ i}, σ2
s ∼ N

(
si ,

σ2
s

mi

)
,

where si =
1

mi

∑
j∼i sj is the mean of the neighbors (defined in

some way) of area i and mi is the number of such neighbors.
I σ2

s is a smoothing parameter: large values indicate large spatial
variability .

I The distribution of the complete set s = [s1, . . . , sn]
T:

p(s|σ2
s ) ∝ exp

(
− 1

2σ2
s

sTQs
)

is improper, since Q is singular.
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Example of a Neighborhood Scheme
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Figure 11: Common boundary neighbor
scheme for Bangladesh divisions.

Prior for spatial effects s is,

p(s|σ2
s ) ∝ exp

(
−1

2
sTQs

)
.

Precision matrix, Q = R/σ2
s ,

R:
3 −1 −1 −1 0 0
−1 3 −1 0 0 −1
−1 −1 5 −1 −1 −1
−1 0 −1 3 −1 0

0 0 −1 −1 2 0
0 −1 −1 0 0 2



Each row and each column
sum to 0, illustrating
non-singularity.
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Spatial Smoothing of Simulated Data

Data Model: For area i :

Yi︸︷︷︸
Count

| pi︸︷︷︸
Prevalance

∼ Binomial(ni ,pi)︸ ︷︷ ︸
Data Model

.

Smoothing Model: For the odds in area i :

pi

1− pi
= exp(α+ φi).

We consider two choices for the smoothing model:
I IID model: Smooth to the overall mean with no spatial structure
φi ∼ N(0, σ2) where σ2 controls the amount of smoothing —
small/large corresponds to strong/weak smoothing.

I BYM1 model: Add a spatial component that encourages local
similarity analogously to the random walk model with a suitable
choice of neighbors, sharing a common boundary being the
commonest choice.

1named after the paper that introdced the model, Besag, York and Mollié (1991)
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Spatial Modeling of Simulated Data for n = 50
Constant Risk Case
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Figure 12: Results with n = 50 when true prevalence is 0.2. Top Left: Truth.
Top Right: raw proportions. Bottom Left: Estimates with IID model. Bottom
Right: smoothing with BYM2.
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Spatial Modeling of Simulated Data for n = 100
Constant Risk Case
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Figure 13: Results with n = 100 when true prevalence is 0.2. Top Left: Truth.
Top Right: raw proportions. Bottom Left: Estimates with IID model. Bottom
Right: smoothing with BYM2.
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Spatial Modeling of Simulated Data for n = 500
Constant Risk Case
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Figure 14: Results with n = 500 when true prevalence is 0.2. Top Left: Truth.
Top Right: raw proportions. Bottom Left: Estimates with IID model. Bottom
Right: smoothing with BYM2.
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Spatial Modeling of Simulated Data for n = 50 Varying
Risk Case
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Figure 15: Results with n = 100 when true prevalence is varying. Top left:
Truth. Top right: Raw proportions, Bottom left: smoothing with IID model.
Bottom right: smoothing with BYM2.
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Spatial Modeling of Simulated Data for n = 100
Varying Risk Case
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Figure 16: Results with n = 100 when true prevalence is varying. Top left:
Truth. Top right: Raw proportions, Bottom left: smoothing with IID model.
Bottom right: smoothing with BYM2.
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Spatial Smoothing of Simulated Data for n = 500 Case
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Figure 17: Results with n = 500 when true prevalence is varying. Top left:
Truth. Top right: Raw proportions. Bottom left: smoothing with IID model.
Bottom right: smoothing with BYM2.
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Continuous Modeling

Continuous spatial models are popular in health and demography:

I Routinely used by both WorldPop (Wardrop et al., 2018) and
IHME (Golding et al., 2017), but continuous modeling is a more
hazardous approach to estimation.

I However, it is the way forward to allow multiple data sources at
different spatial resolutions to be combined.

I And reporting can be on a relevant discrete scale.

For a comparison of discrete and spatial models, see Wakefield et al.
(2018).
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Continuous Spatial Models

For point data s = [s1, . . . , sn]
T, computation and inference is

theoretically straightforward, just need to calculate

p(s|θ) ∝ |Σ|−1/2 exp

(
−1

2
sTΣ−1s

)
where Σ = Σ(θ), but determinant and inverse are computationally
prohibitive.

