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A Review and Comparison of
Age–Period–Cohort Models
for Cancer Incidence
Theresa R. Smith and Jon Wakefield

Abstract. Age–period–cohort models have been used to examine and fore-
cast cancer incidence and mortality for over three decades. However, the fit-
ting and interpretation of these models requires great care because of the
well-known identifiability problem that exists; given any two of age, period,
and cohort, the third is determined. In this paper, we review the identifia-
bility problem and models that have been proposed for analysis, from both
frequentist and Bayesian standpoints. A number of recent analyses that use
age–period–cohort models are described and critiqued before data on cancer
incidence in Washington State are analyzed with various models, including a
new Bayesian approach based on an identifiable parameterization.

Key words and phrases: Age–period–cohort models, identifiability, random
walk priors.

1. INTRODUCTION

Age–period–cohort (APC) models allow the model-
ing of demographic rates, and in this paper we consider
these models in the context of human disease. Time
plays an important role in the incidence and progres-
sion of most diseases. However, there is no single time
scale or group of time scales that accounts for tem-
poral variation in incidence/progression for all health
outcomes. In arguing for the careful consideration of
the appropriate time scales for health data, Berzuini
and Clayton (1994) state that time, “is simply the scale
along which other causes operate” and that the role
of time in statistical models is to act as a “surrogate
or proxy measure” for these unobserved processes that
contribute to disease risk. Thus, it is important to have
a basic understanding of the dynamics of the disease
endpoint when choosing how to incorporate time into
a model for disease risk.

APC models account for these processes on three
time scales: age, year of diagnosis (period) and year of
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birth (cohort). The period and cohort effects are both
surrogates for exposure to external factors. Period ef-
fects include environmental and diagnostic factors. For
example, the introduction of a new diagnostic proce-
dure may lead to a jump in disease incidence across all
age groups. Cohort effects represent risk factors that
change over time and may have a delayed effect on dis-
ease outcomes. For example, life style factors such as
alcohol and tobacco consumption can manifest them-
selves as cohort effects.

Cohort analysis and APC models have been a tool
used by demographers and sociologists since the late
nineteenth and early twentieth centuries when co-
hort started to be recognized as a key time scale in
tracking vital statistics (e.g., fertility or mortality).
For a fascinating review of the early developments in
APC models, see Keiding (2011). In 1875, Wilhelm
Lexis introduced a cohort–age diagram for represent-
ing the time scales along which we calculate vital rates
(Lexis, 1875, Keiding, 1990). In the mid twentieth cen-
tury, studying cohort effects though simple techniques
such as plots of age-specific mortality by birth year
helped medical researchers understand age–time inter-
actions for diseases such as tuberculosis (Frost, 1939,
Springett, 1950). Greenberg, Wright and Sheps (1950)
introduced a primitive APC model with log incidence
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rates of syphilis regressed on a nonlinear function of
numeric age and categorical period and cohort effects.

The application of APC models to cancer incidence
and mortality gained steam in the 1980s with a se-
ries of seminal papers including Osmond and Gard-
ner (1982), Holford (1983) and Clayton and Schifflers
(1987a, 1987b). APC models continue to be a standard
tool in the field of cancer epidemiology: a search of the
MEDLINE database for “age–period–cohort + can-
cer” returns 137 publications from 2010–2014. How-
ever, inference with APC models is not straightfor-
ward because of the linear dependence in the three time
scales; that is, age + year of birth = year of diagnosis
(i.e., age + cohort = period). In many contexts, includ-
ing cancer epidemiology, forecasting is a primary aim;
see Brown and Kessler (1988) for an early reference.

Interest in the estimation and identification issues in-
herent in APC models dates back at least as far as the
sociology literature in the 1970s (Mason et al., 1973,
Fienberg and Mason, 1979), while specific applications
in cancer epidemiology began in the 1980s (Holford,
1983). Clayton and Schifflers discuss in detail age–
period and age–cohort models (Clayton and Schifflers,
1987a) and the age–period–cohort model (Clayton and
Schifflers, 1987b), including issues of model selection
and nonidentifiability. Bayesian APC methods based
on intrinsic conditional autoregressive (ICAR) priors
date back to Berzuini and Clayton (1994) and Besag
et al. (1995). The continued interest in APC modeling
is evidenced by two books that have recently been pub-
lished (Yang and Land, 2013, O’Brien, 2014).

In this paper, we review approaches to APC mod-
eling and inference, with an emphasis on cancer inci-
dence data, and we demonstrate different approaches
using cancer data from Washington State. In contrast to
other review papers, such as Holford (1991) and Møller
et al. (2003), we critique a number of recent applied
contributions, in order to demonstrate current miscon-
ceptions about what can and cannot be learned about
the associations between disease risk and the age, pe-
riod, and cohort time scales in APC models. We also
propose a Bayesian approach based on a parameteriza-
tion suggested by Kuang, Nielsen and Nielsen (2008b)
and Martínez Miranda, Nielsen and Nielsen (2015).

The structure of this paper is as follows. In Section 2,
we motivate our discussion by describing breast, cervi-
cal and lung cancer incidence data collected in Wash-
ington State over the period 1992–2011. Section 3
introduces notation, the basic APC model, the identi-
fiability problem, and previous approaches to address-
ing the identifiability problem. In Section 4, we discuss

extensions to the basic APC model and identifiability
concerns within these extensions. Section 5 presents
and critiques a collection of APC studies that have
appeared in the recent literature. In Section 6, details
on parametrization are given, including our Bayesian
version of Kuang, Nielsen and Nielsen (2008b) and
Martínez Miranda, Nielsen and Nielsen (2015). We re-
turn to the Washington State data in Section 7 and
compare and contrast a number of proposed models.
A discussion concludes the paper in Section 8. Sup-
plement A (Smith and Wakefield, 2016) contains ad-
ditional analyses, details on various points raised in
the paper, and implementation details demonstrated
with Danish lung cancer data from the Epi package
(Carstensen et al., 2014). Supplement B (Smith and
Wakefield, 2016) contains R code for all the models
described in Section 6 applied to the Danish data.

2. MOTIVATING DATA

In this paper, we discuss APC models for modeling
time trends in disease count data using cancer inci-
dence data from the Washington State Cancer Registry
(WSCR) as our motivating example. Cancer is a collec-
tion of many different diseases and illnesses that share
the feature of unrestricted cell growth due to genetic
changes that allow cancer cells to bypass or circum-
vent the body’s normal growth regulation mechanisms
(Escedy and Hunter, 2008). There are two distinct pro-
cesses to consider when the primary outcome of in-
terest is the number of incident cancer cases (i.e., the
number of new cases in a given time frame). The first is
the process by which the genetic changes or mutations
occur, and the second is the process by which the can-
cerous cells are identified and the diagnosis of cancer
is conferred.

The age and cohort time scales capture heterogene-
ity in the mutation process. With a few exceptions (e.g.,
certain leukemias and central nervous system tumors),
the risk of cancer increases with age. Age is a surro-
gate for internal processes such as hormone exposure
or the cumulative damage of random genetic muta-
tions when DNA is being copied, but it can also be
a proxy for external factors such as cumulative expo-
sure to carcinogens. Cohort can be a surrogate for ex-
posure to carcinogens. For example, inhalation of as-
bestos is the primary cause of a lung cancer called
mesothelioma. Earlier birth cohorts have greater risk
of mesothelioma than more recent cohorts because as-
bestos usage has been phased out (Martínez Miranda,
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FIG. 1. Log incidence rates by age group and period.

Nielsen and Nielsen, 2015). On the other hand, the pe-
riod time scale captures heterogeneity in the diagnosis
process as new diagnostic procedures are introduced.

