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apc: An R Package for Age-Period-Cohort
Analysis
by Bent Nielsen

Abstract The apc package includes functions for age-period-cohort analysis based on the canonical
parametrisation of Kuang et al. (2008a). The package includes functions for organizing the data,
descriptive plots, a deviance table, estimation of (sub-models of) the age-period-cohort model, a plot
for specification testing, plots of estimated parameters, and sub-sample analysis.

Introduction

Age-period-cohort models are extensively used in actuarial sciences, demography, epidemiology and
social sciences. They have an identification problem in that the predictor is defined from time effects
for age, period and cohort, but these time effects cannot be fully recovered from the predictor. The apc
package, see Nielsen (2015a), implements the solution proposed by Kuang et al. (2008a) and Nielsen
(2014), which is to abandon the time effects and reparametrise the predictor in terms of freely varying
parameters. The vector of freely varying parameters is of a lower dimension than the vector of the
original time effects. These freely varying parameters describe the variation of the likelihood function
fully. The intention with the package is to focus on the aspects of the time effect that are identified by
the likelihood.

The age-period-cohort model has three time scales: age, period and cohort. These are linked
through the identity age + cohort = period. The package is concerned with the situation where two
of the time scales are measured in discrete and equidistant time. The third time scale can then be
computed through age + cohort = period. The choice of these two indices vary from application to
application. For instance, the example in this paper is a an age-period array of annual counts of
mesothelioma deaths by age group. The interface of the package is constructed in such a way that the
user does not need to keep track of the coordinate system. Internally, the package uses an age-cohort
coordinate system to exploit that period is a symmetric function of age and cohort.

The statistical model is a generalized linear model with a predictor of the form

µage,cohort = αage + βperiod + γcohort + δ. (1)

The likelihood is a function of the predictor µage,cohort. In turn, the predictor is constructed from time
effects for age, αage, period, βperiod, and cohort, γcohort. If only we could estimate the time effects, we
could learn about the predictor through manipulations of the time effects. This would be done by
treating these as time series: plot them, fit time series models to them, perhaps forecast future values,
and finally combine them to get the predictor. However, the time effects are not fully identifiable from
the predictor so this approach has to be pursued with some care.

The identification problem is that linear trends can be moved between the time effects without
changing the predictor. Indeed, the predictor in (1) satisfies

µage,cohort = (αage + a + d× age) + (βperiod + b− d× period)

+ (γcohort + c + d× cohort) + (δ− a− b− c), (2)

for any choice of a, b, c and d. In other words, knowledge of the predictor from the likelihood is not
enough to pin down the time effects. The problem is discussed, for instance, by Carstensen (2007),
Clayton and Schifflers (1987a,b), Holford (1985), Kuang et al. (2008a), Luo (2013), Nielsen and Nielsen
(2014), O’Brien (2011), and Yang and Land (2013). There appears to be two types of solutions to the
problem: either to introduce four constraints to the time effects or to abandon the time effects and
seek a parsimonious and freely varying parametrisation of the predictor. The apc package follows the
latter approach. With the former approach, the constraints must come from some external argument as
the likelihood carries no information in this respect. An example is the ‘intrinsic estimator’, which is
based on a particular choice of a generalized matrix inverse, see Yang and Land (2013). The constraints
need to be tracked carefully through the analysis to clearify which inferences are driven by data and
which inferences are driven by the constraints; see Nielsen and Nielsen (2014) for an algebraic analysis
both for frequentist and Bayesian settings.

The apc package addresses the identification through the parsimonious parametrization of the
predictor suggested by Kuang et al. (2008a), see also Nielsen (2014). This exploits the fact that the
second differences of the time effects are identified and that the predictor itself is also identifiable.
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As an example, the age second difference is ∆2αage = ∆αage − ∆αage−1, where the first differences are
∆αage = αage − αage−1. The second differences are identifiable from the predictor through

∆2αage = µage,cohort − µage−1,cohort+1 − µage−1,cohort + µage−2,cohort+1. (3)

The double differences are well-known to be identifiable in the age-period-cohort model (1), see for
instance Clayton and Schifflers (1987b). Martínez Miranda et al. (2015) give a log-odds interpretation of
the double differences. If the double differences are all zero, or equivalently, all time effects are linear
then the model reduces to a linear plane. That linear plane is parametrised by the any three elements
of the predictor, µage,cohort, µage† ,cohort† , µage‡ ,cohort‡ say, for which the coordinates form a triangle rather
than a line. Accordingly, Kuang et al. (2008a) suggest to use