Alternatives:
I Lattice Kriging (Nychka et al., 2015).
I Fixed rank Kriging (Cressie and Johannesson, 2008).
I Predictive processes (Banerjee et al., 2008).
I Stochastic Partial Differential Equations (SPDE, Lindgren et al.

(2011)).
Heaton et al. (2017) is a good review paper.
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Stochastic Partial Differential Equations (SPDEs)

I The GRF is approximated by

S(s) ≈
m∑

i=1

wiφi(s)

where the wi are random and φi(s) are a set of basis functions,
i = 1, . . . ,m.

I We need to identify the distribution of wi and this can be done
using a particular stochastic partial differential equation (SPDE).

I This results in the distribution of w1, . . . ,wm being a Gaussian
MRF, so that the computation is efficient via INLA.
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SPDE Approximation

Figure 18: GMRF representation of a Markovian GRF, via triangulation, from
Simpson et al. (2012)
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Computation

Continuous spatial models are computationally difficult.

Possibilities:
I MCMC: stochastic simulation – can converge very slowly

(Filippone et al., 2013).
I INLA: combination of analytic and numerical approximations

(Rue et al., 2009).
I TMB: R package built around automatic differentiation routines,

with capabilities for Laplace transforms and MCMC (Kristensen
et al., 2016; Osgood-Zimmerman and Wakefield, 2019). Less
user-friendly but more flexible than R-INLA.

Discrete spatial models have multiple efficient implementations
(MCMC, INLA, TMB).
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Spatio-Temporal Smoothing
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Main Effects and Interactions

I To motivate space-time models when space is modeled
discretely we consider simple two-way factor models.

I Suppose we have a univariate continuous response Y .
I Suppose we have two factors with levels, A and B, with

i = 1, . . . , I and j = 1, . . . , J indexing the levels.
I A main effects only model takes the form

E[Yij |β0, ηi , φj ] = β0 + ηi + φj .

Interpretation: ηi is the effect of being at level i for factor A,
regardless of the level assumed by B, i.e. there is no interaction.
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Main Effects and Interactions

I An interaction model adds a set of interaction parameters

E[Y |β0, ηi , φj , δij ] = β0 + ηi + φj + δij .

I Interpretation: δij is the additional effect, beyond ηi + φj of being
simultaneously at levels i and j of factors A and B.

I If the factor correspond to nominal levels (e.g., a factor for color
with 2 levels: ”red”, ”blue”) then we would not expect similarity
between adjacent levels.

I In a space-time context the “factors” space and time have
structure and we would expect similarity.
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Separable Main Effects Model

I First, consider a separable space-time model

Yit |Pit ∼ Binomial(nit ,Pit)

θit = logit(Pit) = β0 + εi + Si + ωt + τt

I Components:
I Unstructured spatial term εi ∼iid N(0, σ2

v ), i = 1, . . . , n.
I Smooth spatial term [S1, . . . ,Sn] smooth in space (e.g. ICAR

model).
I Smooth temporal term [τ1, . . . , τT ] smooth in time (e.g. follows a

RW1 or RW2 model).
I Unstructured temporal term ωt ∼iid N(0, σ2

ω), t = 1, . . . ,T .
I Notice there is no interaction between space and time.
I The spatial effects are constant across time and temporal trends

are constant across space.
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Inseparable Space-Time Interaction Models

I Knorr-Held (2000) considered the model:

θit = β0 + εi + Si + ωt + τt + δit

with εi , Si , ωt , ηt are as in the separable model.
I Four different models for the interaction δit :

I Type I: Independent interaction.
I Type II: Temporal trends differ between areas but don’t have spatial

structure.
I Type III: Spatial patterns differ between time points but don’t have

temporal structure.
I Type IV: Temporal trends differ between areas but more likely to be

similar for adjacent areas.
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Inseparable Space-Time Interaction Models

I Type I: δit ∼iid N(0, σ2
δ).

I Type II: Temporal trends differ between areas but don’t have
spatial structure.

I For example, an RW(2) model in each area gives the joint
distribution:

p(δ|σ2
δ) ∝ exp

(
− 1

2σ2
δ

I∑
i=1

T∑
t=3

(δit − 2δi,t−1 + δi,t−2)
2

)
.