We compare various APC models using breast, cer-
vical and lung cancer incidence data from the WSCR.
The registry contains all reported cases of cancer for
the state of Washington, which had a population of ap-
proximately 4.9 million inhabitants in 1990 rising to
6.7 million in 2010. The data used in this paper can
be downloaded from https://fortress.wa.gov/doh/wscr/
WSCR/Query.mvc/Query.

For breast and lung cancer, we treat the data as
11 × 4 matrices, where 11 is the number of age groups
(30–34, . . . ,80–84) and 4 is the number of 5-year peri-
ods between 1992 and 2011. The risk of cervical cancer
starts earlier in life, so the data is a 13 × 4 matrix with
age groups (20–24, . . . ,80–84). We restrict our anal-
yses to breast and cervical cancer among females and

lung cancer among males. Figures 1 and 2 show the
observed incidence rates by age and period and by age
and cohort, respectively.

For all three cancers, the incidence rates clearly dif-
fer by age. The shape of the curves for breast and
lung cancer are typical of noninfectious diseases with
incidence rates increasing steadily throughout adult-
hood. In contrast, the incidence rates of cervical can-
cer (which is linked with human papilloma virus, a
sexually transmitted infection) peaks in the 40–50 age
group and then decreases. It is important to note that,
without any prior knowledge of the etiology of cancer,
the strong observed association of risk increasing with
age in any given period can mathematically just as eas-
ily be explained as decreasing risk with increasing birth
year in any given period, that is, cohort effects.

Age-specific breast cancer rates are similar across
periods (Figure 1) and cohorts (Figure 2). It could be

FIG. 2. Log incidence rates by age group and cohort.
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that the cohort and period effects combine in such a
way that marginally the age effects appear the same
across periods and cohorts, but we might contextually
believe that this is unlikely. For cervical cancer and
lung cancer, the age-specific rates decrease with year
of diagnosis (period); in Figure 1 the age curves are
lower with increasing period but, as noted above, this
could be just as well explained by decreasing risk with
increasing cohort year in any given diagnosis period;
see Figure A.1 in Supplement A. The age-specific rates
of cervical and lung cancer also decrease with cohort;
while the breast cancer cohort curves in Figure 2 are
relatively flat, the cervical and lung curves decrease.
It is apparent that cervical cancer is less common than
lung and breast cancer; hence, the plots of the raw rates
are relatively noisy.

3. BASICS OF AGE–PERIOD–COHORT MODELS

3.1 Notation

The usual APC model is an additive model for the
log rate of incidence or mortality. Let Y = {yij : i =
1, . . . ,A; j = 1, . . . , T } be a matrix of the number of
cases in each of A age groups and T time points.
The cohort index k is a function of age and period.
If the age scale and time scale are the same (e.g.,
5-year age groups and 5-year time intervals), then
k = A − i + j so that k ∈ {1, . . . ,A + T − 1}. If the
age intervals are M times longer than the time inter-
vals, then the cohort index is k = M × (A − i) + j

so that k ∈ {1, . . . ,M(A − 1) + T } (Heuer, 1997,
Knorr-Held and Rainer, 2001). For most of this pa-
per, we focus on equal-width age and period intervals.
We discuss additional issues related to unequal inter-
vals in Section 4.2. The cohorts index the diagonals of
the age–period matrix, as shown for a small example
in Table 1.

Let N = {Nij , i = 1, . . . ,A; j = 1, . . . , T } be the
size of the risk set for each age and time group. Getting
precise denominators is not as straightforward as find-
ing good population estimates. For example, a simple
way to calculate the denominator for the 30–34 age-
band in the 2007–2011 period would be to add together
the five mid-year (say July 1) population estimates for
those aged 30–34. However, this excludes people who
contribute partial-years to the total risk time including
those who die in the first half of the year as well as
people who turn 30 in the second half of the year. Fur-
thermore, people who turn 35 or die in the second half
of the year only contribute partial years to the total risk

TABLE 1
Indices of the age, period, and cohort parameters for equal-width

age groups and time intervals. The body of the table shows the
cohort index for each age–year combination. The indices in bold

indicate the period and cohort effects that need to be forecasted to
generate predictions for time periods 6–8. We will cover

forecasting in Section 4.1

Period

Age 1 2 3 4 5 6 7 8

1 5 6 7 8 9 10 11 12
2 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10
4 2 3 4 5 6 7 8 9
5 1 2 3 4 5 6 7 8

time but are counted as giving a full year. This com-
plication does not impact inference (and we can use
the simple mid-year population estimates) if we can
assume constant birth and death rates (or immigration
and emigration) within an age–period cell, because the
under and over counting balance out. See Section 3.2 of
Carstensen (2007) for a more detailed discussion. For
this paper, we use the denominators given by WSCR,
which are based on the mid-year population estimates
produced by the Washington State Office of Financial
Management.

3.2 The Identification Problem in APC Models

The basic APC model is

log E
[

yij

Nij

]
= μij = δ + αi + βj + γk.(1)

In this model, it is tempting to interpret δ as the overall
log rate of incidence and to interpret differences in the
age effects (αi), period effects (βj ), or cohort effects
(γk) as log relative risks. However, direct interpreta-
tion of these effects is difficult because the model is
over parametrized. There are two sources of identifia-
bility to consider. The simpler one to account for is that
which always occurs in models with factors: with an
intercept in the model, we have one more level than is
estimable and so a constraint is required. A typical so-
lution is to impose a sum-to-zero constraint. The more
insidious form of identifiability arises because of the
linear dependence between the three factors, and there
is no solution to this problem. Instead, one must make
assumptions if one wishes to directly interpret the pa-
rameters in equation (1). Further, these assumptions are
uncheckable from the raw data alone.
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Suppose we group the intercept, age, period and co-
hort effects into a single vector, θ , where

θ ′ = {
δ,α′,β ′,γ ′}

= {δ,α1, . . . , αA,β1, . . . , βT , γ1, . . . , γK}
with K = A + T − 1. We see that, for a suitably de-
fined design matrix X, the vector of log rates is μ =
μ(θ) = X′θ . The matrix X is rank deficient in this case
because the entries corresponding to the cohort effects
are linearly dependent on the entries for the age and
period effects (see Supplement A, Section B for more
details and examples) and because of the general factor
problem as described above. Thus, the full set of age,
period and cohort effects are not identifiable.

Several authors, beginning with Fienberg and Ma-
son (1979), have discussed the nonidentifiability of the
individual terms of the APC model. Kuang, Nielsen
and Nielsen (2008b) and Nielsen and Nielsen (2014),
following Carstensen (2007), define the identifiability
issue from a group theoretic perspective. The overall
mean, as given in (1), is invariant to a translation on
each set of effects and addition of a linear trend in the
age, period and cohort parameters. We call this group
of transformations G = {g : gθ = (gδ, gα, gβ, gγ )}
where

gδ = δ − a − b − c + (A − 1)d,(2)

gα = {
αi + a + (i − 1)d

}A
i=1,(3)

gβ = {
βj + b − (j − 1)d

}T
j=1,(4)

gγ = {
γA−i+j + c + (A − i + j − 1)d

}i=A,j=T
i=1,j=1(5)

for any real numbers a, b, c, d . An interpretation of
these numbers is that a, b, c, are the overall levels of
the age, period, cohort effects, respectively, and d is the
linear trend. The log rates are invariant with respect to
these transformations. That is, for any g, μij (gθ) =
μij (gδ, gαi, gβj , gγk) = μij (δ,αi, βj , γk) = μij (θ).
For example,

μij (gδ, gαi, gβj , gγk)

= (
δ − a − b − c − (A − 1)d

)
+ (

αi + a + (i − 1)d
)

+ (
βj + b − (j − 1)d

)
+ (

γA−i+j + c + (A − i + j − 1)d
)

= δ + αi + βj + γA−i+j

= μij (δ,αi, βj , γk).