ξ = (µage,cohort, µage† ,cohort† , µage‡ ,cohort‡ , . . . , ∆2αage, . . . , ∆2βperiod, . . . , ∆2γcohort, . . . )′ (4)

A dimension reduction of 4 is achieved, since double differencing reduces each set of time effects by
two elements. The parameter is invariant to the identification problem (2) due to (3). To be of any
use it has to be shown how the predictor can be formed from the parsimonious parameter. Double
summation of double differences of the time effects results in the original time effects up to a linear
trend. Thus, for the user of the package it is sufficient to know that predictor can be found from the
parsimonious parameter through a formula of the form

µage,cohort = a linear plane + ∑ ∑
age

∆2αs + ∑ ∑
period

∆2βs + ∑ ∑
cohort

∆2γs. (5)

The formula that is actually used internally in the package is shown in (11). In that parametrisation
the linear plane is a function exclusively of µage,cohort, µage† ,cohort† , µage‡ ,cohort‡ so that linear plane
parameters and double differences are separated. The formula that is used in default plots uses
detrended versions of the double sums of double differences, see (15). This allows the user to focus on
deviations from linearity. The parsimonious predictor is identified since it can be shown that different
values ξ† 6= ξ‡ imply different predictors µ† 6= µ‡, see Kuang et al. (2008a). In the context of an
exponential family ξ is therefore the canonical parameter and the family is regular.

An existing package, Epi, for age-period-cohort analysis is created by Carstensen et al. (2014). It is
based on Carstensen (2007). It has a series of functions for demographic and epidemiological analysis
as well as some functions for age-period-cohort analysis. There are several differences between the
packages apc and Epi. First, apc uses the canonical parametrization of Kuang et al. (2008a), whereas
Epi does not. Second, apc, at present, is concerned with age-period-cohort data in various matrix
formats. These have to be vectorized before fitting the generalized linear model, but this is done
internally, so that the user only has to consider the original matrix format, while Epi takes data in
vectorized form and uses the data frame format. Third, at present, apc cannot handle the problem of
over-lapping cohorts: the people of age 25 in April 2015 will have been born either in 1989 or in 1990.
Conversely those born in 1990 will either be 24 or 25 in April 2015. When data on all three time scales
are available, cells can be sub-divided into two Lexis triangles with non-overlapping cohorts. Epi has
functions for exploiting such information.

The main contributions of the apc are therefore

1. to consider data in matrix format indexed in a number of different ways;

2. to provide specification graphics illustrating the quality of the fit;

3. to estimate the model parametrised in terms of the canonical parameter ξ in (4);

4. to visualize the components of the representation of the predictor µ in (5) as time series;

5. and to do this from a range of sub-models where some of the components of ξ or, correspond-
ingly, of the time effects, are set to zero.

The remainder of the paper will illustrate this. It is envisaged to extend the package with further time
series tools in the future. For reference, a theory of forecasting in the age-period-cohort model is given
in Kuang et al. (2008b) and used in for instance Martínez Miranda et al. (2015).

The apc package

The apc package includes functions for organizing the data, descriptive plots, a deviance table,
estimation of (sub-models of) the age-period-cohort model, a plot for specification testing, plots of
estimated parameters, and sub-sample analysis. These are described in turn.

The example for this analysis is a data set for annual mesothelioma deaths in the UK taken from
Martínez Miranda et al. (2015). It is thought that most mesothelioma deaths are caused by exposure to
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Figure 1: Data sums by age, by period and by cohort.

asbestos. The data set has counts of male deaths by age 25–89 and by 1967–2007. There is no direct
measure for the exposure to asbestos.