I Realistic to assume that time trends have no spatial structure?
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Inseparable Space-Time Interaction Models

I Type III: Spatial patterns differ between time points but without
temporal structure:

p(δ|σ2
δ) ∝ exp

− 1
2σ2

δ

T∑
t=1

∑
i∼j

(δit − δjt)
2

 .

I So this model says we have independent ICAR models at each
time point (though with the same variance, σ2

δ ).
I Realistic to assume that spatial structure changes at every time

point without smooth patterns in space?
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Inseparable Space-Time Interaction Models

I Type IV: Temporal trends differ between areas but more likely to
be similar for adjacent areas.

I This will often be the most realistic model if interactions are
present.

I In the case of a RW2 temporal model and an ICAR spatial
model, the joint distribution can be written:

p(δ|σ2
δ) ∝ exp

− 1
2σ2

δ

T∑
t=3

∑
i∼j

(δit − δjt − 2δi,t−1 + 2δj,t−1 + δi,t−2 − δj,t−2)
2


I R-INLA implements each of these models.
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Space-Time Interactions for Continuous Space

I The most common space-time interaction models are separable,
which means the variance-covariance matrices have the
Kronecker form:

ΣST = ΣS ⊗ΣT

I So if ΣS is n × n and ΣT is T × T , ΣST will be nT × nT .

I Suppose we have covariance models in time and space:

cov(S(s),S(s′)) = σ
2
Sρ
|s−s′|
S

cov(τ(t), τ(t ′)) = σ2
T ρ
|t−t′|
T

I We can combine to give the separable interaction process:

cov(U(s, t),U(s′, t ′)) = σ
2
Sρ
|s−s′|
S × σ2

Tρ
|t−t′|
T

61 / 65



Surface Reconstructions for U5MR in Kenya

Figure 19: Posterior medians of U5MR for 1990, 1995, 2000, 2005, 2010,
2015, 2020. Important Point: These are point estimates and the uncertainty
at each pixel is in general very large.
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Estimates for U5MR in Malawi
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Figure 20: Estimates of U5MR for Malawi for 1990, 1995, 2000, 2005, 2010,
2015.
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Discussion
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Discussion

I Discrete spatial models are well understood and relatively easy
to use.

I Computation for discrete spatial models is fast.
I Continuous spatial models pose a greater computational

challenge.
I Computation for continuous spatial models may be challenging,

depending on the model – harder to “package up”.
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Besag, J., York, J., and Mollié, A. (1991). Bayesian image restoration
with two applications in spatial statistics. Annals of the Institute of
Statistics and Mathematics, 43, 1–59.

Blangiardo, M. and Cameletti, M. (2015). Spatial and Spatio-Temporal
Bayesian Models with R-INLA. John Wiley and Sons.

Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very
large spatial data sets. Journal of the Royal Statistical Society:
Series B, 70, 209–226.

Cressie, N. and Wikle, C. (2011). Statistics for Spatio-Temporal Data.
John Wiley and Sons.

Filippone, M., Zhong, M., and Girolami, M. (2013). A comparative
evaluation of stochastic-based inference methods for Gaussian
process models. Machine Learning, 93, 93–114.

65 / 65



Golding, N., Burstein, R., Longbottom, J., Browne, A., Fullman, N.,
Osgood-Zimmerman, A., Earl, L., Bhatt, S., Cameron, E., Casey,
D., Dwyer-Lindgren, L., Farag, T., Flaxman, A., Fraser, M., Gething,
P., Gibson, H., Graetz, N., Krause, L., Kulikoff, X., Lim, S., Mappin,
B., Morozoff, C., Reiner, R., Sligar, A., Smith, D., Wang, H., Weiss,
D., Murray, C., Moyes, C., and Hay, S. (2017). Mapping under-5
and neonatal mortality in Africa, 2000–15: a baseline analysis for
the Sustainable Development Goals. The Lancet , 390, 2171–2182.

Heaton, M. J., Datta, A., Finley, A., Furrer, R., Guhaniyogi, R., Gerber,
F., Gramacy, R. B., Hammerling, D., Katzfuss, M., Lindgren, F.,
et al. (2017). Methods for analyzing large spatial data: A review
and comparison. arXiv preprint arXiv:1710.05013.

Knorr-Held, L. (2000). Bayesian modelling of inseparable space-time
variation in disease risk. Statistics in Medicine, 19, 2555–2567.
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