Since the data likelihood only depends on the age, pe-
riod and cohort parameters through the log rates, it
is also invariant to these groups of transformations.
Hence, the full set of age, period, and cohort effects
is not identifiable. Intuitively, since cohort (say) is a
linear combination of age and period, levels in all three
and linear trends are unidentifiable.

3.3 Proposed Remedies to the Identification
Problem

The first attempts at fitting the full APC model relied
on constraining the age, period and cohort effects to
create an identifiable parametrization. A sum-to-zero
constraint (i.e.,

∑
i αi = ∑

j βj = ∑
k γk = 0) was a

common choice, which gives identifiability of the in-
tercept δ but does not solve the identifiability problem
because of the linear relationship between cohort and
period and age (Mason et al., 1973, Fienberg and Ma-
son, 1979, Holford, 1983, Rodgers, 1982, Clayton and
Schifflers, 1987b). Equations (2)–(5) equate to the rank
deficiency of the design matrix being 4 (i.e., we have
4 more parameters than are estimable from the data).
The sum-to-zero constraints reduce this number by 3
(effectively fixing a, b, c), and we require one more
constraint to produce an identifiable set. One approach
is to assume two period or two cohort effects are equal
(Mason et al., 1973). For example, Clayton and Schif-
flers (1987b) consider restricting the first differences of
the period effects (β2 − β1, β3 − β2, . . . , βT − βT −1)
to be zero on average, which is equivalent to the re-
striction β1 = βT . Alternatively, one can restrict a se-
quential pair of effects to be equal (e.g., γ1 = γ2).
Holford (1991) rejects these approaches because the
estimated effects will depend on which pair of effects
are restricted, and generally there is no scientific ra-
tionale for choosing, say γ1 = γ2 over γ4 = γ5. Fig-
ure 3 shows estimates of the age, period, and cohort
effects for breast cancer in Bayesian ICAR models as-
suming sum-to-zero constraints and equality of 13 dif-
ferent sequential pairs of cohort effects. Each of the 13
models give identical fitted rates, but interpreting the
effect curves leads to different conclusions depending
on which cohorts effects are restricted. This is particu-
larly true for the cohort curves, where the linear trend
in cohort can appear either increasing or decreasing. In
some instances, substantive knowledge is used to place
the constraint. For example, Vaccarella et al. (2014), in
modeling cervical cancer, constrained incidence rates
to be equal at ages 45–49 and 65–69, because cervi-
cal cancer incidence is expected to be approximately
constant after 45 years of age.
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FIG. 3. Estimates of the age, period and cohort effects under sum-to-zero constraints and equality of different sequential pairs of cohort
effects.

As we will discuss further in Section 6.2, Bayesian
methods based on ICAR priors usually include sum-
to-zero constraints as well as implicit penalties on the
linear trends in age, period and cohort effects (Berzuini
and Clayton, 1994, Besag et al., 1995, Knorr-Held
and Rainer, 2001). In an extension to modeling mor-
tality across multiple strata (e.g., regions), it can be
shown that some contrasts of time effects are identifi-
able as long as one set of effects are shared across strata
(Riebler and Held, 2010, Riebler, Held and Rue, 2012),
further discussion is postponed until Section 4.3.

Rather than treat the age, period and cohort functions
as factors, one might instead consider using continuous
functions. The use of the latter alleviates the identifia-
bility due to factors, but does not remove the linear de-
pendence between the age, period and cohort effects.
For example, suppose we assume a model in which the
log rates are linear in each of age, period and cohort. If
the slopes are denoted sα , sβ , sγ , then

μij = δ� + isα + jsβ + (A − i + j)sγ

= (
δ� + Asγ

) + i(sα − sγ ) + j (sβ + sγ ),

so that the slopes are not identifiable. We can fit lin-
ear models in age and period or age and cohort, under
the assumption that, respectively, there are no cohort
or period effects (age is always included in models for
cancer since it has such a strong effect). Linear forms
are often referred to as “drift” models. Note that an age
and period model produces an identical fit to an age
and cohort model (Clayton and Schifflers, 1987a).

Penalized splines are one choice of continuous func-
tions. As an example, Carstensen (2007) suggests fit-
ting smoothing splines to produce age, period and
cohort functions while imposing a set of constraints
for identifiability. The default identification scheme
is to choose a reference cohort, so that f (kREF) = 0,
and restrict the period function to be zero on aver-
age with zero slope. This model can be fit using the
Epi package in R (Carstensen et al., 2014) or in
Stata (Rutherford, Lambert and Thompson, 2010,
Sasieni, 2012). It is appealing to model with continu-
ous functions on each of the time scales, but the trans-
parency of what is estimable is not so clear when such
functions are used. The above assumptions on the pe-
riod effects also seem ad hoc.

The medical statistics and demography literatures
contain many other approaches to “solving” the iden-
tifiability problem. For example, Robertson and Boyle
(1986) propose an approach based on the ability to ac-
cess individual records, but this approach is based on
assumptions also; see Clayton and Schifflers (1987b),
page 477. The Lee–Carter model (Lee and Carter,
1992) and its cohort extension (Renshaw and Haber-
man, 2006) allow for age-specific period trends and
age-specific cohort trends but still rely on linear con-
straints to guarantee a unique solution. The intrinsic es-
timator approach from demography uses the null space
of X to define the linear constraints (Yang, Fu and
Land, 2004), but Luo (2013) argues that this is no more
scientifically justified than earlier approaches. Other
alternatives include using simpler two-factor models or
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a two-factor model with a predictor (“characteristic”)
in place of the third factor (O’Brien, 2000). For exam-
ple, a plausible model for lung cancer rates may in-
clude age and period factors and the smoking rate as a
linear predictor. Replacing the effects of one time scale
with an explanatory variable (here, smoking) is a good
alternative to the full age–period–cohort model in sim-
ple problems where the disease generating process is
well understood. However, access to the relevant data
may be an issue, and forecasting disease rates would
require forecasts of explanatory variables.

In light of the nonidentifiability issues, care must be
taken in giving tabular or graphical displays of esti-
mates of the age, period and cohort estimates, as any
estimates are conditional on a set of constraints that
are (usually) not based on the underlying science and
are uncheckable from the data alone. Thus, one can re-
gard displays of the age, period, and cohort effects as
merely exploratory tools (Carstensen, 2007) or one can
focus on those functions of the time effects that are es-
timable. Clayton and Schifflers (1987b) show that the
second differences of the time effects are invariant to
the group of transformations defined in (2)–(5) above.
For different choices of a, b, c and d , the second dif-
ferences are identical. Let � represent the difference
operator (e.g., �αi = αi − αi−1) and �2 represent the
second-difference operator. Then, for example,

g�2αi = gαi − 2gαi−1 + gαi−2

= αi + a + (i − 1)d − 2αi−1

− 2a − 2(i − 2)d + αi−2 + a + (i − 3)d

= �2αi,

illustrating that second differences are identifiable. The
second differences describe the local curvature (or ac-
celerations) in the age, period and cohort effects, and
on the exponential scale, they are the ratios of the rel-
ative risks for two different time points (Clayton and
Schifflers, 1987b).

One approach to “solving” the identifiability prob-
lem of APC models is to express the model only in
terms of those functions of the age, period and cohort
parameters that are estimable. For example, Holford
(1983) partitions each set of effects into the linear ef-
fect and a curvature effect. Linear combinations of
the curvature effects (e.g., the average) are estimable,
and some functions of the slopes in the age, period
and cohort effects are estimable. Suppose again that
sα , sβ and sγ , are the linear slopes of the age, pe-
riod and cohort effects, then functions of the form

usα + vsβ + (v − u)sγ , for all u, v, are estimable, as
we now illustrate. As discussed above, the log rates are
invariant to the addition of a linear trend d to the age
and cohort effects and subtraction of d from the period
effects, i.e., s�

α = sα + d , s�
β = sβ − d , s�

γ = sγ + d .
Then

us�
α + vs�

β + (v − u)s�
γ = usα + vsβ + (v − u)sγ

+ ud − vd + (v − u)d

= usα + vsβ + (v − u)sγ .