Organizing the data

Age-period-cohort data may include doses and responses or just responses. They come in different
types of data arrays. apc allows eight matrix formats arising from the choice of two indices from the age,
period, and cohort time scales, a triangular format for chain-ladder analysis, as well as a generalized
trapezoid format encompassing the other options, see (8). A special data format apc.data.list is
used to keep track of the data format and the time scales. An artificial response-only data set organized
in age-period format can be coded as follows

> library(apc)
> m.data <- matrix(data = seq(12), nrow = 3, ncol = 4)
> data.artificial <- apc.data.list(m.data, "AP", age1 = 25, per1 = 1990, unit = 5)
> data.artificial$response

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

The value returned to the variable data.artificial from apc.data.list is a list with ten elements.
The list includes the response, m.data; a dose which is set to NULL in this example; the data format
"AP"; and information about the real time scales. This is all based on the arguments of the function
apc.data.list. The first argument defines the response data, while the second argument signifies that
the response matrix is rectangular with coordinates in age-period format. The remaining arguments
are optional. In this case information about the times scales have been given. This shows that the
real time scales are 25, 30, 35 for age and 1990, 1995, 2000, 2005 for period, which in turn implies that
the cohorts are 1955, 1960, · · · , 1980. At this point data.artificial$response simply stores the input
matrix. We can think of it as varying in a simple age-period coordinate system. From a practical
viewpoint this is not particularly helpful. Therefore apc will exploit the optional information on the
real time scales when reporting estimators in the subsequent analysis.

A variety of data from the literature are pre-coded including the asbestos data from Martínez Mi-
randa et al. (2015). The available information for that data set is exactly as in the previous example: a
data matrix for responses in period-age format, though much larger, along with information about the
time scales. It can be called through

> data.asbestos <- data.asbestos()
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Figure 2: Sparsity plot.

Descriptive plots

The apc package has a variety of plots for descriptive analysis. These include plots of sums of the data
by age, period, or cohort to get an idea of the aggregate development; plots of the data matrix against
two of the three time indices to spot patterns in the data; and sparsity plots indicating if some entries
in the data matrix are very small. For instance, there are very few mesothelioma deaths for young
people. These plots can be called and manipulated individually or they can be called with a single
command, for example:

> apc.plot.data.all(data.asbestos)

Figure 1 shows the plots of data sums. The responses are seen to be sparse for young people and for
old and recent cohorts. The sparsity plot in Figure 2 illustrates this in more detail. It shows with black
and grey entries in the data matrix with zero or one. The data are very sparse for young age groups
and for old cohorts.

Deviance analysis

At this point the distribution is chosen. Currently four distributions are implemented: A Poisson
response model, a Poisson dose-response model, a logistic dose-response model, and a Gaussian
model giving least squares regression. The sampling theory for the two Poisson models is described in
Martínez Miranda et al. (2015) and Nielsen (2014), respectively.

The age-period-cohort model has a variety of interesting sub-models. These arise by setting some
of the coordinates of the canonical parameter ξ to zero. Nielsen (2014) gives a detailed discussion of
the interpretation of the sub-models. An age-cohort model "AC" arises by setting the period double-
differences to zero, so ∆2β j = 0 for j = 1, . . . , J. The drift models of Clayton and Schifflers (1987a,b)
arise by setting two sets of double-differences to zero. An age-drift model "Ad" arises by setting the
double differences ∆2β j and ∆2γk to zero. Thus, it is a sub-model of "AC". An age model code"A"
arises by by setting ∆2β j , ∆2γk, and the cohort slope to zero. Thus, it is a sub-model of "Ad". A trend
model "t" is the linear plane where all double differences ∆2αi, ∆2β j and ∆2γk are set to zero. Thus,
it is a sub-model of "Ad", but not nested in "A" as it has a cohort slope. An age trend model arises
by setting all double differences ∆2αi, ∆2β j and ∆2γk as well as the cohort slope to zero. Thus it is a
sub-model of both "t" and "Ad". Finally, an intercept model is denoted "1". A deviance table gives an
overview of the relative performance of the different models. For the mesothelioma data we get the
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following output.

> apc.fit.table(data.asbestos, "poisson.response")
-2logL df.residual prob(>chi_sq) LR.vs.APC df.vs.APC prob(>chi_sq) aic

APC 2384.923 2457 0.848 NA NA NA 10805.81
AP 5336.034 2560 0.000 2951.111 103 0.000 13550.92
AC 2441.728 2496 0.778 56.805 39 0.033 10784.61
PC 8265.746 2520 0.000 5880.823 63 0.000 16560.63
Ad 5912.422 2599 0.000 3527.499 142 0.000 14049.31
Pd 23461.384 2623 0.000 21076.461 166 0.000 31550.27
Cd 8494.658 2559 0.000 6109.735 102 0.000 16711.54
A 21948.036 2600 0.000 19563.113 143 0.000 30082.92
P 34391.044 2624 0.000 32006.121 167 0.000 42477.93
C 28415.983 2560 0.000 26031.060 103 0.000 36630.87
t 24037.772 2662 0.000 21652.849 205 0.000 32048.66
tA 40073.386 2663 0.000 37688.463 206 0.000 48082.27
tP 34967.432 2663 0.000 32582.509 206 0.000 42976.32
tC 50558.531 2663 0.000 48173.607 206 0.000 58567.42
1 51003.046 2664 0.000 48618.123 207 0.000 59009.93

