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Motivation

I Small area estimation (SAE) is an important endeavor since
many agencies require estimates of health, demographic,
economic indices, education and environmental measures in
order to plan and allocate resources and target interventions.

I SAE is an example of domain (sub-population) estimation.
I “Small” here refers to the fact that we will typically base our

inference on a small sample from each area (so it is not a
description of geographical size).

I In the limit there may some areas in which there are no data.
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Small Area Estimation

I Consider a study region partitioned into n disjoint and exhaustive
areas, labeled by i , i = 1, . . . ,n.

I As a concrete example, suppose we are interested in a particular
condition so that the response is a binary outcome, Yik , for
k = 1, . . . ,Ni , individuals in area i .

I Based on samples that are collected in the areas (though some
areas may contain no samples), common targets of estimation
are of:

I The population totals:

Ti =

Ni∑
k=1

Yik .

I The prevalence of the condition in each area:

Pi =
1
Ni

Ni∑
k=1

Yik =
Ti

Ni
.
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Background reading on SAE

I The classic text on SAE is Rao and Molina (2015); not the
easiest book to read, and little material on spatial smoothing
models.

I An excellent review of SAE is Pfeffermann (2013) (though not
much on spatial models).

I The SAE literature distinguishes between direct estimation, in
which data from the area only is used to provide the estimate in
an area, and indirect estimation, in which data from other areas
is used to provide the estimate.
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Non-Spatial Methods for SAE
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Design based inference based on weighted estimators

I Suppose we undertake a complex design and obtain outcomes
yik in area i , k ∈ si , where si is the set of samples that were in
area i .

I Along with the outcome, there is an associated design weight wik .
I Under the design-based approach to inference, it is common to

use the weighted estimator of the prevalence:

P̂i =

∑
k∈si

wik yik∑
k∈si

wik
.

There is an associated variance, that acknowledges the design,
V̂i .

I This variance estimate may be obtained analytically, or through
resampling techniques such as the jackknife.

I Asymptotically (that is, in large samples):

P̂i ∼ N(Pi ,Vi).
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Direct Estimation

I The simplest approach is
to simply map the direct
estimates P̂i .

I To assess the uncertainty,
one may map the lower
and upper ends of (say) a
95% confidence interval:

P̂i ± 1.96 ×
√

V̂i .

I If the samples in each
area are large, so that V̂i

is small, then this
approach works well.

Direct Estimates
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Figure 1: Direct estimates of diabetes
prevalence for HRAs in King County.

I We would like to carry out some form of
smoothing, but in the case of complex
survey sampling, how should we
proceed?
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Lower and Upper Endpoints of 95% CI
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Figure 2: 2.5% and 97.5% points from asymptotic confidence interval.
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Synthetic Estimates
Many approaches have been suggested to obtain estimators with
greater precision – we discuss three, to give a flavor.

We consider estimation of a generic mean.

I Synthetic Estimator:

Ŷ syn
i =

1
Ni

Ni∑
k=1

x T
ik B̂,

where

B̂ =

 n∑
i=1

∑
k∈Si

wik x T
ik x ik

−1
n∑

i=1

∑
k∈Si

wik x T
ik yik .

I Note: Covariates needed for all of population.
I Assumes regression model is appropriate for all areas.
I In general gives high precision estimates – variance is O(1/n),

but possibility of large bias.
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Survey-Regression Estimates

I Survey-Regression Estimator:
In order to deal with the potential large bias, the bias is estimated
to give

Ŷ s−r
i =

1
Ni

Ni∑
k=1

x T
ik B̂ +

1
Ni

∑
k∈Si

wik (yik − x T
ik B̂

= Ŷ ht
i + (X i − X̂

ht

i )TB̂

where Ŷ ht
i and X̂

ht

i are the Horvitz-Thompson estimates of Y Ui
and X i .