Hence, some functions of the linear slopes are invariant
to any transformation g.

More recently, Rosenberg and Anderson (2011)
showed that many epidemiological summaries, such
as longitudinal or cross sectional age trends, can be
expressed as estimable functions of the parameters
in Holford’s APC model. These summaries are avail-
able in a user-friendly web tool from the National
Cancer Institute (http://analysistools.nci.nih.gov/apc/)
(Rosenberg, Check and Anderson, 2014). Kuang, Niel-
sen and Nielsen (2008b) suggested a related parame-
terization of APC models, which we discuss in more
detail in Section 6.1.

4. APC EXTENSIONS

4.1 Forecasting

Forecasts of mortality or incidence are important for
allocating public resources and evaluating health poli-
cies. Given the identifiability issues, it is desirable to
choose a forecasting method that does not depend on
the choice of constraints in an ad-hoc identification
scheme. Suppose we forecast rates h periods ahead in
time for the same set of age groups. Then we want

μi,T +h = δ + αi + βT +h + γk+h,

where k = A − i + T . The forecasts therefore depend
on projecting the period and cohort effects ahead h

steps based on period and cohort effects fitted with the
observed data. That is, for some functions fβ and fγ ,
βT +h = fβ(β1:T ) and γk+h = fγ (γ1:k). If h < A, then
we project at most h new cohort effects because the
rest are estimated from the observed data. For exam-
ple, Table 1 shows that to predict 3 periods ahead for
data with 5 age groups and 5 periods, we require fore-
casts for the period effect at time j = 8 and the cohort
effects for k = 10,11,12.

As it is written, μi,T +h is a function of nonidentifi-
able effects, and so the forecasting functions fβ and
fγ must be carefully chosen so that μ(g(αi, βT +h,

http://analysistools.nci.nih.gov/apc/
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γk+h, δ)) = μ(αi, βT +h, γk+h, δ). Two common func-
tions are constant forecasts and linear extrapolation,
that is, fβ(β1:T ) = βT and fβ(β1:T ) = βT + h�βT .
In a Bayesian context, constant forecasts arise from a
first-order random walk prior, and linear extrapolation
arises from a second-order random walk prior (Rue and
Held, 2005).

Kuang, Nielsen and Nielsen (2008a) show that in-
variant forecasting functions (i.e., functions that give
rise to the same forecasts of the log rates regardless of
the chosen constraints) are of the form

fβ(β1:T ) = βT + h�βT + f
(
�2β3, . . . ,�

2βT

)
for some function f . If f (·) = 0, we recover linear ex-
trapolation, but constant forecasts [i.e., fβ(β1:T ) = βT ]
cannot fit into this form (and hence are not invariant).

4.2 Unequal Age and Period Intervals

In this paper, we focus on APC models for data tab-
ulated by age and period intervals of equal width, but
data are often tabulated with unequal intervals, usually
with age intervals longer than period intervals. Cancer
registries often share data using five-year rather than
single-year age groups to avoid reporting or censor-
ing small counts, which pose greater re-identification
risk, especially if the data are further stratified by race,
ethnicity or small areas. In many cases, single-year or
three-year periods are still used. Even in cases where
single-age incidence is available, collapsing into five-
year age groups may still be used with rare diseases to
avoid zeros counts. Thus, it is desirable to have APC
models that generalize to unequal age and period inter-
vals.

Unfortunately, there are additional identifiability is-
sues that relate to the fact that cohorts cycle in blocks
(Holford, 2006). For example, Table 2 shows an ana-

TABLE 2
Cohort index if age intervals are five times longer than period

intervals

Period

Age 1 2 3 4 5 6 7 8 9 10

1 21 22 23 24 25 26 27 28 29 30
2 16 17 18 19 20 21 22 23 24 25
3 11 12 13 14 15 16 17 18 19 20
4 6 7 8 9 10 11 12 13 14 15
5 1 2 3 4 5 6 7 8 9 10

logue of Table 1 where the age intervals are five times
longer than the period intervals. The cohort indices in
period column 1 also appear together in period column
6 shifted down one row. This gives rise to extra sources
of nonidentifiability because the overall log rate is un-
changed if we add a constant to every M th period effect
and subtract the same constant from every M th cohort
effect:

δ + αi + βj + γk = δ + αi + (βj + vmI[j≡m (mod M)])
+ (γk − vmI[k≡m (mod M)]),

where v1, . . . , vM are any real numbers. This is not an
issue in the equal age and period interval setting that
we consider in this paper because each cohort effect
occurs in every period (apart from on the boundaries).
Holford (2006) extends his earlier to work to handle
unequal intervals by introducing micro and macro time
scales where macro time scales correspond to equal-
time-duration age–period blocks of the data.

4.3 Stratified APC

A second extension of the basic APC model is to
incorporate time-independent factors (strata) such as
gender, region or disease subtype. In a stratified or
multivariate APC model, certain cross-strata relative
risks are identifiable up to a multiplicative constant [see
(6) below] if one set of effects is shared across strata.
Specifically, for the other two sets of nonshared effects,
trends in relative risks within the same time index but
between strata are identifiable.

In Riebler and Held (2010) and Riebler, Held and
Rue (2012), the age effects are assumed to be the same
across regions; in Riebler et al. (2012), period effects
were shared, again across regions. Let r , r = 1, . . . ,R

represent the index for strata, then the most general
stratified APC model is

μijr = δr + αir + βjr + γkr ,

so that the full parameter space � is an R × (1 +
A + T + K) matrix with rows (δr ,αr ,βr ,γ r ), r =
1, . . . ,R. We can apply the group of transformations in
equations (2)–(5), with stratum-specific (ar , br , cr , dr),
to each row of � without effecting the log rates. Hence,
4R constraints are required to produce identifiable age,
period and cohort effects.

If, for example, the age effects are shared across
strata (that is αir = αi for all i), then the unidentifi-
able level of the age effects and the unidentifiable lin-
ear trend are common to all strata, that is, ar = a and
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dr = d . Thus, the number of arbitrary constraints defin-
ing the group of transformations is reduced from 4R to
2R + 2. As a result, the cross-strata log-relative risks
for a given time period or cohort are identifiable up
to an additive offset, implying identifiabiblity up to a
multiplicative constant on the relative risk scale. For
example, the relative risk between strata r1 and r2 at
time 1 is exp(β1r1 − β1r2) if br1 = br2 = 0, but for a
different g, this becomes

g(βjr1 − βjr2) = βjr1 − βjr2 + (br1 − br2),

g
[
exp(βjr1 − βjr2)

]
(6)

= exp(βjr1 − βjr2) exp(br1 − br2).

Riebler and Held (2010) and Riebler, Held and Rue
(2012) avoid the ambiguity in the additional offset (i.e.,
br1 − br2) by imposing sum-to-zero constraints, which
is natural given their use of ICAR priors. However,
even without these constraints, some relationships be-
tween the cross-strata relative risks are preserved. That
is, if we plot exp(βjr1 −βjr2) against j , the y-axis scal-
ing is ambiguous (i.e., can be multiplied by any posi-
tive number), but the overall shape (including the exis-
tence and direction of linear trends) can be ascertained.
Note that all of the identifiability problems discussed in
Section 3.2 still persist within each stratum.

5. CRITIQUE OF RECENT APPLICATIONS OF APC
MODELS

We now review several recent uses of APC mod-
els from the applied literature. We searched Web of
Science for “age–period–cohort” and “cancer” and
summarized ten of the most recent papers excluding
those.