The first column in the table has the heading -2logL, noting that the deviance for Poisson and
logistic models can be interpreted as minus twice the log likelihood for the model normalized to be
zero in the saturated model. The deviance table indicates that the reduction worth considering is an
age-cohort model, which is denoted "AC". Moreover, the likelihood value and p-value for the "APC"
model indicate that the quality of the unrestricted model is quite good, with a deviance smaller than
the degrees of freedom.

Estimation of a particular model

We can look a bit closer at a particular sub-model. For instance, in the case of the asbestos data the
unrestricted age-period-cohort model is estimated as follows. The estimation in apc is based on the
representation (11). Along with the estimates we get standard errors, which are discussed below. The
canonical parameter has 208 parameters, so only the first 8 estimates are reported here.

> fit.apc<- apc.fit.model(data.asbestos, "poisson.response", "APC")
> fit.apc$coefficients.canonical[1:8, ]

Estimate Std. Error z value Pr(>|z|)
level 1.041126756 NA NA NA
age slope 0.379386996 0.1115535 3.400941274 0.0006715425
cohort slope 0.358297074 0.1125026 3.184789061 0.0014485956
DD_age_27 1.029446394 1.6467618 0.625133761 0.5318832712
DD_age_28 0.065309039 1.4311381 0.045634337 0.9636017004
DD_age_29 -1.097279478 1.1180554 -0.981417831 0.3263867366
DD_age_30 0.414467808 1.1902557 0.348217448 0.7276768856
DD_age_31 0.003217972 1.2247555 0.002627441 0.9979036081

Note that the names for the parameters utilize the information about the real time scales coded through
apc.data.list().

For this data set exposure or dose is not available. We therefore apply the multinomial sampling
scheme used in Martínez Miranda et al. (2015). With this approach we condition on the overall level of
the data. The asymptotic distribution approximations will therefore be good in a situation where the
dimension of the data is fixed and the total number of responses is large. Thus, in this response model
we do not get standard errors for the level.

The level and the age and period slope define the linear plane that would arise if all double
differences were set to zero. The interpretation derives from the general representation (11). The level
is the estimate of the predictor µ57,1967,1910, which is the predictor of the middle age group for the
lowest period. The slopes have more interesting interpretations. The age (cohort) slope shows how
much the predictor changes when increasing age (cohort) by one, while keeping cohort (age) fixed.
Thus, the age and cohort slopes estimate

µ58,1968,1910 − µ57,1967,1910, µ57,1968,1911 − µ57,1967,1910, (6)

where any cell could be taken as a reference point. While the level and slopes have an explicit
interpretation it is perhaps easier to interpret them in terms of a plot. Plots of the estimates are
discussed below. While the package parametrises the linear plane in terms of the age and cohort slopes

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 57

1970 1980 1990 2000

3
0

4
0

5
0

6
0

7
0

8
0

9
0

probability transform map of fit 

 (central 80% black, tails (10%) green (5%) blue (1%) red)

period

a
g
e

Figure 3: Probability transform plot of age-period-cohort fit to asbestos data.

other choices could be made, such as age and period slopes. The age and cohort slopes are chosen due
to the age and cohort symmetry of the model.

A probability transform plot for the fit

The quality of the fit can be illustrated using a probability transform plot. Using the estimates it plots
probability transforms of responses given the fitted value. In other words: are the actual observations
probable given the estimated model? The plot is given in the original coordinate system. Colours
and symbols are used to indicate whether responses are central to the fitted distribution or in the tails
of the fitted distribution. The intention of the plot is to reveal if there are particularly many extreme
observations given the fit and if they form a particular pattern.