I Variance is unfortunately O(1/ni).
I Composite estimator is of the form

Ŷ
com

i = δi Ŷ s−r
i + (1− δi)Ŷ

syn
i

with 0 ≤ δi ≤ 1 estimated in such a way that for larger ni we have
larger δi .
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Spatial Methods for SAE
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Smoothed Direct Estimation

I Let P̂i be the weighted estimator of a prevalence Pi , then
consider

θ̂i = logit (P̂i) = log

(
P̂i

1− P̂i

)
,

which is on the whole of the real line.
I “Data” Model: We take as data the estimator:

θ̂i ∼ N(θi , V̂i),

where V̂i , its variance, is known.
I Prior Random Effects Model:

θi = β0 + x T
i β + εi ,

where x i are area-level covariates and the random effects
εi ∼iid N(0, σ2

ε ).
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Smoothed Direct Estimation

I Fay and Herriot (1979) suggested this hierarchical model, in a
landmark paper.

I This model acknowledges the design and also smooths, and it is
straightforward to add spatial random effects.

I The spatial model was investigated and applied with simulated
and real data (without covariates) in Chen et al. (2014); Mercer
et al. (2014) and (in a space-time setting) in Mercer et al. (2014,
2015) and Li et al. (2019).
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Smoothed Direct Estimation

The spatial version of the model has:
I “Data” Model:

θ̂i ∼ N(θi , V̂i),

where V̂i is known variance.
I Prior Model:

θi = β0 + x T
i β + εi + Si ,

with
I εi ∼ N(0, σ2

ε).
I Si ∼ ICAR(σ2

s ).
I Known as an area-level SAE model.
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Smoothed Direct Estimation

I The area-level SAE model has been used by Gutreuter et al.
(2019) in the context of estimating HIV prevalence and burden in
districts of South Africa, using household survey data.

I Among the covariates considered for the prevalence model were:

I prevalence estimates from antenatal clinics data,
I population density,
I percentages of housing units were were “formal dwellings”),
I dependency ratio (ratio of the numbers of residents aged 15–64

years to those younger than 15 years and older than 64 years,
I socio-economic quintile,
I maternal mortality rate.

I The sae package is used.
I For more detail on models, see Marhuenda et al. (2013).
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Figure 3: Direct and Fay-Herriot estimates of HIV prevalence in South African
districts in 2012, from Gutreuter et al. (2019).
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Figure 4: Estimates of HIV prevalence and people living with HIV in South
African districts in 2012, from Gutreuter et al. (2019).
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Smoothed Direct Estimation

The model is implemented in the R package SUMMER (Martin et al.,
2018):

I A design object is created in the survey package, and direct
estimates formed.

I The INLA package to fit the above model.
I It is computationally inexpensive, producing country-specific

estimates in seconds.
I Currently undergoing a major upgrade – next version will include

many new models, and allow covariates to be included.
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Discrete Spatio-Temporal Model

I Let P̂it be the design-based estimate of a prevalence in area i
and period t .

I Take logit of direct estimates P̂it with appropriate design-based
estimator and model as in Mercer et al. (2015):

logit(P̂it) ∼ N( θit , V̂it )

θit = β0 + ωt︸︷︷︸
Temporal Smooth

+ φt︸︷︷︸
Temporal Noise

+ Si︸︷︷︸
Spatial Smooth

+ εi︸︷︷︸
Spatial Noise

+ δit︸︷︷︸
Interaction

I Alleviates small sample size problems via temporal, spatial and
space-time smoothing.

I Interaction terms are as described by Knorr-Held (2000).
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Smoothed Direct Model in Practice (Li et al., 2019)

I The smoothed direct model has been used for 35 African
countries to estimate U5MR in Admin-1 regions, by year.

I Data enter at the 5-year level (to give stable variances), but the
RWs are defined on the 1-year scale.

I Data:
I 121 DHS in 35 countries
I 1.2 million children
I 192 million child-months

I Takes around 2.5 hours to obtain estimates for all countries –
separate models for each country.

I United Nations Inter-agency Group for child Mortality Estimation
(UN IGME) involvement:

I They have supported this research and endorsed these estimates.
I Methods and software workshops in Ecuador, Jordan and South

Africa.
I Aim is to have health departments produce their own estimates.
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Figure 5: Predictions of U5MR for 2015, in 35 countries of Africa.
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Figure 6: Percent reduction from 1990 to 2015, in 35 countries of Africa.
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Figure 7: Posterior median estimates for Kenya districts.
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Model-Based Continuous Spatial Modeling

I The successful use of smoothed direct estimation hinges on
reliable direct (weighted) estimates.