This exercise is intended to give a sense of the
currin statistics-focused journals (e.g., Statistics in
Medicine). This exercise is intended to give a sense
of the current use (and misuse) of APC models,
rather than to be a comprehensive review. The meth-
ods used in these papers were penalized splines fit
using Stata (Louie, Mehanna and Sasieni, 2015,
Ahmad, Ormiston-Smith and Sasieni, 2015, Valery,
Laversanne and Bray, 2015) or the Epi package
(Ho et al., 2015), Bayesian ICAR models fit us-
ing BAMP (Zheng et al., 2015) or R-INLA (Papoila
et al., 2014), or models with a net drift and curvature
terms (Seoane-Mato et al., 2014, Ananth et al., 2014,
Cervantes-Amat et al., 2015, Tzeng and Lee, 2015).
Most authors acknowledge the difficulties in simulta-
neously estimating effects along the three time scales;

however, we found examples of interpretations or con-
clusions that depend on the unidentifiable age, period
and cohort effects.

A common pitfall of several papers is that they give
plots of the age, period, cohort effects and then inter-
pret the plots in terms of linear trends. Seoane-Mato
et al. (2014) compare the effects of age, period and co-
hort on mortality in three related cancers (oral, pharyn-
geal and oesophageal) for men and women using the
methods in Osmond and Gardner (1982) and Holford
(1991) to estimate net drift and curvature terms in pe-
riod and cohort. They claim that, “there are many com-
ponents of the information depicted graphically that do
not vary across the different solutions, for example,
the shape of the cohort effect (local changes or cur-
vature) is independent of the solution chosen. Hence,
where a trend is observed in the cohort effect, gen-
erally speaking this remains relatively unchanged in
the different solutions.” However, as we illustrated in
Figure 3, linear trends in age, period or cohort effects
can be substantially different even when local curva-
ture is the same. Cervantes-Amat et al. (2015) analyze
cervical cancer mortality in Spain using a model sim-
ilar to that in Seoane-Mato et al. (2014) (age effects,
overall linear drift and curvature in period and cohort).
Again, they give interpretations relying on linear trends
in these effects such as, “At about this time—the early
1940s—the probability of dying due to cervical cancer
in Spanish women began to increase by birth cohort
until 1962, when the risk again moved sharply down-
ward.”

Ananth et al. (2014) compare rates of placental
abruption in seven countries. Using the Epi package,
they fit a model with age effects, overall linear drift,
and curvature in period and cohort, and plot the re-
sulting curves (their Figure 3). With reference to this
figure, the authors directly interpret the period effects
saying, “In all seven countries, there was a slight tem-
poral increase in the rate of abruption in the 1980s, and
either a flattening of the rate (in the US) or a tempo-
ral decline, especially among the European countries.”
Tzeng and Lee (2015) use the APC model in (Holford,
1983) to forecast mortality from hepatocellular carci-
noma (a form of liver cancer). They plot and give inter-
pretations of the linear trends in the effects of all three
time scales.

Ho et al. (2015) investigate temporal change in
breast cancer mortality in Taiwan and use the se-
quential fitting approach discussed in Section 7 of
Carstensen (2007). The age, period and cohort effects
are fit using smoothing splines with the Epi package
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and with the number of knots chosen by AIC. Age,
period and cohort effects are plotted and interpreted
in terms of linear trends, for example, “Period effects
suggested slightly raised RRs in the periods 1976–80
and 1991–2000,” a statement that cannot be made from
the data alone.

In contrast, we were encouraged to find several
papers that did not exhibit these misunderstandings
of what is and is not identifiable from APC mod-
els. Louie, Mehanna and Sasieni (2015) and Ahmad,
Ormiston-Smith and Sasieni (2015) use the penalized
splines approach to fit APC models in Stata (Sasieni,
2012). Louie, Mehanna and Sasieni (2015) use APC
models to project age and sex specific incidence rates
of head and neck cancer occurring at eight different
anatomical sites. They use a model with smoothing
splines in each set of effects and net drift. Ahmad,
Ormiston-Smith and Sasieni (2015) use the same ap-
proach to project lifetime risk of dying from cancer in
Great Britain. Neither paper contains plots of age, pe-
riod or cohort effects. Instead the plots and discussion
are based on age–period and age–cohort plots similar
to Figures 1 and 2.

Papoila et al. (2014) and Zheng et al. (2015) use
Bayesian APC models with ICAR priors. Papoila et al.
(2014) use stratified APC model for stomach cancer
in 109 counties in Southern Portugal from 1990–2006,
stratified by region and gender. The model includes
gender-specific intercept, gender-specific age, gender-
specific period effects, region-specific cohort effects,
spatially-structured and unstructured regional effects
and a region–period interaction term. Sum-to-zero con-
straints are used for all but the region–period interac-
tion terms, where a much larger set of constraints is
needed. The model is fit using the R-INLA software
(Rue, Martino and Chopin, 2009), and male versus fe-
male relative risks are calculated by age and period.
Zheng et al. (2015) use Bayesian APC models for inci-
dence and mortality of childhood cancers in China us-
ing the BAMP software (Schmid and Held, 2007). Plots
of individual age, period and cohort effects are avoided
in both of these papers.

Although many of the papers we considered com-
pare, rates across stratum such as regions, sexes or can-
cer types, Papoila et al. (2014) is the only paper to use
joint, stratified APC model rather than post-hoc com-
parisons of individual analyses within each stratum.
Because the cohort effects are assumed to be constant
for males and females in Papoila et al. (2014), trends

in the relative risk between two stratum across differ-
ent time points (such as their Figure 2) do not depend
upon an arbitrary choice of constraints.

6. PARAMETRIZATIONS OF THE APC MODEL

6.1 The Nielsen Parametrization of the APC Model

Kuang, Nielsen and Nielsen (2008a, 2008b), Nielsen
and Nielsen (2014) and Martínez Miranda, Nielsen and
Nielsen (2015) parametrize the APC model in terms
of three initial log rates and the full set of second dif-
ferences for data with equal-width age and time inter-
vals. Kuang, Nielsen and Nielsen (2008b) construct a
mapping from the rates at three initial time points us-
ing age–cohort indices (i.e., μik instead of μij ). Here,
we focus on a parametrization in Martínez Miranda,
Nielsen and Nielsen (2015) based on age–period in-
dexing. We refer to this as the MNN model. From
Martínez Miranda, Nielsen and Nielsen (2015) equa-
tion (4.3), the overall log rate can be written as

μij = μA1 + (i − A)(μA1 − μA−1,1)

+ (j − 1)(μA2 − μA1) + aij ,

aij =
A−2∑
t=i

A−2∑
s=t

�2αs+2 +
j∑

t=3

t∑
s=3

�2βs

+
A−i+j∑

t=3

t∑
s=3

�2γs

=
A∑

s=3

1s≥i+2
(
s − (i + 1)

)
�2αs(7)

+
j∑

s=3

(j − s + 1)�2βs

+
A−i+j∑

s=3

(A − i + j − s + 1)�2γs.

This means that, for a design matrix M, we can write
μ = M′ξ , where

ξ = {
μA1,μA1 − μA−1,1,μA2 − μA1,�

2α3, . . . ,

�2αA,�2β3, . . . ,�
2βT ,�2γ3, . . . ,�

2γA+T −1
}
.

The entries in M are equal to the multiplicative fac-
tors in (7). For example, for A = T = 3, the mapping
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is ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ11
μ12
μ13
μ21
μ22
μ23
μ31
μ32
μ33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 0 1 0 1 0 0
1 −2 1 1 0 2 1 0
1 −2 2 1 1 3 2 1
1 −1 0 0 0 0 0 0
1 −1 1 0 0 1 0 0
1 −1 2 0 1 2 1 0
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 2 0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ31
μ31 − μ21
μ32 − μ31

�2α3

�2β3

�2γ3

�2γ4

�2γ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note this parametrization has four fewer parameters
than the model with an overall rate and the full set of
age, period and cohort effects. This makes sense be-
cause the group transformation g, given by (2)–(5),
is defined by four real numbers. Kuang, Nielsen and
Nielsen (2008b) show that the parameter ξ is identi-
fiable in that μ(ξ) = μ(ξ �) only if ξ = ξ �. The pa-
rameters ξ are easily estimated via standard Poisson
regression where the columns of M are treated as the
predictors. This can be done directly or using the apc
package (Nielsen, 2014).