For the asbestos data the probability transform plot is coded as:

> apc.plot.fit.pt(fit.apc)

Figure 3 shows the result. For instance, all red point triangles indicates observations in the extreme 1
% of the distribution. Those pointing down indicate the lower end of the distribution. The number
of red triangles is not particular large given the number of observations, n = 2665, but, they form a
pattern among the most recent cohorts. Therefore, a sub-sample analysis is performed below.

Plots of the estimates

The estimates can be plotted using a single command. This command will automatically pick up
information about which sub-model and adjust accordingly, based on the analysis in Nielsen (2014).
There are two types of plots, which are illustrated using a sequence of three plots. Details follow.

1. Figure 4. Plot of type "sum.sum". This is illustrates the canonical parameter and the representa-
tion (11), but it is possibly the less useful choice in practical work.

2. Figure 5. Plot of type "detrend". This is illustrates the representation (15). It is the default
choice.

3. Figure 6. Plot of type "detrend" for a sub-sample. The above plots appear very messy, in part
because of the sparsity. This evidence leads to a sub-sample, for which the estimates look much
cleaner.
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Figure 4: Plots of the fitted canonical parameters illustrating representation (11).

Plot of type "sum.sum". Figure 4 is generated by:

> apc.plot.fit(fit.apc, type = "sum.sum")

It shows the canonical parameter estimates and illustrates the representation (11).

Figure 4 (a)–(c) shows the estimated second difference parameters ∆2αi, ∆2β j, ∆2γk. The estimates
are plotted with pointwise confidence bands centered around zero. The age double differences are
noisy for young ages while the cohort double differences are noisy for young and old cohorts. This is
due to the sparsity of observations for those age and cohort groups as shown in Figure 2. This calls for
a sub-sample analysis, which is described below.

The next row of panels in Figure 4 illustrates the estimated level and the slopes (6). Panel (e) shows
the estimated level of 1.04. No confidence bands are shown due to the multinomial sampling scheme.
Panels (d), (f) show the age and cohort slopes anchored at age 57 and cohort 1910 as discussed above.

Figure 4(g)–(i) shows double sums of double difference based on the representation (11). In each
plot two values of the double sums are set to zero. In other words, the degrees of freedom, that is the
number of non-zero values, in these plots are exactly the same as for the double differences. For exact
values of the double sums see the last section of the paper.

The sum of the information in Figure 4(d)–(i) gives the linear predictor of the model. That, is for
someone born in 1920 and dying at age 70 in 1990, the predictor is the sum of the linear age trend in
(d) evaluated at 70, the level in (e), the linear cohort trend in (f) evaluated at 1920, the age effect in (g)
evaluated at 70, the period effect in (h) evaluated at 1990, and the cohort effect in (i) evaluated at 1920.

The plots have a messy appearance. There are several reasons. First, double sums of double
differences are only identified up to arbitrary linear trends. It can be difficult to abstract from that
arbitrary linear trend with these plots. In particular the period effect in (h) has a strong linear trend.
It is hard to discern what the variation around that linear trend could be. We address this in the
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Figure 5: Plots of the fitted values using the detrended representation (15).

sub-sample analysis in connection with Figure 5. Second, the data are sparse for young age groups and
for young and old cohorts. This shows up in panels (a),(c),(g),(i). We address this in the sub-sample
analysis in connection with Figure 6.

Plot of type "detrend". Figure 5 is generated by:

> apc.plot.fit(fit.apc)

This plot illustrates the detrended representation (15). Figure 5(a)–(c) show exactly the same double
differences as before.

The level, slopes and double sums in Figure 5(d)–(i) are now changed. The idea is to give a good
visual impression of variation over and above a linear trend while preserving the degrees of freedom
in panels (a)–(c). In this way Figure 5(g)–(i) show double sums of double differences detrended so
as to start and end in zero. The level and slopes in Figure 5(d)–(f) are then changed according to
representation (15). The interpretation is as before: The linear predictor for someone born in 1920
and dying at age 70 in 1990 is the sum of the linear age trend in (d) evaluated at 70, the level in (e),
the linear cohort trend in (f) evaluated at 1920, the detrended age effect in (g) evaluated at 70, the
detrended period effect in (h) evaluated at 1990, and the detrended cohort effect in (i) evaluated at
1920.