I To produce estimates at a fine spatial/temporal scale, a
model-based approach is needed.

I A common approach is we have Y (sc , t) responses from N(sc , t)
sampled individuals at location sc in year t , for c = 1, . . . ,n,
clusters.

I The geostatistical model is,

Y (sc , t) | q(sc , t) ∼ Binomial( N(sc , t),q(sc , t) )

log

(
q(sc , t)

1− q(sc , t)

)
= β0 + γI(c ∈ urban ) + u(sc , t) + εc

I The stochastic partial differential equations (SPDE) approach
performs calculations over a triangular mesh.
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Figure 8: Mesh on which SPDE calculations are carried out (top left), zoomed
in grid on which predictions are performed (right).
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Surface Reconstructions for U5MR in Kenya

Figure 9: Posterior medians of U5MR for 1990, 1995, 2000, 2005, 2010.
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Figure 10: Top row: Kenya and Malawi within-country variability in U5MR (5%
and 95% quantiles of pixel distribution). Bottom row: percentage drop from
1990–2015 (left), posterior prob of attaining MDG goal (right), both for Kenya.
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Figure 11: Kenya U5MR estimates in 2000 using discrete spatial model (left),
and continuous spatial model (right). Hatching represents uncertainty.

I Point estimates are very similar, but more uncertainty associated
with the discrete spatial model estimates.
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Recommended Methods for Routine Work
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Discussion
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Discussion

I Direct smoothed estimates builds on the strengths of weighted
estimates and spatial smoothing models.

I In the limit, as we obtain larger data in an area, the weighted
estimates will dominate, which is exactly what we want!

I If insufficient samples in areas, then estimated variance is
unacceptably large (or undefined), and then we need to resort to
continuous spatial modeling which is more difficult.

I Often we will want to combine multiple data sources; the
challenge then is modeling differences between study types,
e.g., for U5MR estimation, we may have full birth history,
summary birth history and vital registration data.
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Appendix: R Packages

I sae, by Molina and Marhuenda
I area-levels (Fay-Herriott (FH), FH with spatial correlation, FH with

spatio-temporal correlation) and unit-level models (BHF)
I estimators: direct Horvitz-Thompson under general sampling

designs, post-stratified synthetic estimator and composite estimator
I fitting and estimation (frequentist) methods: FH, ML, REML,

bootstrap
I rsae, by Schoch

I area-levels and unit-level models
I fitting and estimation (frequentist) methods: ML, Huber-type

M-estimation
I JoSae, by Breidenbach

I unit-level models
I estimators: EBLUP (BHF1988) and GREG (Sarndal 1984)

I SUMMER by Martin, Zhang, Wakefield, Clark, Mercer
I U5MR models using method of Mercer et al. (2015).
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R Packages

I hbsae, by Boonstra
I area-levels and unit-level models
I fitting and estimation (frequentist and Bayesian) methods: REML,

HB (based on MCMC)
I mme, by Lopez-Vizcaino et. al.

I area-levels multinomial models (area random effects and time
random effects)

I fitting and estimation (frequentist) methods: analytical (PQL and
REML) and bootstrap

I saery, by Esteban et al.
I area-level model Rao-Yu 1994
I fitting and estimation (frequentist) methods: REML

I sae2, by Fay and Diallo
I time series area-level models, Rao-Yu 1994 and extensions
I fitting and estimation (frequentist) methods: ML and REML
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R Packages

I BayesSAE, by Shi and Zhang
I area-levels models: FH and extensions (You-Chapman, spatial

models and more)
I fitting and estimation (Bayesian) methods: HB (based on MCMC)

I saeSim, by Warnholz and Schmid
I useful tools to simulate data for sae studies

I small area, by Nandy
I area-level model (FH)
I fitting and estimation (frequentist) methods: FH, Prasad and Rao,

REML

Note that only hbsae and BayesSAE use Bayesian methods for the
estimation, both use MCMC.
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