If we re-write μA1 − μA−1,1 as �αA − �γ2, and
μA2 −μA1 as �β2 +�γ2, we see that this parametriza-
tion is similar to the model Holford (1983) proposed
with linear and curvature effects. In Holford’s model
all the curvature effects and linear combinations of the
slopes of the form usα +vsβ + (v−u)sγ are estimable.
Letting (u, v) = (1,0) we see that sα − sγ is identifi-
able and letting (u, v) = (0,1) shows sβ + sγ is identi-
fiable. Just as the set of estimable functions for the lin-
ear trends in Holford’s model is infinite, the choice of
the three initial points in the Nielsen parametrizations
(which are, equivalently, functions of first differences)
is not unique. Instead of {μA1,μA−1,1,μA2} we can
choose any three {μi1j1,μi2j2,μi3j3} as long as the in-
dices of the three points are not linearly dependent (see
Corollary 1 in Kuang, Nielsen and Nielsen, 2008b).
Nielsen and Nielsen (2014) choose initial points based
on the median age and cohort levels and not on the ex-
tremes, as in earlier papers. Using this guideline, as an
example, the baseline rates reflect the rates in the mid-
dle of Table 1 rather than the corners.

We can also fit a MNN model in a Bayesian paradigm
by specifying priors directly on ξ . One sensible way to
do this is do this is as follows:

π(μi1j1,μi2j2,μi3j3) ∝ 1,

�2α3, . . . ,�
2αA|τ 2

α ∼ N
(
0, τ−2

α I
)
,

�2β3, . . . ,�
2βT |τ 2

β ∼ N
(
0, τ−2

β I
)
,

�2γ3, . . . ,�
2γA+T −1|τ 2

γ ∼ N
(
0, τ−2

γ I
)
,

τθ ∼ πφ, φ = α,β, γ.

We use an improper flat prior on the three initial points
because we want the analysis to be invariant to which
set of points we select. Note that there are only four
time periods (T = 4) in our motivating example, mean-
ing we only have two second differences for the period
effects. As a result, estimating τ 2

β is challenging and
sensitive to the prior specification. We discuss this fur-
ther in Section 7.3, and we include an example with
T = 11 time periods in Supplement A, Section C.

6.2 Bayesian Intrinsic Autoregressive Models

Several authors have suggested a Bayesian formu-
lation of the APC model with first- or second-order
random walk priors on each of the three sets of ef-
fects (Berzuini and Clayton, 1994, Besag et al., 1995,
Knorr-Held and Rainer, 2001, Riebler, Held and Rue,
2012). The second-order random walk (RW-2) prior
follows from assuming that the second differences are
independent, identically distributed Gaussian random
variates. This in turn implies a Gaussian Markov ran-
dom field (GMRF) wherein the conditional mean for
an effect at a given time depends on the effect at the
previous two and following two time points. That is, if
α|τ 2

α ∼ RW-2(τ 2
α), where τ 2

α is the precision:

�2αi |τ 2
α ∼ N

(
0, τ−2

α I
)

=⇒ π
(
α|τ 2

α

) ∝ τn−2
α exp

(
τ 2
α

2

A∑
i=3

(αi

− 2αi−1 + αi−2)
2

)
,

=⇒ αi | α−i , τ
2
α ∼ N

(
2

3
(αi−1 + αi+1)

− 1

6
(αi−2 + αi+2),

1

6τ 2
α

)
,

i = 3, . . . ,A − 2.
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The RW-2 prior does not have a representation as a
proper multivariate normal distribution: the precision
matrix implied by the full conditionals is of rank n−2.
This class of prior is often called an intrinsic GMRF
and, when there is an intercept and slopes in the RW-2
model, the impropriety is usually addressed by condi-
tioning on a set of linear constraints spanning the null
space of the implied precision matrix so that the im-
proper density is equivalent to a proper density on a
lower dimensional space (Rue and Held, 2005, Chap-
ter 3). Specifically, for RW-2 models there is a sum-
to-zero constraint and a zero slope constraint. For ex-
ample, for the age effects, this is equivalent to Lα = 0
where the ith column of L is {1, i}, i = 1, . . . ,A. In
the APC context, these constraints give a model which
is not over-parameterized but do not yield interpretable
intercepts or slopes, since the data cannot inform on
these.

Knorr-Held and Rainer (2001) considered both RW-
2 and RW-1 priors for the age, period and cohort ef-
fects (the RW-1 model arises from assuming the first
differences are independent normal) but found that the
RW-2 model gives better forecasts. The predictive dis-
tribution for future values under the RW-1 prior has
a mean equal to the most recent observation. As dis-
cussed in Section 4.1, predictions of μi,T +h are not in-
variant to the group of transformations defined in (2)–
(5) when constant forecasts for βT +h or γA+T −1+h are
used. In contrast, the standard forecast from a RW-2
model (linear extrapolation from the two most recent
observations) does give invariant forecasts of the log
rates.

The usual specification for a Bayesian APC model
using RW-2 priors is (Besag et al., 1995, Knorr-Held
and Rainer, 2001):

yij |μij ∼ Poi
(
Nij exp(μij )

)
,

μij = δ + αi + βj + γk + zij ,

δ ∼ N
(
mδ, s

2
δ

)
,

α|τ 2
α ∼ RW-2

(
τ 2
α

)
,

β|τ 2
β ∼ RW-2

(
τ 2
β

)
,

γ |τ 2
γ ∼ RW-2

(
τ 2
γ

)
,

z|τ 2
z ∼ N

(
0, τ−2

z I
)
,

τθ ∼ πφ, φ = α,β, γ, z.

The additional unstructured random effect zij allows
for heterogeneity around the constrained temporal ef-
fects and simplifies computation if using Markov chain

Monte Carlo (MCMC) methods to fit the model since
Gibbs sampling steps are available. Previous authors
using this formulation have imposed sum-to-zero con-
straints on the age, period and cohort effects, but not
zero linear trends (Riebler, Held and Rue, 2012). This
makes sense because there are no linear terms in the
model.

An alternative model uses the RW-2 prior with the
full set of constraints and adds a linear slope in age,
period and/or cohort. Borrowing from the spirit of the
Nielsen parametrization, we incorporate a linear trend
in age and time of diagnosis (period):

yij |μij ∼ Poi
(
Nij exp(μij )

)
,

(8)
μij = δ + ν1i + ν2j + αi + βj + γk + zij .

So rather than take the log rate at a single point and two
differences of log rates, we have specified the overall
mean and two slopes.

For the remainder of this paper, we refer to the model
with only sum-to-zero constraints as the classical RW-
2 model and the fully constrained RW-2 model with
linear trends in age and period as the new RW-2 model.

The RW-2 APC model is attractive because of its
ease of computation and because it does not require
equal age–period intervals; whereas, extending the
MNN parameterization to incorporate unequal inter-
vals is an open problem.

6.3 Variance Component Prior Specification

In this section, we will consider prior specification
for the variance components in the APC model in the
RW2 formulation. We place priors on the three compo-
nents, α, β , γ , z independently. We first consider the
term exp(αi), which is the relative risk associated with
a unit (say, 5 year) increase in age. Marginally, this
quantity is difficult to specify, since we need to think
about the absolute scale, but, conditionally it is more
straightforward which is an advantage of the RW2
(conditional) prior. We can interpret a RW2 model ei-
ther directionally or undirectionally. Directionally, we
have

(9) E[αi |αi−1, αi−2] = 2αi−1 + αi−2,

with Prec(αi |αi−1, αi−2) = τ 2
α/2, for i = 3, . . . ,A.