There are several noteworthy features of the detrended plots. The detrended double sums in
Figure 5(g)–(i) fill the plot area better than those in Figure 4(g)–(i). Visually, it is easier to abstract from
the arbitrary linear trend and focus on deviation from the linear trend. A possible drawback of the
detrended plot is that age-period-cohort models can have perfect fit in some corners of the data array.
For an age-period array, the very first and last cohort double differences will therefore be based on one
data entry each. When looking at the detrended double sums those double differences are, however,
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Figure 6: Plots of the fitted values for sub-sample.

combined with double sums of all the other double differences which are better determined.

The detrended age double sums in Figure 5(g) are broadly similar to those in Figure 4(g) apart
from a lift in the scale and a slight change of slope. The plot indicates a near concave deviation from
linearity after age 35. The development over the range 25-35 could be driven by the sparsity of the
data in that region. We return to this point in the sub-sample analysis.

The detrended period double sums in Figure 5(h) have a very different appearance from those in
Figure 4(h). The appearance is now seen to be a ragged concave shape. The first period stands out.
Abstracting from that, the plot looks very linear. We return to this point in the sub-sample analysis.

The detrended cohort double sums in Figure 5(h) are just as messed up in appearance as those
in Figure 4(h). The confidence bands have dropped off the plot and a warning is given. Again, the
sub-sample analysis will address this point.

Plot of type "detrend" for a sub-sample. Figure 6 shows the result of a sub-sample analysis.

The asbestos data is sparse for low ages and for old and young cohorts. A recursive analysis
can be used to check how sensitive the above analysis is in this respect. The idea is to cut parts of
observations away and redo the analysis. This can be done through the command:

> data.asbestos.subset <- apc.data.list.subset(data.asbestos, 10, 0, 0, 0, 3, 16)

which cuts the lower 10 age groups, the lower 3 cohort groups and the upper 16 groups. The subset
of the data is no longer a rectangle in the period-age coordinate system, but rather a rectangle with
some corners cut off. This is a generalized trapezoid, see (8) for details. The above analysis can now
be redone. The deviance table, which is not reported, gives approximately the same information as
before, with only weak support for the "AC" sub-model (p = 4%).

Prompted by the jump in the period effect in Figure 5(h) we can go one step further and drop the
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data for the first period, 1967. It is possible that the data collection scheme was slightly different the
first year. This is also consistent with Tan et al. (2010). We achieve this with only a small modification
of the previous code

> data.asbestos.subset <- apc.data.list.subset(data.asbestos, 10, 0, 1, 0, 3, 16)
> fit.apc.subset <- apc.fit.model(data.asbestos, "poisson.response", "APC")
> apc.plot.fit(fit.apc.subset)

The deviance table, which is not reported, now gives stronger support for the "AC" sub-model (p =
12%).

Figure 6 shows plots of the estimates. The difference relative to Figure 5 is that the noise from
the youngest age groups, the first period group and the youngest and oldest cohorts group has been
eliminated. Remarkably, the estimates for the remaining age, period and cohort groups are very
similar. This is most clear in the plot of ∆2β in panels (b) of Figure 5,6, which are nearly identical. The
plots of ∆2α and ∆2γ in panels (a), (c) are also very similar, although this is masked by the difference
in scales. For a good empirical model the predictors for the sub-sample should be the same in the full
sample and in the sub-sample. Since the double differences are identifiable from the predictors, the
same should apply to them.

The double sums of double differences in panels (g)–(i) and the consequent level and linear slopes
in (d)–(f) are changed. They depend on the normalisation, which depends on the choice of sample. For
the sub-sample, we now see a concave shape in the double sums for age and cohort. Since the sums
are pinned down to be zero at both ends this is very visible. This is quite common in cancer studies.
Nielsen (2014) argues that this is consistent with double differences that increase from a negative value
and sub log linear age effects.

It is worth noting that the sub-sample analysis is used in two ways here. First, it is used to trim
off noise from sparse parts of the data set. Secondly, it is used to show that estimates do not depend
very much on the choice of data array. Martínez Miranda et al. (2015) are concerned with forecasting
future mortality and use the sub-sample analysis to show that forecasts are robust to the choice of data
array. However, at present forecast methods are not implemented in apc. For an identification theory
of forecasting see Kuang et al. (2008b). Recursive sub-sample graphs are very common in time series
econometrics, see Hendry and Nielsen (2007, §13.4) and could, with advantage, be developed further.

Some details on the representation

Internally apc uses a representation developed in Nielsen (2014) that generalises the representation
(5) from Kuang et al. (2008a). An overview of the representation is given along with some notes on
the level and slope estimates in the mesothelioma example as well as on the ad hoc identification of
double sums of double differences and the application to the mesothelioma data.