This mean form can be interpreted as fitting a line to
the two previous time points and extrapolating one time
unit forward. Undirectionally,

E[αi |αi−1, αi−2, αi+1, αi+2]
(10)

= 4

6
(αi+1 + αi−1) − 1

6
(αi+2 + αi−2),
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with Prec(αi |αi−1, αi−2, αi+1, αi+2) = 6τ 2
α , for i =

3, . . . ,A − 2. An interpretation is of fitting a quadratic
through the 4 points either side of the point of interest
and then interpolating. When it comes to prior speci-
fication for τ 2

α , either form can be used, but we find it
more natural to use the directional case and consider
the deviation we expect in the relative risk from the
linear extrapolation from the last two points. Naturally,
if the priors are specified consistently, a prior interval
around the mean in (9) will be wider than one around
the mean in (10) (which is reflected in the different
multipliers on the precisions).

We place a Ga(a, b) prior on the precision τ 2
α , so

that the marginal distribution of the deviation from
E[αi |αi−1, αi−2] is distributed as a Student’s t random
variable with location 0, scale 2bα/aα and dα = 2aα

degrees of freedom (recall that the standard deviation
of the normal deviation is

√
2/τα). Our overall strat-

egy is to fix the degrees of freedom and then specify
a range for the log relative risk deviations from the
mean. A similar rationale is used in Fong, Rue and
Wakefield (2010), Section 4.2, for a marginal random
effect. We fix the degrees of freedom as dα = 2 (i.e.,
aα = 1) to give an exponential distribution of rate 2bα

for τα . We solve for bα by assuming the relative risk
lies within exp(±cα) of exp(2αi−1 + αi−2) with prob-
ability q . Let t

dα

1−(1−q)/2 be the 100 × qth quantile of a
standard (i.e., zero mean, scale 1) Student’s t random
variable with dα degrees of freedom; then considera-
tion of the endpoint of the interval gives (for general
dα) bα = c2

αdα/[4(t
dα

1−(1−q)/2)
2].

For the “over-dispersion” precision τ 2
z we use the

same procedure, though the approach is a little more
straightforward since zij is a marginal random effect.
If exp(±cz) is the range that we believe, a priori, the
over-dispersion will fall within, then we are led to
bz = c2

zdz/[2(t
dz

1−(1−q)/2)
2]. We typically have less in-

formation on the size of the over-dispersion and choose
slightly wider intervals than for the other components.

In general, we might believe that changes in the age
parameters will be larger than the period or cohort pa-
rameters. In the analyses in Section 7, we take aα =
aβ = aγ = 1 and q = 0.95 and solve for bα = bβ = bγ

based on cα = log(1.2), cβ = log(1.1), cγ = log(1.1).
These correspond to deviations from one-step-ahead
predictions that are between (0.83,1.2), (0.91,1.1)

and (0.91,1.1), respectively. For the measurement er-
ror, we take az = 1 and cz = log(1.5), which corre-
sponds to independent deviations between (0.67,1.5).

6.4 Implementation

In general, the posterior distributions of Bayesian
APC models with RW-1 or RW-2 priors can be approx-
imated with Markov chain Monte Carlo (MCMC) us-
ing the stand-alone packages BAMP (Schmid and Held,
2007) and WinBUGS (Lunn et al., 2000) or with in-
tegrated nested Laplace approximations (Rue, Martino
and Chopin, 2009) using the recent BAPC R package
(Riebler and Held, 2016). By default, the RW-2 model
in the R-INLA implementation only uses sum-to-zero
constraints; however, constraints on the overall linear
trends can be added. The Bayesian MNN model can
be fit using INLA or MCMC, and we demonstrate both
here. Fitting this model in R-INLA is possible though
not as simple as fitting the RW-2 models because the
mean is given in terms of linear combinations of ran-
dom effects. See Supplement A, Section C and Supple-
ment B for more details.

For the MCMC, we sample from the posterior dis-
tribution π(ξ , τ 2

α, τ 2
β , τ 2

γ | y) using a combination of
Gibbs sampling for the precisions and Metropolis-
within-Gibbs steps for ξ . For the Metropolis updates,
we use a version of Metropolis–Hastings known as
the Metropolis-adjusted Langevin algorithm (MALA).
MALA was first proposed by Roberts and Tweedie
(1996) and can have better mixing properties than the
random walk Metropolis algorithm. Suppose the tar-
get distribution is π(u) then the MALA proposal, given
current state us , is

u′ ∼ N
(

us + h

2
∇ logπ(us), h�

)
,

where ∇ logπ(us) is the gradient of the target distri-
bution evaluated at the current state of the chain and
� is an estimate of the posterior variance of u (e.g.,
one could use the asymptotic variance of the MLE of
u) scaled by 1.652/dim(u). We do not pre-select the
proposal scale h but instead adaptively modify h to
achieve a sensible acceptance rate for the sampler.

Table 3 summarizes the three models discussed in
Sections 6.1 and 6.2 by the form the main effects, the
prior distributions on the age, period and cohort effects,
and the estimation procedure.

7. COMPARISONS OF PROPOSED MODELS

We compare the Bayesian models based on parame-
ter estimates of the second differences and on forecasts.
One of the main purposes of fitting temporal models
for disease incidence and mortality is to provide fore-
casts for the number of cases or deaths. For example,
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TABLE 3
Summary of models that are compared in Section 7

Model Name Main Effects Age, Period, and Cohort Effects Estimation

MNN-MLE μi1,j1 , μi2,j2 , μi3,j3 No penalization via priors MLE
MNN-INLA μi1,j1 , μi2,j2 , μi3,j3 Direct iid normal prior on second differences INLA
MNN-MCMC μi1,j1 , μi2,j2 , μi3,j3 Direct iid normal prior on second differences MCMC
RW2-Class δ RW-2 with sum-to-zero constraints INLA
RW2-New δ, linear term in age and period RW-2 with sum-to-zero and zero-linear-trends constraints INLA

every January, the American Cancer Society and Na-
tional Cancer Institute produce national and state-level
forecasts for cancer mortality for the current year and
for the next 3 years (Ghosh et al., 2007, Zhu et al.,
2012, 2014). These projections are used for planning
tasks such as estimating the total cost of cancer in the
United States.

7.1 Parameter Estimates

Figures 4–6 show the estimated double differences
based on the maximum likelihood estimates under the
MNN model, the new RW-2 model with factor and lin-
ear effects in age and period and full linear constraints
(8) and the Bayesian version of the MNN model fit via
MCMC. We expect some differences in the estimated
second differences between the MNN and RW2 mod-
els because the main effects are defined differently (see
Table 3). However, estimates from the Bayesian mod-
els are very similar and, compared to the maximum
likelihood estimates, attenuated toward zero. These re-
lationships are consistent when using the classical RW-

2 model (with only sum-to-zero constraints) or the
Bayesian MNN model fit using R-INLA (see Supple-
ment A, Section A for full results). The shrinkage of
the estimates toward zero is most evident in the cohort
effects for cervical cancer, which is expected given that
cervical cancer is rare compared to breast and lung can-
cer. In practice, it may be more realistic to use a sim-
pler model for cervical cancer, such as an age–period
or an age–cohort model, or use substantive knowledge
to constrain rates, as in Vaccarella et al. (2014).

In Figure 7, we plot the exponentiated double dif-
ferences (which we refer to as ratios, since they corre-
spond to ratios of two adjacent relative risks) for age
against age index and for cohort against cohort index.
We plot both the MLEs and the smoothed versions, and
interpret the latter. To reiterate, the double differences
are accelerations,so positive values could indicate an
increasing trend that is becoming more pronounced or
a decreasing trend that is becoming less steep. The age
effects for cervical cancer are consistent with a flat-
tening out of risk, as discussed by Vaccarella et al.

FIG. 4. Estimates of double differences with breast cancer data.
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FIG. 5. Estimates of double differences with cervical cancer data.

(2014). The cervical cohort double differences are all
close to 1, so that the underlying trend is linear in co-
hort. A positive linear trend could correspond to an in-
crease in the risk of HPV exposure (but this cannot be
gleaned from the data, rather from substantive knowl-
edge). The lung cancer cohort ratios are also relatively
flat.

We do not plot the period double differences, as there
are only two of them. However, for cervical and lung
cancer the estimates of exp(�2β3) and exp(�2β4) are
close to one, suggesting that there is no acceleration
(deviation from a linear trend) in these cancers. We em-
phasize that this says nothing about whether the rates

of lung and cervical cancer are increasing, decreasing,
or flat in time. On the other hand, for breast cancer
�2β3 and �2β4 are away from zero, raising the pos-
sibility there is nonlinearity in the period effects. In
this case, a 95% credible interval for �2β3 under the
MNN-MCMC model is (−0.24,−0.08) and so signif-
icantly less than zero, indicating a deceleration in risk
during the first three periods.

Table 4 shows the posterior medians of the standard
deviation τ−1 for each set of effects for the three can-
cers and four models. In all cases, the variability in the
age effect is larger than the variability in the period
and cohort effect. This is unsurprising given the ex-

FIG. 6. Estimates of double differences with lung cancer data.
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FIG. 7. Exponentiated double differences for age and cohort effects, for breast, cervical and lung cancer.

ploratory plots and our understanding that cancer risk
differs substantially by age.

TABLE 4
Standard deviation estimates for the age, period and cohort effects
under the two different RW-2 models and the MNN model fit using

MCMC or R-INLA

Cancer Model τ−1
α τ−1

β τ−1
γ τ−1

z

Breast RW2-Class 0.15 0.047 0.015 0.052
RW2-New 0.15 0.084 0.020 0.049

MNN-INLA 0.15 0.091 0.031
MNN-MCMC 0.15 0.091 0.031

Cervical RW2-Class 0.16 0.018 0.018 0.068
RW2-New 0.18 0.028 0.026 0.068

MNN-INLA 0.17 0.018 0.018
MNN-MCMC 0.17 0.018 0.018

Lung RW2-Class 0.12 0.017 0.045 0.050
RW2-New 0.13 0.024 0.051 0.050

MNN-INLA 0.11 0.017 0.048
MNN-MCMC 0.12 0.017 0.048

In these examples, there is agreement between the
estimates variance components of the MNN model
from INLA and MCMC. In general, we would expect
close correspondence between MCMC and INLA but
there are cases when INLA can be inaccurate, in partic-
ular with binary data (Fong, Rue and Wakefield, 2010,
Ferkingstad and Rue, 2015).

7.2 Forecasts

Forecasting cases of disease requires predicting rates
and denominators as well as taking into account the
Poisson variability in the number of cases. Here, we
compare the Bayesian models based on a simpler task
of predicting incidence rate one period ahead. This is
equivalent to predicting E(Y ) assuming the denomina-
tors are fixed. We use a linear extrapolation scheme,
which is the implicit forecast for RW-2 priors. This
forecast is automatically given in R-INLA if the re-
sponses for the additional time periods are included
as missing data. For the MNN-MCMC model, we first
convert ξ to δ, α, β and γ by choosing any ad hoc
identification scheme (e.g., α1 = β1 = γ1 = γ2 = 0).
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FIG. 8. Posterior medians and point-wise 95% credible intervals for age-specific incidence rates per 100,000 for three age groups including
forecasts for 2012–2016.

We then forecast the additional period and cohort ef-
fects as

βT +1|β1:T , τ 2
β ∼ N

(
βT + �βT , τ−2

β

)
,

γA+T |γ1:(A+T −1), τ
2
γ ∼ N

(
γA+T −1 + �γA+T −1, τ

−2
γ

)
.

Further details are given in Supplement A, Section D.
Figure 8 shows point estimates and 95% quantile-

based intervals for the incidence rates over time (in-
cluding a future period) for three age groups and each
cancer under the two different RW-2 models and the
MNN model, fit using MCMC or INLA. The point es-
timates from all four models are virtually identical, but
the intervals from the new RW-2 model are slightly

larger, which is not surprising given that the posterior
medians for τ−1

β in particular were larger for all three
cancers under the new RW-2 model. We predict that the
age-specific rates for cervical cancer and lung cancer
will continue to decrease. While the point-level pre-
dictions for the rates of breast cancer show decreases
or leveling-off, the intervals for the 2012–2016 rates
cover a wide range of possible trajectories. Plots for all
age groups and forecasted age-specific rate curves are
in Supplement A, Section A.

7.3 Prior Sensitivity

Now we turn to the issue of prior sensitivity. For the
variance components, estimates of the precision of the
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period effects τ 2
β are sensitive to the choice of prior in

our example (where we only have four time periods
and, therefore, only two second differences in the RW-
2 models). As a result, the width of the intervals for
the predictions are also sensitive to the priors (see Fig-
ure E.2 in Supplement A). However, there is very little
sensitivity to the priors on τ 2

α and τ 2
γ when keeping a

fixed prior for τ 2
β (see Figure E.3).

For data with a larger number of time periods, we ex-
pect that the posterior distributions will not be overly
sensitive to the prior specification. To investigate this,
we carried out the same sensitivity analysis using data
on Danish lung caner incidence with ten 5-year age-
groups and eleven 5-year periods; these data are avail-
able in the Epi package (Carstensen et al., 2014). We
found that the predictions and estimates of the variance
components are not sensitive to the prior specification
for this example with more periods. See Supplement A,
Section E for full results.

For the models with fixed effects, we chose a flat
prior so that we have invariance to the choice of initial
three points. If we instead use a Gaussian prior, then
the estimates of the second differences do depend on
the choice of initial three points (Supplement A, Sec-
tion E). As the variance of the Gaussian prior increases,
the estimates of the second differences become less
sensitive to the choice of the three points, as we would
expect.

8. DISCUSSION

In this paper, we have reviewed approaches to APC
modeling and inference and have critiqued a number
of recent applied contributions. We found several ex-
amples of authors over-interpreting plots of age, pe-
riod and cohort effects even when they were appar-
ently familiar with the identifiability problems. Hence,
if such plots are included, the limitations of interpreta-
tion must be clearly stated. In our example, we spec-
ulated on causes of particular patterns, but empha-
sized that these speculations were based on biologi-
cal/substantive arguments rather than on the observed
data. We strongly suggest using models based on an
identifiable parametrization or focusing on summaries
of the fitted and forecasted rates, with the latter ob-
tained from an invariant parameterization.

In this paper, we developed a Bayesian APC model
based on one such invariant parameterization originally
suggested by Kuang, Nielsen and Nielsen (2008b) and
Martínez Miranda, Nielsen and Nielsen (2015). We
compared this to the usual specification for a Bayesian

APC model using RW-2 priors and found the methods
agree in the key identifiable quantities (double differ-
ences and forecasts).

Research into APC models is not limited to the
identifiability problems discussed in this review. If
individual-level records are available, then one possi-
ble approach is to model each of age, period and cohort
effects using the continuous time analog of the RW-2
model, which is the solution of a stochastic differen-
tial equation and has close connections with smooth-
ing splines and integrated Wiener processes (Lindgren
and Rue, 2008). In this paper, we have concentrated on
the log link, but alternative power link functions have
been used, with a power of 0.2 being found to perform
well in an empirical evaluation (Møller et al., 2003).
The good performance stemmed from the power model
providing a leveling off of the exponential growth asso-
ciated with the log link, which was found to sometimes
lead to overestimation when prediction was carried out.
All of the identifiability issues discussed in the paper
still hold for the power model; but the constraints de-
scribed here can be incorporated into these models, and
implemented in INLA.
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