The representation

The package can handle data arrays that are generalized trapezoids. To illustrate this, while keeping a
notation that is consistent with Nielsen (2014) the age-period-cohort model (1) is now written as

µik = αi + β j + γk + δ, (7)

where i is age, j is period and k is cohort, so that i + k = j + 1. The generalized trapezoids are arrays
of the form

I = {i, k : 1 ≤ i ≤ I, 1 ≤ k ≤ K, L + 1 ≤ j ≤ L + J}, (8)

where I, J and K are the numbers of age, period and cohort indices, while L + 1 is the lower period
index. An age-cohort rectangular array arises when L = 0 and J = I + K− 1. A reserving triangle is a
triangular age-cohort array where I = J = K, L = 0. A period-age rectangular array is an age-cohort
trapezoid where L = I− 1 and K = I + J− 1. The above sub-sample analysis is based on a rectangular
age-cohort array with two corners chopped off.

It is convenient to choose a representation of the model that is symmetric in age and cohort. Nielsen
(2014) derives such a representation. The level is anchored in the middle of the first diagonal of odd
length. Thus, define U = integer{(L + 3)/2}. For a period-age array where L = I − 1 this reduces to
U = integer(I + 2)/2. If I is odd the anchoring point will be the middle age group (I + 1)/2 for the
first period. If I is even the anchoring point will be the age group I/2 + 1 for the second period. The
age and cohort slopes are then define as the one-step slopes in age and cohort directions from that
point. The canonical parameter is then chosen as

ξ = (ν0, νa, νc, ∆2α3, . . . , ∆2αI , ∆2βL+2, . . . , ∆2βL+J , ∆2γ3, . . . , ∆2γK)
′, (9)
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where

ν0 = µUU , νa = (i−U)(µU+1,U − µUU), νc = (k−U)(µU,U+1 − µUU). (10)

It can then be shown that the predictor has the representation

µik = ν0 + νa + νc + Ai + Bj + Ck, (11)

where

Ai = 1(i<U)

U+1

∑
t=i+2

U+1

∑
s=t

∆2αs + 1(i>U+1)

i

∑
t=U+2

t

∑
s=U+2

∆2αs (12)

Bj = 1(L odd & j=2U−2)∆
2β2U + 1(j>2U)

j

∑
t=2U+1

t

∑
s=2U+1

∆2βs (13)

Ck = 1(k<U)

U+1

∑
t=k+2

U+1

∑
s=t

∆2γs + 1(k>U+1)

k

∑
t=U+2

t

∑
s=U+2

∆2γs (14)

Estimates for the time effects Ai, Bj, Ck can be found by the code

> id.apc <- apc.identify(fit.apc)
> id.apc$coefficients.ssdd

The canonical parameter (9) and the predictor (11) can be visualized through the command

> apc.plot.fit(fit.apc, "sum.sum")

The interpretation is similar to that given in the discussion of Figure 5. The package includes a vignette,
Nielsen (2015b), showing how the parameters Ai, Bj, Ck are computed from the canonical parameter.

The representation (11) has the advantage that it is symmetric in age and cohort, reducing to
that of Kuang et al. (2008a) for age-cohort data arrays. There is some separation between the linear
plane parameters and the non-linear parameters. Indeed, the transformation from (9) to (11) does not
mix the two. The choice of parametrisation is primarily for internal uses and will usually not be of
importance to the user. It should be noted that any bijective transformation of ξ could be used as the
parsimonious parameter. If the transformation is linear, the transformed parameter will also be the
canonical parameter in an exponential family context. Some times non-linear transformations of the
parameter are preferred. An example is the chain ladder model, which is an age-cohort model for an
age-cohort triangle. This is often parametrised in terms of the development factors, see Kuang et al.
(2009) for a discussion.

The detrended representation

The default plot of the parameters uses a detrended version of the parameters Ai, Bj, Ck. To be specific,
it uses the representation

µik = νdetrend
0 + (i− 1)νdetrend

a + (k− 1)νdetrend
c + Adetrend

i + Bdetrend
j + Cdetrend

k , (15)

where

Adetrend
i = Ai − A1 −

i− 1
I − 1

(AI − A1) (16)

Bdetrend
j = Bj − B1 −

j− L− 1
J − 1

(BL+J − BL+1) (17)

Cdetrend
k = Ck − C1 −

k− 1
K− 1

(CK − C1), (18)

which all start and end in zero. Consequently, it must hold that

νdetrend
0 = ν0 − (U − 1)(νa + νc)− A1 − BJ+1 − C1 −

L
J − 1

(BL+J − BL+1), (19)

νdetrend
a = νa +

1
I − 1

(AI − A1) +
1

J − 1
(BJ+L − BJ+1), (20)

νdetrend
c = νc +

1
K− 1

(CK − C1) +
1

J − 1
(BJ+L − BJ+1). (21)

The parameters νdetrend
0 , νdetrend

a , νdetrend
c , Adetrend

i , Bdetrend
j , Cdetrend

k can be found by the code
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> fit.apc$coefficients.detrend

They are visualized in Figures 5. In particular, the plotted level and slopes are those derived in (19)–
(21). The vignette Nielsen (2015b) shows how to check the transformation from the representation (11)
to (15).

The level and slope estimates for the mesothelioma data

Recall that the canonical parameter estimates for the mesothelioma data are available through:

> fit.apc$coefficients.canonical[1:5, ]
Estimate Std. Error z value Pr(>|z|)

level 1.041126756 NA NA NA
age slope 0.379386996 0.1115535 3.400941274 0.0006715425
cohort slope 0.358297074 0.1125026 3.184789061 0.0014485956
DD_age_27 1.029446394 1.6467618 0.625133761 0.5318832712
DD_age_28 0.065309039 1.4311381 0.045634337 0.9636017004

The level estimate for the mesothelioma arises as follows. The data is organised in an period-
age array with I = 65 age groups and J = 41 cohort groups. Thus, L = I − 1 = 64 and U =
integer{(L + 3)/2} = integer(67/2) = 33. The anchoring point for the level is therefore in the age-
cohort coordinate system µ33,33, or, in an period-age coordinates µ1,33. The corresponding, real time
period-age coordinates are µ1967,57. To check this predictor estimates the level, run the following code,
which organises the linear predictor for the vectorized data as a matrix in the original format.

> # create matrix of same dimension as response matrix
> m.linear.predictor <- data.asbestos$response
> m.linear.predictor[fit.apc$index.data] <- fit.apc$linear.predictor
> m.linear.predictor[1,33]
[1] 1.041127

For comparison, there are 5 observed deaths of age 57 in 1967, which is not far from exp(µ̂1967,57) = 2.8.

The slope estimates arise as follows. The age and cohort slopes are now, in age-cohort coordinates,
µ34,33 − µ33,33 and µ33,34 − µ33,33, or, in period-age coordinates, µ2,34 − µ1,33 and µ2,33 − µ1,33. The
estimates are

> m.linear.predictor[2,34]-m.linear.predictor[1,33]
[1] 0.379387
> m.linear.predictor[2,33]-m.linear.predictor[1,33]
[1] 0.3582971

The estimates of the double sums appearing in (11) can be computed by as follows.

> id.apc$coefficients.ssdd[c(35:38, 69:71, 141:144), ]
Estimate Std. Error z value Pr(>|z|)

SS_DD_age_56 -0.02995345 0.09120714 -0.3284113 0.7426007
SS_DD_age_57 0.00000000 NA NA NA
SS_DD_age_58 0.00000000 NA NA NA
SS_DD_age_59 0.09970809 0.08965228 1.1121646 0.2660674
SS_DD_period_1967 0.00000000 NA NA NA
SS_DD_period_1968 0.00000000 NA NA NA
SS_DD_period_1969 -0.33556503 0.21566380 -1.5559636 0.1197167
SS_DD_cohort_1909 -0.15147783 0.12248429 -1.2367124 0.2161939
SS_DD_cohort_1910 0.00000000 NA NA NA
SS_DD_cohort_1911 0.00000000 NA NA NA
SS_DD_cohort_1912 0.02337873 0.12074650 0.1936183 0.8464748

Summary

This article describes the apc package for age-period-cohort modelling. It implements the canonical
parametrisation of Kuang et al. (2008a). The package includes functions for organizing the data, a
descriptive plot, a deviance table, estimation of sub-models of the age-period-cohort model, a plot for
specification testing, plots of estimated parameters, and sub-sample analysis.
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